JPH091340A - Automatic pulse mode setting method of automatic tube circumference welding equipment - Google Patents

Automatic pulse mode setting method of automatic tube circumference welding equipment

Info

Publication number
JPH091340A
JPH091340A JP17392795A JP17392795A JPH091340A JP H091340 A JPH091340 A JP H091340A JP 17392795 A JP17392795 A JP 17392795A JP 17392795 A JP17392795 A JP 17392795A JP H091340 A JPH091340 A JP H091340A
Authority
JP
Japan
Prior art keywords
welding
pulse
posture
automatic
pulse mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17392795A
Other languages
Japanese (ja)
Inventor
Yuuichi Manrai
雄一 萬來
Seiji Mizukami
清二 水上
Ikuo Mibu
生男 壬生
Koji Ito
浩司 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering and Services Co Ltd
Tokyo Gas Co Ltd
Original Assignee
Hitachi Engineering and Services Co Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering and Services Co Ltd, Tokyo Gas Co Ltd filed Critical Hitachi Engineering and Services Co Ltd
Priority to JP17392795A priority Critical patent/JPH091340A/en
Publication of JPH091340A publication Critical patent/JPH091340A/en
Pending legal-status Critical Current

Links

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)
  • Arc Welding Control (AREA)
  • Arc Welding In General (AREA)

Abstract

PURPOSE: To obtain an automatic tube circumference welding equipment of high quality and a high welding speed by storing the pulse mode suitable in each position beforehand and controlling by switching a pulse mode in the state of arc-on corresponding to the welding position. CONSTITUTION: Data of a groove shape of a tube to be welded, material, external shape of the tube, thickness, etc., prepared beforehand are inputted in a controller 2. The controller 2 converts the inputted data to various welding conditions and the welding conditions are recorded as control data. By successively controlling by using the recorded welding conditions and driving/ controlling a welding head 4 set to a tube 5 as well as controlling an arc of a torch 1, multi-layer welding is executed. The welding head 4 is moved on a guide rail 6 arranged to the tube 5 from the most upper part toward most lower part by a servo motor for running. A welding power unit 3 supplies the power corresponding to the welding condition to the welding head 4 based on the command from the controller 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はパイプ円周自動溶接装置
に係り、特に、溶接姿勢の変化に対して溶接速度を早く
でき、溶接欠陥等の発生を防止した、パイプの円周自動
溶接装置のパルスモード自動設定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pipe circumference automatic welding apparatus, and more particularly to a pipe circumference automatic welding apparatus capable of increasing the welding speed in response to changes in the welding position and preventing the occurrence of welding defects and the like. Pulse mode automatic setting method.

【0002】[0002]

【従来の技術】従来、パルス制御によるアーク溶接機と
して特開昭56−165564号公報には電流の変化幅
とパルスの立上り時間を制御して安定した溶接を行うこ
とが開示されている。従来、パイプの円周自動溶接では
上向、立向、下向の順に溶接を行う上進溶接用の装置が
用いられているが、溶接中はパルスモードを変化させ
ず、一定にしていた。
2. Description of the Related Art Conventionally, as an arc welding machine using pulse control, Japanese Patent Application Laid-Open No. 165564/56 discloses controlling a width of change of current and a rise time of pulse to perform stable welding. Conventionally, in the circumferential automatic welding of pipes, an apparatus for upward welding, which performs welding in the order of upward, vertical, and downward, has been used, but during welding, the pulse mode was kept constant without changing.

【0003】[0003]

【発明が解決しようとする課題】しかし、前述の公報に
は、一般の平板溶接に関する開示はあるが、パイプ円周
を溶接することに関しては何ら開示がない。更に、従来
のパイプ溶接機は上進溶接用がほとんどで下進溶接を行
うものは少ない。従来の溶接法においては、アークオン
の状態でパルスモードの切換えができずに、姿勢が変化
してもパルスモードを一定にして溶接を行っていたため
全姿勢に適したものにならず、溶接速度を遅くしなけれ
ばならないという問題が有る。また、アークをオフして
モードを切換えた場合、溶接ビードの継ぎ目部ができ、
溶接欠陥の原因となるという問題が有る。
However, although the above-mentioned publication discloses the general flat plate welding, it does not disclose the welding of the pipe circumference. Furthermore, most conventional pipe welders are for upward welding, and few perform downward welding. In the conventional welding method, the pulse mode could not be switched in the arc-on state, and the welding was performed with the pulse mode kept constant even if the posture changed. There is the problem of having to be late. Also, when the arc is turned off and the mode is switched, the seam of the weld bead is created,
There is a problem of causing welding defects.

【0004】本発明の目的は下進溶接を行う溶接機にお
いて、溶接中にアークを停止せずに、溶接姿勢に応じて
パルスモードを切り替え制御することにより、高速で、
高い溶接品質が得られるパイプ円周自動溶接装置のパル
スモード自動設定方法を提供するにある。
An object of the present invention is, in a welding machine for performing a downward welding, by switching and controlling a pulse mode according to a welding posture without stopping an arc during welding, thereby enabling high speed operation.
(EN) It is possible to provide a pulse mode automatic setting method for a pipe circumference automatic welding device which can obtain high welding quality.

【0005】[0005]

【課題を解決するための手段】全姿勢でパイプの円周自
動溶接を行う際に、各姿勢に適するパルスモードを予め
求め、記憶しておき、前記記憶されたパルスモードを溶
接姿勢に応じて切り替え制御する。下向き姿勢では電流
のパルス幅を大きくし、アーク長を長くする。立向き姿
勢及び上向き姿勢では電流のパルス幅を短くし、アーク
長を短くする。
[Means for Solving the Problems] When performing automatic circumference welding of a pipe in all positions, a pulse mode suitable for each position is obtained and stored in advance, and the stored pulse mode is determined according to the welding position. Switch control. In the downward attitude, the pulse width of the current is increased and the arc length is increased. In the vertical posture and the vertical posture, the pulse width of the current is shortened and the arc length is shortened.

【0006】[0006]

【作用】全姿勢でパイプの円周自動溶接を行う際に、溶
接姿勢に応じてパルスモードを自動的に切り替え制御す
るため、溶接中にアークを停止することはない。下向き
姿勢では高電流で、電流のパルス幅を大きくし、パルス
訛りを防止する。またこの姿勢ではアーク長を長くでき
るので、高速な溶接が可能である。立向き姿勢及び上向
き姿勢では電流のパルス幅を短くし、アーク長を短くし
て、1パルス1溶滴の溶接ができるので、溶融池の垂れ
下がり、垂れ落ち等を防ぐことができる。なお、高周波
パルス電流はリアクタンス等の影響によるパルス訛りが
生じない範囲(300Hz〜800Hz)を用いる。
When the pipe circumference automatic welding is performed in all positions, the pulse mode is automatically switched and controlled according to the welding position, and therefore the arc is not stopped during welding. The current is high in the downward posture and the pulse width of the current is increased to prevent pulse accentuation. Further, since the arc length can be increased in this posture, high-speed welding is possible. In the vertical posture and the vertical posture, the pulse width of the current is shortened, the arc length is shortened, and one pulse per droplet can be welded. Therefore, it is possible to prevent the molten pool from dripping and dripping. The high-frequency pulse current is used in a range (300 Hz to 800 Hz) in which pulse accentuation due to the influence of reactance or the like does not occur.

【0007】[0007]

【実施例】図1は本発明のパルスモードを自動設定でき
るパイプ円周自動溶接装置の全体構成図である。図にお
いて、予め作成した、溶接するパイプの開先形状、材
質、パイプの外形や肉厚等のデータを制御装置2に入力
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an overall configuration diagram of a pipe circumference automatic welding apparatus capable of automatically setting a pulse mode according to the present invention. In the figure, data such as a groove shape, a material, an outer shape and a wall thickness of a pipe to be welded, which are created in advance, are input to the control device 2.

【0008】制御装置2は、入力されたデータを各種溶
接条件に変換して、その溶接条件を制御データとして記
録する。記録された制御データを用いて逐次制御し、パ
イプ5にセットされた溶接ヘッド4を駆動制御すると共
に、トーチ1のアークを制御(パルスモードの切替制
御)して自動的に多層盛溶接を行う。
The controller 2 converts the input data into various welding conditions and records the welding conditions as control data. Sequential control is performed using the recorded control data, the welding head 4 set on the pipe 5 is driven and controlled, and the arc of the torch 1 is controlled (pulse mode switching control) to automatically perform multi-pass welding. .

【0009】トーチ1のアーク制御は後で詳細説明する
ように、入力データに基づき、実際に溶接する層毎、姿
勢(位置)毎にパルスモードデータが作成され、制御テ
ーブルに記録されている。また、溶接ヘッド4はパイプ
5に設けられたガイドレール6上を、走行用サーボモー
タにより最上部から最下部に向かって移動する。3は溶
接電源装置であり、制御装置2からの指令に基づき溶接
条件に応じた電力を溶接ヘッド4に供給する。溶接ヘッ
ド4は供給された電力から所望のパルス電流を生成し、
それをトーチ1に供給する。7はインターフェースボッ
クスで、制御装置2からの指令信号の授受を行う部分で
ある。6はAl製の円周2分割のガイドレールである。
As will be described later in detail, the arc control of the torch 1 is based on input data, and pulse mode data is created for each layer and posture (position) to be actually welded and recorded in a control table. Further, the welding head 4 moves on the guide rail 6 provided on the pipe 5 from the uppermost portion to the lowermost portion by the traveling servomotor. Reference numeral 3 denotes a welding power supply device, which supplies electric power according to welding conditions to the welding head 4 based on a command from the control device 2. The welding head 4 generates a desired pulse current from the supplied electric power,
Supply it to the torch 1. Reference numeral 7 denotes an interface box, which is a part for transmitting and receiving command signals from the control device 2. Reference numeral 6 is a guide rail made of Al and divided into two circumferences.

【0010】ここでは、実施例として、高周波パルスM
AG(Metal Active Gas )について説明する。ここで
使用したパルスモードでは、パルス電流の周波数が30
0〜800Hzであり、最大のパルス電流は480Aで
ある。実際の制御ではワイヤの臨界電流より高いパルス
電流に同期してワイヤ先端に形成された溶滴を1パルス
1溶滴,溶滴の大きさをほぼワイヤ径の1/2〜1/4
となるように強制的に高速で離脱させ、連続的にスプレ
ー状に溶融池に移行させるものである。
Here, as an example, a high frequency pulse M
The AG (Metal Active Gas) will be described. In the pulse mode used here, the frequency of the pulse current is 30
It is 0 to 800 Hz, and the maximum pulse current is 480 A. In actual control, the droplet formed at the tip of the wire is synchronized with a pulse current higher than the critical current of the wire, and the size of the droplet is approximately 1/2 to 1/4 of the wire diameter.
It is forcibly disengaged at high speed so that it continuously moves to the molten pool in spray form.

【0011】ところで、パイプ円周を下進行により溶接
する場合、実験により次のような条件を満足するように
制御することにより高精度に溶接ができることが判っ
た。下向き溶接を行う場合は、最も溶接がし易く高周波
パルスが訛らないモードにする。立向き溶接を行う場合
は、溶融池が最も走り易いため短いアーク長のモードと
し、アーク電圧を下げ、多少スパッタを発生させる。上
向き溶接を行う場合は、溶融池の垂れ落ちを防止するた
め低電流とするが、短いアーク長でのモードとする。
By the way, when welding the pipe circumference downward, it has been experimentally proved that the welding can be performed with high precision by controlling so as to satisfy the following conditions. When performing downward welding, select a mode in which welding is easy and high frequency pulses are not accented. When performing vertical welding, the weld pool is the easiest to run, so the mode is set to a short arc length, the arc voltage is lowered, and spatter is generated somewhat. When performing upward welding, the current is low to prevent the molten pool from dripping, but the mode is short arc length.

【0012】図2に各向きで溶接を行ったときの溶融池
の形状を示す。図の横軸はビード幅Wbを縦軸に余盛高
さhを示している。このように各姿勢により溶融池の形
状が変化することが判る。図2からも、前記の条件に示
した各位置により溶融池の状態になっている。
FIG. 2 shows the shape of the molten pool when welding is performed in each direction. The horizontal axis of the figure represents the bead width Wb and the vertical axis represents the excess height h. Thus, it can be seen that the shape of the molten pool changes depending on each posture. From FIG. 2 as well, the molten pool is in the state shown in the above-mentioned conditions.

【0013】制御装置2には、表1に示すようなパルス
モードが予め設定されている。表1は先に説明した条件
を満足するように、実験に基づいて設定されたパルスモ
ードの1例を示したものである。このパルスモードも、
先に説明したように入力データに基づいて作成される溶
接条件の1つである。
A pulse mode as shown in Table 1 is preset in the controller 2. Table 1 shows an example of the pulse mode set based on the experiment so as to satisfy the conditions described above. This pulse mode also
This is one of the welding conditions created based on the input data as described above.

【0014】[0014]

【表1】 [Table 1]

【0015】表1に示すように、実際に使用するデータ
としては、どこの層の溶接を行うかによって、溶接姿勢
毎の溶接範囲(位置)や、溶接時のパルス電流、パルス
幅、周波数、ヘッドの溶接速度、ウィーブ幅やウィーブ
速度等が記録されている。なお、この表は直径φ600
で厚さ15tのパイプを示しているが、パイプの材質等
によって同じ径、肉厚でも数値は異なってくる。
As shown in Table 1, as data to be actually used, depending on which layer is to be welded, the welding range (position) for each welding position, the pulse current, pulse width, frequency during welding, Head welding speed, weave width, weave speed, etc. are recorded. In addition, this table shows a diameter of 600
Shows a pipe with a thickness of 15 tons, but the numerical value varies depending on the material of the pipe and the like even if the diameter and wall thickness are the same.

【0016】なお、60度V開先での溶接層状態の概略
を図3に示す。図のaはパイプの直径がφ600で肉厚
15tの時の積層状態を、bはパイプの直径がφ750
で肉厚19tの時の積層状態を、cはパイプの直径がφ
650で肉厚30tの時の積層状態を示したものであ
る。図中の1層目は裏波層であり、一番表面の層が仕上
げ層で、残りの間の層が中間層と称している。先の表1
は5層の時の溶接データを示している。図3に示すよう
に層数が増えてくると、1回のウィーブでは同一面を溶
接できず、ウィーブ中心位置をずらして2回以上の溶接
を行っている。
Incidentally, FIG. 3 shows an outline of the state of the welding layer at the 60 ° V groove. In the figure, a shows the laminated state when the pipe diameter is φ600 and the wall thickness is 15 t, and b is the pipe diameter φ750.
Shows the laminated state when the wall thickness is 19t, and c is the pipe diameter φ
650 shows the laminated state when the wall thickness is 30 t. The first layer in the figure is the back wave layer, the outermost layer is the finishing layer, and the layers between the remaining layers are called the intermediate layers. Table 1 above
Indicates welding data for the case of 5 layers. As shown in FIG. 3, when the number of layers increases, the same surface cannot be welded by one weave, and the weave center position is shifted and welding is performed twice or more.

【0017】図4は、各姿勢を先の表1に示したように
位置を時分で表しているものである。それぞれの向きに
おける、一般的な溶融池の形状を示してある。図のよう
に12時の下向き、6時の上向き及び12時と3時の中
間点における溶融池形状はいずれも半円形を示し、3時
及び3時と6時との中間点においては溶融池形状はやや
垂れ下がった状態になる。但しこの垂れ下がりは、本発
明のパルスモードの切替を行うことにより他の部分と同
様に半円径にすることが出来る
FIG. 4 shows the position in hours and minutes as shown in Table 1 for each posture. The general shape of the weld pool in each orientation is shown. As shown in the figure, the shapes of the molten pool at 12:00 downward, 6 o'clock upward, and at the midpoint between 12:00 and 3:00 all show a semi-circular shape, and at the midpoint between 3:00 and 3:00 and 6:00, the molten pool is shown. The shape is slightly sagging. However, this sagging can be made to be a semicircle diameter like other portions by switching the pulse mode of the present invention.

【0018】次に図5にパルス波形の模擬図を、図6に
実際に実験したときのパルス波形の代表例を示す。図5
では、A,B2つのモードを示している。図中のIpが
パルス電流を、Ibがベース電流を、Iavが溶接電流
を示している。本実験では立向き溶接時はBモードのよ
うにパルス幅を狭くして、上向きや下向き溶接を行う場
合Aモードのように広くする制御を行っている。但し、
下向き溶接時はパルス電流Ipを大きなパルス電流(例
えば480A)とし、上向き溶接時はパルス電流を小さ
くしている。これは、パルス周波数を上げる方が、溶滴
を小さく出来るが、周波数を上げることによって電流も
大きくなるため、上向き溶接では電流値を下げる様に制
御して、滴下量を垂れ下がりが発生しない量に制御する
ためである。
Next, FIG. 5 shows a simulated waveform of the pulse waveform, and FIG. 6 shows a representative example of the pulse waveform in the actual experiment. FIG.
Shows two modes, A and B. In the figure, Ip indicates a pulse current, Ib indicates a base current, and Iav indicates a welding current. In this experiment, the control is performed such that the pulse width is narrowed as in the B mode during vertical welding and is widened as in the A mode when performing upward or downward welding. However,
The pulse current Ip is set to a large pulse current (for example, 480 A) during the downward welding, and the pulse current is reduced during the upward welding. The higher the pulse frequency is, the smaller the droplet can be. However, the higher the frequency is, the larger the current is. Therefore, in the upward welding, the current value is controlled to be low so that the dropping amount does not drop. This is to control.

【0019】図6は、パルス電流Ipを480Aとし、
パルス幅Tpを0.1〜0.4msとして、周波数を変
化させたときの実測波形を示したものである。図に示す
ように本実験では周波数を変化させても大幅な波形のひ
ずみ等の発生はみられない。周波数を変化させると若干
ベース電流が変化しているが、これによって、アークに
悪い影響を及ぼしてはいない。当然のことながら、周波
数の変化によりアーク長の長さは変化しており、滴下量
から実際に適した周波数を選択すれば良いことがわかっ
た。
In FIG. 6, the pulse current Ip is 480 A,
The pulse width Tp is set to 0.1 to 0.4 ms, and the measured waveform is shown when the frequency is changed. As shown in the figure, no significant distortion of the waveform was observed in this experiment even if the frequency was changed. The base current changes slightly as the frequency is changed, but this does not adversely affect the arc. As a matter of course, the length of the arc length changes due to the change in frequency, and it has been found that it is sufficient to select an actually suitable frequency from the dropping amount.

【0020】以上のように、本実施例によれば、アーク
オンの状態で、各姿勢に適したパルスモードの切換えを
スムーズに行えると共に、溶滴の滴下量も溶接電流及び
パルス電流、パルス幅を、それぞれの姿勢に応じて選択
することにより、溶接速度を速くすることができ、更
に、溶接欠陥の発生を防止することができる。
As described above, according to this embodiment, in the arc-on state, the pulse mode suitable for each posture can be smoothly switched, and the droplet amount of the welding current, the pulse current, and the pulse width can be changed. The welding speed can be increased and the occurrence of welding defects can be prevented by making a selection according to each posture.

【0021】[0021]

【発明の効果】本発明によれば、高周波の溶接パルスを
用いて、溶接姿勢に適した条件で溶接するので、溶接速
度が早くできるとともに、高品質のパイプの円周自動溶
接ができる。
EFFECTS OF THE INVENTION According to the present invention, high-frequency welding pulses are used to perform welding under conditions suitable for the welding position, so that the welding speed can be increased and high-quality automatic circumferential welding of pipes can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のパイプ円周自動溶接装置の全体システ
ム図である。
FIG. 1 is an overall system diagram of a pipe circumference automatic welding apparatus of the present invention.

【図2】溶接姿勢における溶融池の形状を示す図であ
る。
FIG. 2 is a diagram showing the shape of a molten pool in a welding position.

【図3】多層溶接時の層の説明図である。FIG. 3 is an explanatory diagram of layers during multi-layer welding.

【図4】溶接姿勢と位置の概略説明図である。FIG. 4 is a schematic explanatory diagram of a welding posture and position.

【図5】パルス波形の模擬図である。FIG. 5 is a simulated diagram of a pulse waveform.

【図6】実験時のパルス波形である。FIG. 6 is a pulse waveform during an experiment.

【符号の説明】[Explanation of symbols]

1…トーチ 2…制御装置 3…溶接電源装置 4…溶接ヘッド 5…パイプ 6…ガイドレール 7…インターフェ
ースボックス。
1 ... Torch 2 ... Control device 3 ... Welding power supply device 4 ... Welding head 5 ... Pipe 6 ... Guide rail 7 ... Interface box

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 浩司 茨城県ひたちなか市大成町14−19 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Ito 14-19 Taisei-cho, Hitachinaka City, Ibaraki Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 下向き姿勢,立向き姿勢及び上向き姿勢
の全姿勢でパルス電流によって溶接するパイプの円周自
動溶接装置のパルスモード自動設定において、 各姿勢において適するパルスモードを予め求めて記憶し
ておき、溶接姿勢に応じてアークオンの状態で前記パル
スモードを切り替え制御するパイプ円周自動溶接装置の
パルスモード自動設定方法。
1. A pulse mode automatic setting for a circumferential automatic welding apparatus for a pipe that welds with a pulse current in all postures of a downward posture, a vertical posture, and an upward posture, and a pulse mode suitable for each posture is previously obtained and stored. In addition, a pulse mode automatic setting method for a pipe circumference automatic welding apparatus, which controls switching of the pulse modes in an arc-on state according to a welding posture.
【請求項2】 請求項1において、前記パルスモード
は、立向き姿勢を基準として前記下向き姿勢及び上向き
姿勢のパルス電流を等しくし、パルス幅を上向き姿勢に
比べ下向き姿勢を広くしたことを特徴とするパイプ円周
自動溶接装置のパルスモード自動設定方法。
2. The pulse mode according to claim 1, wherein the pulse currents of the downward posture and the upward posture are equal with respect to a vertical posture and the pulse width is wider in the downward posture than in the upward posture. Automatic pulse circumference setting method for pipe circumference automatic welding equipment.
JP17392795A 1995-06-19 1995-06-19 Automatic pulse mode setting method of automatic tube circumference welding equipment Pending JPH091340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17392795A JPH091340A (en) 1995-06-19 1995-06-19 Automatic pulse mode setting method of automatic tube circumference welding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17392795A JPH091340A (en) 1995-06-19 1995-06-19 Automatic pulse mode setting method of automatic tube circumference welding equipment

Publications (1)

Publication Number Publication Date
JPH091340A true JPH091340A (en) 1997-01-07

Family

ID=15969660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17392795A Pending JPH091340A (en) 1995-06-19 1995-06-19 Automatic pulse mode setting method of automatic tube circumference welding equipment

Country Status (1)

Country Link
JP (1) JPH091340A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6974931B2 (en) 2003-05-07 2005-12-13 Illinois Tool Works Inc. Method and apparatus for pulse and short circuit arc welding
CN102935544A (en) * 2012-10-31 2013-02-20 国家电网公司 Butt welding method for T23 steel tube and G102 steel tube

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6974931B2 (en) 2003-05-07 2005-12-13 Illinois Tool Works Inc. Method and apparatus for pulse and short circuit arc welding
US7414222B2 (en) 2003-05-07 2008-08-19 Illinois Tool Works Inc. Method and apparatus for pulse and short circuit arc welding
US8669490B2 (en) 2003-05-07 2014-03-11 Illinois Tool Works Inc. Method and apparatus for pulse and short circuit arc welding
CN102935544A (en) * 2012-10-31 2013-02-20 国家电网公司 Butt welding method for T23 steel tube and G102 steel tube

Similar Documents

Publication Publication Date Title
US11759879B2 (en) Synchronized rotating arc welding method and system
US4283617A (en) Automatic pipe welding system
JP3114440B2 (en) Spot welding equipment
US6215100B1 (en) Short circuit welder
US6259059B1 (en) Arc welder and torch for same
KR102134045B1 (en) Adaptable rotating arc welding method and system
WO1991016168A1 (en) Mag arc-welding method and welding apparatus
US4672173A (en) Gas-shielded arc welding apparatus
JP2009208137A (en) Plasma mig welding method
EP0584643B1 (en) Welding method and welding robot
JP5990784B2 (en) Arc welding method and arc welding apparatus
Dinbandhu et al. Advances in gas metal arc welding process: modifications in short-circuiting transfer mode
CN112157363A (en) Welding method and welding device for fish scale pattern welding seam
JP3793750B2 (en) Pulse plasma automatic welding method and apparatus for lap joining of thin plates
CA3068228C (en) Systems and methods for controlled arc and short phase time adjustment
JPH091340A (en) Automatic pulse mode setting method of automatic tube circumference welding equipment
JPS60255276A (en) Consumable electrode type arc welding method
JP2505965B2 (en) Welding method and apparatus for fixed piping
JP2023162631A (en) Plasma arc hybrid welding device
JPS60203359A (en) Automatic welding device
JP2611397B2 (en) Narrow groove welding method
JP4861101B2 (en) Arc welding method
JP2004050228A (en) Arc spot welding method and apparatus
CN115178842A (en) Multi-axis linkage welding device and method and track interpolation algorithm
JP2000102870A (en) Method and device for automatic welding, and welding structure