JPH09127222A - Measuring method for magnetization state - Google Patents

Measuring method for magnetization state

Info

Publication number
JPH09127222A
JPH09127222A JP28417795A JP28417795A JPH09127222A JP H09127222 A JPH09127222 A JP H09127222A JP 28417795 A JP28417795 A JP 28417795A JP 28417795 A JP28417795 A JP 28417795A JP H09127222 A JPH09127222 A JP H09127222A
Authority
JP
Japan
Prior art keywords
measured
probe
magnetic
magnetic field
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28417795A
Other languages
Japanese (ja)
Inventor
Akio Takada
昭夫 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP28417795A priority Critical patent/JPH09127222A/en
Publication of JPH09127222A publication Critical patent/JPH09127222A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Magnetic Heads (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a measuring method in which a change in a magnetization state in a object, to be measured, having a size of, e.g. the order of nanometers can be measured with a resolution on the order of nanometers and in which an irregularity in a magnetic characteristic between respective thin-film magnetic heads is detected when the object to be measured is a thin-film magnetic head formed on a wafer. SOLUTION: A change in the resonance frequency of a probe 12, at a magnetic-force microscope, with reference to an external magnetic field in case where only the probe 12 exists is used as a first measured value. A change in the resosnance frequency of the probe 12 with reference to an external magnetic field in case where an object, to be measured, composed of a magnetic material exists is used as a second measured value. A value is computed in such a way that the first measured value is subtracted from the second measured value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、磁気力顕微鏡(M
FM)を用いて、磁性体の探針を被測定物である磁性材
料上で走査させることにより当該被測定物上の磁気力勾
配を検出し磁化状態を測定する方法に関する。
TECHNICAL FIELD The present invention relates to a magnetic force microscope (M
The present invention relates to a method for measuring the magnetization state by detecting a magnetic force gradient on an object to be measured by scanning a magnetic material probe on the object to be measured using an FM).

【0002】[0002]

【従来の技術】従来、磁性薄膜の磁区状態を観察する手
法としては、磁性コロイド用いる方法である、いわゆる
ビッター法や、カー効果を利用した磁気光学的手法があ
る。また、磁性薄膜の磁化曲線(B−Hループ)を決定
する手法としては、被測定物である上記磁性薄膜に所定
の交流磁場を印加して当該磁性薄膜の磁化状態を変化さ
せ、その結果として上記磁性薄膜の近傍に設置された磁
気コイルに誘起される誘導起電力を測定する方法や、カ
ー効果を利用する方法等が古くから提案され実行されて
きた。
2. Description of the Related Art Conventionally, as a method of observing the magnetic domain state of a magnetic thin film, there is a so-called Bitter method, which is a method using a magnetic colloid, and a magneto-optical method utilizing the Kerr effect. Further, as a method for determining the magnetization curve (B-H loop) of the magnetic thin film, a predetermined AC magnetic field is applied to the magnetic thin film as the DUT to change the magnetization state of the magnetic thin film, and as a result, A method of measuring an induced electromotive force induced in a magnetic coil installed in the vicinity of the magnetic thin film and a method of utilizing the Kerr effect have been proposed and implemented for a long time.

【0003】近時では、磁気デバイスの小型化が益々進
行する状況下にあり、例えばハードディスクに搭載され
る磁気ヘッドとして好適な磁気抵抗効果型磁気ヘッド
(MRヘッド)のに用いられる磁性薄膜である磁気抵抗
効果素子(MR素子)のサイズは数μm以下とされてい
る。
In recent years, the size of magnetic devices is becoming smaller and smaller. For example, a magnetic thin film used for a magnetoresistive head (MR head) suitable as a magnetic head mounted on a hard disk. The size of the magnetoresistive effect element (MR element) is set to several μm or less.

【0004】ところが、上述の手法においては、その測
定分解能が0.5μm程度であり、小型化の進んだ上記
磁気デバイスの磁区状態の観察や磁化曲線の決定を高感
度をもって正確に行うことは極めて困難である。
However, in the above-mentioned method, the measurement resolution is about 0.5 μm, and it is extremely difficult to accurately observe the magnetic domain state and to determine the magnetization curve of the above-mentioned magnetic device which has been miniaturized with high sensitivity. Have difficulty.

【0005】そこで、磁性体の探針を被測定物である磁
性薄膜上で走査させることにより当該非測定物上の磁気
力勾配を検出し磁化状態を測定する、いわゆる磁気力顕
微鏡(MFM)が実用化されている。このMFMは、上
記探針が被測定物から受けた力の勾配の変化を共振周波
数の変化として検出する。上記探針は共振特性を持って
いるので、引力の勾配が増大(減少)すると共振周波数
が減少(増大)し、それに伴い振動振幅も減少(増大)
する。この性質を利用することにより被測定物の磁気特
性等に関する様々な情報を得ることができる。このMF
Mを用いることによって100nm以下の測定分解能を
もって被測定物の磁区状態を観察することが可能であ
る。
Therefore, a so-called magnetic force microscope (MFM), which measures the magnetization state by detecting the magnetic force gradient on the non-measurement object by scanning the magnetic thin film as the measurement object with a magnetic probe, is known. It has been put to practical use. This MFM detects a change in the gradient of force received by the probe from the object to be measured as a change in resonance frequency. Since the probe has resonance characteristics, the resonance frequency decreases (increases) when the gradient of the attractive force increases (decreases), and the vibration amplitude also decreases (increases) accordingly.
I do. By utilizing this property, it is possible to obtain various information regarding the magnetic characteristics and the like of the object to be measured. This MF
By using M, it is possible to observe the magnetic domain state of the measured object with a measurement resolution of 100 nm or less.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述の
MFMを用いた測定方法においては、磁化した探針を単
純に被測定物にて走査させるのみであるために、外部磁
場の印加による被測定物の磁化状態の変化を測定するこ
とは不可能である。
However, in the measuring method using the MFM described above, since the magnetized probe is simply scanned by the object to be measured, the object to be measured by applying an external magnetic field is measured. It is impossible to measure the change in the magnetization state of.

【0007】近時においては、上記MRヘッドに代表さ
れる薄膜磁気ヘッドの磁性薄膜にける磁化状態の変化を
その製造工程においてウェハー上にて測定する必要があ
り、適切な対応策が模索されている現状である。
Recently, it is necessary to measure the change of the magnetization state in the magnetic thin film of the thin film magnetic head typified by the MR head on the wafer in the manufacturing process, and an appropriate countermeasure is sought. It is the present situation.

【0008】そこで本発明は、上述の技術的課題に鑑み
て提案されたものであり、ナノメートル・オーダーの分
解能をもって例えばマイクロメートル・オーダーの寸法
の被測定物における磁化状態の変化を測定することを可
能とし、例えば被測定物がウェハー上に形成された薄膜
磁気ヘッドである場合に、各薄膜磁気ヘッド間における
磁気特性のばらつきを検知することができる磁化状態の
測定方法を提供することにある。
Therefore, the present invention has been proposed in view of the above technical problems, and measures the change in the magnetization state of an object to be measured having a dimension of the order of micrometers, for example, with a resolution of the order of nanometers. It is possible to provide a method for measuring a magnetization state capable of detecting variations in magnetic characteristics between thin film magnetic heads when the object to be measured is a thin film magnetic head formed on a wafer. .

【0009】[0009]

【課題を解決するための手段】本発明の対象とするもの
は、磁性体の探針を被測定物である磁性材料上で走査さ
せることにより当該被測定物上の磁気力勾配を検出し磁
化状態を測定する方法である。
The object of the present invention is to detect the magnetic force gradient on the object to be measured by scanning a magnetic material probe on the magnetic material to be measured and to magnetize the magnetic material. It is a method of measuring the state.

【0010】本発明に係る磁化状態の測定方法は、上記
被測定物上の磁気力勾配を検出する以前に先ず上記探針
に予め所定の外部磁場を印加して当該外部磁場に対する
上記探針の応答を検出して第1の測定値とした後に、上
記外部磁場を被測定物に印加した状態で上記探針を当該
被測定物上で走査させ上記探針の応答を検出して第2の
測定値とし、第2の測定値から第1の測定値を差し引く
ことにより上記外部磁場に対する上記被測定物の磁気的
変化を算出する手法である。
In the method for measuring the magnetization state according to the present invention, a predetermined external magnetic field is first applied to the probe in advance before the magnetic force gradient on the object to be measured is detected, and the magnetic field of the probe against the external magnetic field is applied. After the response is detected and set to the first measurement value, the probe is scanned over the object under measurement while the external magnetic field is applied to the object under measurement, and the response of the probe is detected to detect the second value. It is a method of calculating the magnetic change of the measured object with respect to the external magnetic field by setting the measured value and subtracting the first measured value from the second measured value.

【0011】この場合、具体的には、上記探針の応答と
しては、当該探針の振幅変化又は共振周波数変化とする
ことを主に想定しており、また、上記被測定物の磁区の
状態変化を測定し、当該被測定物の磁化曲線を決定する
ことが好適である。
In this case, specifically, it is mainly assumed that the response of the probe is a change in amplitude or a change in resonance frequency of the probe, and the state of the magnetic domain of the object to be measured. It is preferable to measure the change and determine the magnetization curve of the DUT.

【0012】ここで、上記被測定物の好適な具体例とし
ては、ウェハー上に形成される各薄膜磁気ヘッドの構成
要素である磁性薄膜が挙げられる。
Here, as a preferred specific example of the object to be measured, there is a magnetic thin film which is a constituent element of each thin film magnetic head formed on a wafer.

【0013】このように、本発明に係る磁化状態の測定
方法においては、外部磁場のみが存する場合における当
該外部磁場に対する上記探針の応答(第1の測定値)を
測定した後に、同一の外部磁場が被測定物に印加された
場合における被測定物に対する上記探針の応答(第2の
測定値)を測定し、第2の測定値から第1の測定値を差
し引く。この第2の測定値は、外部磁場に対する探針の
応答と当該外部磁場が印加されたことに起因する被測定
物の磁気的変化に対する探針の応答とが混在した情報
(測定値)である。したがって、上述のように差分をと
ることにより、上記外部磁場に対する被測定物の磁気的
変化を示す測定値のみが残存した算出値が得られること
になる。
As described above, in the method for measuring the magnetization state according to the present invention, the response (first measurement value) of the probe to the external magnetic field when only the external magnetic field exists is measured, and then the same external The response (second measurement value) of the probe to the measurement object when a magnetic field is applied to the measurement object is measured, and the first measurement value is subtracted from the second measurement value. The second measurement value is information (measurement value) in which the response of the probe to the external magnetic field and the response of the probe to the magnetic change of the measured object due to the application of the external magnetic field are mixed. . Therefore, by taking the difference as described above, the calculated value in which only the measured value indicating the magnetic change of the measured object with respect to the external magnetic field remains can be obtained.

【0014】[0014]

【発明の実施の形態】以下、本発明の磁化状態の測定方
法をウェハー上に形成された薄膜磁気ヘッドの磁化状態
の測定に適用した具体的な実施の形態について、図面を
参照しながら詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Specific embodiments in which the method for measuring the magnetization state of the present invention is applied to the measurement of the magnetization state of a thin film magnetic head formed on a wafer will be described in detail below with reference to the drawings. explain.

【0015】本実施の形態における磁化状態の測定方法
は、走査型プローブ顕微鏡(SPM)の一種である磁気
力顕微鏡(MFM)を用いて、磁性体の探針を被測定物
である磁性材料上で走査させることにより当該被測定物
上の磁気力勾配を検出し磁化の状態変化を測定する手法
である。ここでは、非磁性材料よりなるウェハー上に形
成される各薄膜磁気ヘッドの構成要素である磁性薄膜を
被測定物として用い、その磁区の状態変化を測定し、当
該磁性薄膜の磁化曲線(B−Hループ)を決定する。
The method of measuring the magnetization state in the present embodiment uses a magnetic force microscope (MFM), which is a type of scanning probe microscope (SPM), and a magnetic probe on a magnetic material to be measured. This is a method for detecting the magnetic force gradient on the object to be measured by scanning with and measuring the change in the magnetization state. Here, a magnetic thin film which is a constituent element of each thin film magnetic head formed on a wafer made of a non-magnetic material is used as an object to be measured, the state change of the magnetic domain is measured, and the magnetization curve (B- H loop).

【0016】この測定に用いられる測定装置は、図1に
示すように、通常用いられるMFM1と、被測定物であ
る磁性薄膜11を載置固定する試験台2と、磁性薄膜1
1に所定の外部磁場を印加する磁場印加手段3と、MF
M1及び磁場印加手段3からの情報を用いて磁性薄膜1
1の磁区の状態変化及びB−Hループを算出するコンピ
ュータ4とから構成されている。
As shown in FIG. 1, the measuring apparatus used for this measurement is a MFM 1 which is normally used, a test stand 2 on which a magnetic thin film 11 to be measured is mounted and fixed, and a magnetic thin film 1.
1, a magnetic field applying means 3 for applying a predetermined external magnetic field, and MF
Using the information from M1 and the magnetic field applying means 3, the magnetic thin film 1
1 and a computer 4 for calculating a BH loop.

【0017】MFM1は、鋭い先端(曲率半径100n
m以下)を持つ磁性体の探針12を備えており、この探
針12を用いて被測定物である磁性薄膜11の表面を走
査することにより当該探針12と磁性薄膜11の表面と
の間に働く磁気力あるいは磁気力の勾配の変化を探針1
2の共振周波数の変化として検出するものである。
The MFM1 has a sharp tip (radius of curvature 100 n
m) and a surface of the magnetic thin film 11 that is the object to be measured by scanning the surface of the magnetic thin film 11 to be measured by using the probe 12. Probe 1 for changes in magnetic force or gradient of magnetic force acting between
It is detected as a change in the resonance frequency of No. 2.

【0018】磁性薄膜11としては、印加磁界によって
抵抗率が変化する磁気抵抗効果を奏する磁気抵抗効果素
子(MR素子)を用いる。このMR素子は、Ni−Fe
合金等の磁性材料よりなる略々矩形状の薄膜素子であ
り、各種の導体層や絶縁層等と共に積層成膜されて磁気
抵抗効果型磁気ヘッド(MRヘッド)を構成するもので
ある。
As the magnetic thin film 11, a magnetoresistive effect element (MR element) having a magnetoresistive effect in which the resistivity changes according to an applied magnetic field is used. This MR element is Ni-Fe
It is a substantially rectangular thin-film element made of a magnetic material such as an alloy, and is laminated together with various conductor layers and insulating layers to form a magnetoresistive head (MR head).

【0019】磁場印加手段3は、試験台2の両端に配さ
れる一対の電磁石13,14と、これら電磁石13,1
4に電流を供給するための交流電源15とを有して構成
されている。
The magnetic field applying means 3 includes a pair of electromagnets 13 and 14 arranged at both ends of the test table 2 and the electromagnets 13 and 1.
4 and an alternating current power supply 15 for supplying a current.

【0020】上述の構成を有する測定装置を用いて、磁
性薄膜11の磁化状態の変化を測定するには、先ず、図
2に示すように、試験台2に磁性薄膜11が存しない状
態でMFM1の探針12を試験台2上の所定位置に配
し、交流電源15から電磁石13,14に所定の交流電
流を供給する。このとき、電磁誘導によって電磁石1
3,14から磁場が図2中矢印Mで示す方向に発生し、
この磁場が外部磁場となって探針12に印加される。な
お、この外部磁場の強度は、磁性薄膜11に磁気飽和が
生じる範囲の値とする。
In order to measure the change in the magnetization state of the magnetic thin film 11 using the measuring apparatus having the above-described structure, first, as shown in FIG. 2, the MFM1 is used in the state where the magnetic thin film 11 is not present on the test stand 2. The probe 12 is placed at a predetermined position on the test stand 2, and a predetermined AC current is supplied from the AC power supply 15 to the electromagnets 13 and 14. At this time, electromagnet 1 is generated by electromagnetic induction.
A magnetic field is generated from 3, 14 in the direction indicated by the arrow M in FIG.
This magnetic field becomes an external magnetic field and is applied to the probe 12. The strength of the external magnetic field is set to a value within the range where magnetic saturation occurs in the magnetic thin film 11.

【0021】そして、当該外部磁場に対する上記探針1
2の応答を共振周波数の変化としてコンピュータ4が検
出し、この値が第1の測定値として当該コンピュータ4
に記憶される。ここで、上記共振周波数は、図3に示す
ように、磁性薄膜11に対する外部磁場の印加により、
自由振幅時の共振周波数ω0を中心として、探針12が
磁性薄膜11から引力を受けたときの共振周波数ω1か
ら斥力を受けたときの共振周波数ω2まで変化する。探
針12の共振に対するバネ定数をk0,振動方向におけ
る力の勾配をf’とすると、外部磁場の印加による探針
12の実効的バネ定数kは、 k=k0−f’ となり、共振周波数ωは、 ω=ω0{1−(f’/k0)} と変化する。
The probe 1 for the external magnetic field
The computer 4 detects the response of 2 as a change in the resonance frequency, and this value is used as the first measured value by the computer 4.
Is stored. Here, the resonance frequency is, as shown in FIG. 3, obtained by applying an external magnetic field to the magnetic thin film 11.
The resonance frequency ω0 at the time of free amplitude changes from the resonance frequency ω1 when the probe 12 receives the attractive force from the magnetic thin film 11 to the resonance frequency ω2 when the probe 12 receives the repulsive force. Assuming that the spring constant for resonance of the probe 12 is k0 and the force gradient in the vibration direction is f ′, the effective spring constant k of the probe 12 due to the application of the external magnetic field is k = k0−f ′, and the resonance frequency ω Changes to ω = ω0 {1- (f '/ k0)}.

【0022】この場合の外部磁場と共振周波数との関係
は図4に示すようになり、共振周波数の変化が第1の測
定値としてコンピュータ4に記憶されることになる。
The relationship between the external magnetic field and the resonance frequency in this case is as shown in FIG. 4, and the change in the resonance frequency is stored in the computer 4 as the first measured value.

【0023】続いて、磁性薄膜11を試験台2に載置固
定し、磁性薄膜11に所望の方向に外部磁場が印加され
るようにその載置位置を調節する。
Subsequently, the magnetic thin film 11 is mounted and fixed on the test stand 2, and the mounting position is adjusted so that an external magnetic field is applied to the magnetic thin film 11 in a desired direction.

【0024】次いで、電磁石13,14により磁性薄膜
11に上記外部磁場と同一の強度及び方向の外部磁場を
印加し、この状態でMFM1の探針12を磁性薄膜11
上に走査させる。このとき、探針12からの応答を共振
周波数の変化としてコンピュータ4が検出し、第2の測
定値とされる。
Then, an external magnetic field having the same strength and direction as the external magnetic field is applied to the magnetic thin film 11 by the electromagnets 13 and 14, and in this state, the probe 12 of the MFM 1 is moved to the magnetic thin film 11.
Scan up. At this time, the computer 4 detects the response from the probe 12 as a change in the resonance frequency and sets it as the second measured value.

【0025】この場合、上記外部磁場の強度が磁性薄膜
11の保磁力Hcを越える値であると、この外部磁場の
印加により磁壁の移動が生じる。したがって、図5に示
すように、探針12が磁壁21の近傍を走査する際に、
上記外部磁場が印加される以前には磁壁21が存せず、
外部磁場の印加により磁壁21が現れる位置(位置A)
と、上記外部磁場が印加される以前に磁壁21が存在
し、外部磁場の印加により磁壁21が消失する位置(位
置B)とでは共振周波数の変化が異なる。
In this case, when the intensity of the external magnetic field exceeds the coercive force Hc of the magnetic thin film 11, the magnetic domain wall moves due to the application of the external magnetic field. Therefore, as shown in FIG. 5, when the probe 12 scans near the domain wall 21,
Before the external magnetic field is applied, the domain wall 21 does not exist,
The position where the domain wall 21 appears by applying an external magnetic field (position A)
Then, the domain wall 21 exists before the external magnetic field is applied, and the change in the resonance frequency is different at the position (position B) where the domain wall 21 disappears due to the application of the external magnetic field.

【0026】上記位置Aにおける外部磁場と共振周波数
との関係を図6に、上記位置Bにおける当該関係を図7
に示す。これらの図に示す共振周波数の変化は、図6,
7中破線で示す上記外部磁場の印加による共振周波数の
変化と磁性薄膜11に生じた磁壁の移動による共振周波
数の変化とが混在する値(実線で示す値)である。
FIG. 6 shows the relationship between the external magnetic field and the resonance frequency at the position A, and FIG. 7 shows the relationship at the position B.
Shown in The change in the resonance frequency shown in these figures is as shown in FIG.
7 is a value (a value shown by a solid line) in which a change in the resonance frequency due to the application of the external magnetic field and a change in the resonance frequency due to the movement of the domain wall generated in the magnetic thin film 11 are mixed as indicated by a broken line in FIG.

【0027】続いて、コンピュータ4において、第1の
測定値及び第2の測定値に基づいて磁性薄膜11のB−
Hループが求められる。すなわち、位置A及び位置Bに
おける各々の第2の測定値について、各第2の測定値か
ら第1の測定値が差し引かれた値がコンピュータ4にて
算出される。ここで、位置Aにおける算出値を図8に、
位置Bにおける算出値を図9に示す。この図9におい
て、破線で示す部分は、外部磁場を一度Hcまで増大さ
せ、その後に減少させることにより測定することができ
る値である。
Subsequently, in the computer 4, B- of the magnetic thin film 11 is calculated based on the first measurement value and the second measurement value.
H loop is required. That is, for each second measurement value at position A and position B, the computer 4 calculates a value obtained by subtracting the first measurement value from each second measurement value. Here, the calculated value at the position A is shown in FIG.
The calculated value at the position B is shown in FIG. In FIG. 9, the portion indicated by the broken line is a value that can be measured by increasing the external magnetic field to Hc once and then decreasing it.

【0028】そして、位置Aにおける算出値と位置Bに
おける算出値とを合成することにより、図10に示すよ
うにB−Hループが決定される。
Then, the calculated value at the position A and the calculated value at the position B are combined to determine the BH loop as shown in FIG.

【0029】このように、本実施の形態に係る磁化状態
の測定方法においては、外部磁場のみが存する場合にお
ける当該外部磁場に対する探針12の応答(第1の測定
値)を測定した後に、同一の外部磁場が被測定物である
磁性薄膜11に印加された場合における当該磁性薄膜1
1に対する探針12の応答(第2の測定値)を測定し、
第2の測定値から第1の測定値を差し引く。この第2の
測定値は、外部磁場に対する探針の応答と当該外部磁場
が印加されたことに起因する磁性薄膜11の磁気的変化
に対する探針の応答とが混在した情報(測定値)であ
る。したがって、上述のように差分をとることにより、
上記外部磁場に対する磁性薄膜11の磁気的変化を示す
測定値のみが残存した算出値が得られることになる。
As described above, in the method for measuring the magnetized state according to the present embodiment, the same response is obtained after measuring the response (first measurement value) of the probe 12 to the external magnetic field when only the external magnetic field exists. Magnetic thin film 1 when an external magnetic field is applied to the magnetic thin film 11 as the object to be measured.
The response (second measurement value) of the probe 12 to 1 is measured,
Subtract the first measurement from the second measurement. The second measured value is information (measured value) in which the response of the probe to the external magnetic field and the response of the probe to the magnetic change of the magnetic thin film 11 due to the application of the external magnetic field are mixed. . Therefore, by taking the difference as described above,
A calculated value in which only the measured value indicating the magnetic change of the magnetic thin film 11 with respect to the external magnetic field remains is obtained.

【0030】したがって、この磁化状態の測定方法によ
れば、ナノメートル・オーダーの分解能をもって例えば
マイクロメートル・オーダーの寸法の被測定物における
磁化状態の変化を測定することが可能となり、ウェハー
上に形成された磁性薄膜11(MR素子)の各MRヘッ
ド間における磁気特性のばらつきを検知することができ
る。
Therefore, according to this method of measuring the magnetized state, it is possible to measure the change of the magnetized state in the object to be measured having a dimension of, for example, the order of micrometers, with a resolution of the order of nanometers, which is formed on the wafer. It is possible to detect variations in the magnetic characteristics of the formed magnetic thin film 11 (MR element) among the MR heads.

【0031】[0031]

【発明の効果】本発明に係る磁化状態の測定方法によれ
ば、ナノメートル・オーダーの分解能をもって例えばマ
イクロメートル・オーダーの寸法の被測定物における磁
化状態の変化を測定することが可能となり、例えば被測
定物がウェハー上に形成された薄膜磁気ヘッドである場
合に、各薄膜磁気ヘッド間における磁気特性のばらつき
を検知することができる。
According to the method for measuring the magnetization state of the present invention, it is possible to measure the change in the magnetization state of an object to be measured having a dimension on the order of micrometers, for example, with a resolution on the order of nanometers. When the object to be measured is a thin film magnetic head formed on a wafer, it is possible to detect variations in magnetic characteristics among the thin film magnetic heads.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施の形態において使用される測定装置を示
す模式図である。
FIG. 1 is a schematic diagram showing a measuring device used in the present embodiment.

【図2】MFMの探針のみに外部磁場が印加される様子
を示す模式図である。
FIG. 2 is a schematic diagram showing how an external magnetic field is applied only to the MFM probe.

【図3】外部磁場に対する探針の応答である共振周波数
と当該探針の振幅との関係を示す特性図である。
FIG. 3 is a characteristic diagram showing the relationship between the resonance frequency, which is the response of the probe to an external magnetic field, and the amplitude of the probe.

【図4】被測定物が存しない場合における外部磁場と共
振周波数との関係を示す特性図である。
FIG. 4 is a characteristic diagram showing a relationship between an external magnetic field and a resonance frequency when an object to be measured does not exist.

【図5】被測定物に磁壁が存する様子を模式的に示す斜
視図である。
FIG. 5 is a perspective view schematically showing a state in which a domain wall is present in an object to be measured.

【図6】外部磁場が印加される以前には磁壁が存せず、
外部磁場の印加により磁壁が現れる位置(位置A)にお
ける外部磁場と共振周波数との関係を示す特性図であ
る。
FIG. 6 shows that there is no domain wall before an external magnetic field is applied,
It is a characteristic view which shows the relationship between an external magnetic field and a resonance frequency in the position (position A) where a domain wall appears by application of an external magnetic field.

【図7】外部磁場が印加される以前に磁壁が存在し、外
部磁場の印加により磁壁が消失する位置(位置B)にお
ける外部磁場と共振周波数との関係を示す特性図であ
る。
FIG. 7 is a characteristic diagram showing a relationship between an external magnetic field and a resonance frequency at a position (position B) where the magnetic domain wall exists before the external magnetic field is applied and the magnetic domain disappears due to the application of the external magnetic field.

【図8】位置Aにおいて測定された第2の測定値から第
1の測定値が差し引かれた値に基づくB−Hの関係を示
す特性図である。
FIG. 8 is a characteristic diagram showing a BH relationship based on a value obtained by subtracting the first measurement value from the second measurement value measured at the position A.

【図9】位置Bにおいて測定された第2の測定値から第
1の測定値が差し引かれた値に基づくB−Hの関係を示
す特性図である。
9 is a characteristic diagram showing a B-H relationship based on a value obtained by subtracting the first measurement value from the second measurement value measured at the position B. FIG.

【図10】位置Aにおける算出値と位置Bにおける算出
値とが合成されてなるB−Hループを示す特性図であ
る。
FIG. 10 is a characteristic diagram showing a BH loop in which the calculated value at position A and the calculated value at position B are combined.

【符号の説明】[Explanation of symbols]

1 MFM 2 試験台 3 磁場印加手段 4 コンピュータ 11 磁性薄膜 12 探針 1 MFM 2 test stand 3 magnetic field applying means 4 computer 11 magnetic thin film 12 probe

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G11B 5/31 G11B 5/31 M 5/455 5/455 C ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location G11B 5/31 G11B 5/31 M 5/455 5/455 C

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 磁性体の探針を被測定物である磁性材料
上で走査させることにより当該被測定物上の磁気力勾配
を検出し磁化状態を測定するに際して、 上記探針に予め所定の外部磁場を印加させて当該外部磁
場に対する上記探針の応答を検出して第1の測定値とし
た後に、 上記外部磁場を被測定物に印加した状態で上記探針を当
該被測定物上で走査させ上記探針の応答を検出して第2
の測定値とし、 第2の測定値から第1の測定値を差し引くことにより上
記外部磁場に対する上記被測定物の磁気的変化を算出す
ることを特徴とする磁化状態の測定方法。
1. When a magnetic material probe is scanned over a magnetic material that is an object to be measured to detect a magnetic force gradient on the object to be measured and the magnetization state is measured, the probe is preset to a predetermined position. After applying an external magnetic field and detecting the response of the probe to the external magnetic field to obtain a first measurement value, the probe is placed on the DUT in a state where the external magnetic field is applied to the DUT. Scan and detect the response of the probe
And subtracting the first measured value from the second measured value to calculate the magnetic change of the object to be measured with respect to the external magnetic field.
【請求項2】 探針の応答が当該探針の振幅変化又は共
振周波数変化であることを特徴とする請求項1記載の磁
化状態の測定方法。
2. The method for measuring a magnetized state according to claim 1, wherein the response of the probe is a change in amplitude or a change in resonance frequency of the probe.
【請求項3】 被測定物の磁区の状態変化を測定し、当
該被測定物の磁化曲線を決定することを特徴とする請求
項1記載の磁化状態の測定方法。
3. The method for measuring a magnetization state according to claim 1, wherein a change in the magnetic domain of the measured object is measured to determine the magnetization curve of the measured object.
【請求項4】 被測定物がウェハー上に形成される各薄
膜磁気ヘッドの構成要素である磁性薄膜であることを特
徴とする請求項1記載の磁化状態の測定方法。
4. The method for measuring a magnetized state according to claim 1, wherein the object to be measured is a magnetic thin film which is a constituent element of each thin film magnetic head formed on the wafer.
JP28417795A 1995-10-31 1995-10-31 Measuring method for magnetization state Pending JPH09127222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28417795A JPH09127222A (en) 1995-10-31 1995-10-31 Measuring method for magnetization state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28417795A JPH09127222A (en) 1995-10-31 1995-10-31 Measuring method for magnetization state

Publications (1)

Publication Number Publication Date
JPH09127222A true JPH09127222A (en) 1997-05-16

Family

ID=17675182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28417795A Pending JPH09127222A (en) 1995-10-31 1995-10-31 Measuring method for magnetization state

Country Status (1)

Country Link
JP (1) JPH09127222A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003114186A (en) * 2001-10-03 2003-04-18 Seiko Instruments Inc Scanning probe microscope
JP2003161687A (en) * 2001-11-27 2003-06-06 Seiko Instruments Inc Scanning probe microscope
JP2008292373A (en) * 2007-05-25 2008-12-04 National Institute For Materials Science Scanning method in scanning probe microscope, and strong magnetic field scanning probe microscope device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003114186A (en) * 2001-10-03 2003-04-18 Seiko Instruments Inc Scanning probe microscope
JP2003161687A (en) * 2001-11-27 2003-06-06 Seiko Instruments Inc Scanning probe microscope
JP2008292373A (en) * 2007-05-25 2008-12-04 National Institute For Materials Science Scanning method in scanning probe microscope, and strong magnetic field scanning probe microscope device

Similar Documents

Publication Publication Date Title
US8490209B2 (en) Surface state measuring device, and surface state measuring method using the device
Schönenberger et al. Understanding magnetic force microscopy
JP2604968B2 (en) Method for imaging magnetic structure or magnetic domain of sample and storage device using the same
US20100079908A1 (en) Determining A Magnetic Sample Characteristic Using A Magnetic Field From A Domain Wall
US7023204B2 (en) Magnetic imaging microscope test system and its application for characterization of read and write heads for magnetic recording
JP4769918B1 (en) Magnetic field observation apparatus and magnetic field observation method
Gomez et al. Magnetic imaging in the presence of external fields: Technique and applications
JP3076889B2 (en) Magnetic force microscope
US10557763B2 (en) Rapid and wireless screening and health monitoring of materials and structures
JPH08508343A (en) Stress measuring method and device
JP3141555B2 (en) Scanning surface magnetic microscope
US6664783B1 (en) System for measuring magnetostriction employing a plurality of external magnetic field rotation harmonics
US6448766B1 (en) Method of imaging a magnetic field emanating from a surface using a conventional scanning force microscope
Babcock et al. Magnetic force microscopy: recent advances and applications
JPH09127222A (en) Measuring method for magnetization state
Abe et al. High frequency write head measurement with the phase detection magnetic force microscope
JP6167265B2 (en) Apparatus for evaluating magnetic properties of magnetic fine particles and method for evaluating magnetic properties
Liu et al. Magnetic dissipation force microscopy studies of magnetic materials
Krause et al. The influence of experimental parameters on contrast formation in magnetic force microscopy
Liu et al. Calibration of magnetic force microscopy using micron size straight current wires
Sandhu et al. Room temperature scanning micro-Hall probe microscope imaging of ferromagnetic microstructures in the presence of 2.5 Tesla pulsed magnetic fields generated by an integrated mini coil
Makarova et al. High-Frequency Magnetic Field Energy Imaging of Magnetic Recording Head by Alternating Magnetic Force Microscopy with Superparamagnetic Tip
Hung et al. A study of GMR read sensor induced by soft ESD using Magnetoresistive Sensitivity Mapping (MSM)
JP2012053956A (en) Magnetic head element evaluation device and magnetic head element evaluation method
Qian et al. Characterization of high density spin valve recording heads by novel magnetic force microscope

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030304