JPH09126895A - Pyroelectric infrared detector - Google Patents

Pyroelectric infrared detector

Info

Publication number
JPH09126895A
JPH09126895A JP28832195A JP28832195A JPH09126895A JP H09126895 A JPH09126895 A JP H09126895A JP 28832195 A JP28832195 A JP 28832195A JP 28832195 A JP28832195 A JP 28832195A JP H09126895 A JPH09126895 A JP H09126895A
Authority
JP
Japan
Prior art keywords
pyroelectric
substrate
thin film
infrared
fet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28832195A
Other languages
Japanese (ja)
Inventor
Hiroo Fukuyama
裕雄 福山
Tokumi Kotani
徳己 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28832195A priority Critical patent/JPH09126895A/en
Publication of JPH09126895A publication Critical patent/JPH09126895A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pyroelectric infrared detector which uses an infrared detecting section having excellent responsiveness to heat, is reduced in cost, size, and thickness, and can be integrated highly by providing a cavity in the surface layer section of a single-crystal substrate corresponding to the lower layer part of a pyroelectric material. SOLUTION: Since an infrared detecting section is mounted on an MgO single-crystal substrate 11 having a crystal orientation in (100)-plane in a heat-insulating state with a cavity 16 formed in the surface layer part of the substrate 11 in between, the infrared energy received by means of a light receiving electrode 15 composed of an NiCr thin film can be transduced into heat energy and a pyroelectric thin film 13 efficiently absorbs the heat energy. Therefore, the speed of response and sensitivity of a pyroelectric infrared sensor can be improved. In addition, since the thin film 13 is thermally separated from the substrate 11 and an FET 17, the thermal responsiveness of the detector is improved. Moreover, since the remaining part of the substrate 11 can be used as it is as a sensor section supporting substrate, the size of a pyroelectric element can be reduced and, since the FET 17 can be mounted directly without breaking the thin film 13, a highly reliable structure can be realized with a high yield and high productivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、焦電体を用いて赤
外線を検出する焦電型赤外線検出器に関するものであ
る。
TECHNICAL FIELD The present invention relates to a pyroelectric infrared detector for detecting infrared rays using a pyroelectric body.

【0002】[0002]

【従来の技術】近年、焦電型赤外線検出器は、非接触で
物体の検知や温度検出ができる点を生かして、電子レン
ジの調理物の温度測定、エアコンの室内温度制御、或い
は自動照明、自動ドア、警報装置での人体検知等に利用
されており、今後その利用範囲は拡大していくと見られ
る。
2. Description of the Related Art In recent years, pyroelectric infrared detectors have been capable of non-contact detection of an object or temperature, making it possible to measure the temperature of food in a microwave oven, control the indoor temperature of an air conditioner, or use automatic lighting. It is used for human body detection in automatic doors and alarm devices, and its range of use is expected to expand in the future.

【0003】焦電型赤外線検出器は、強誘電体の焦電効
果を利用したセンサーであり、強誘電体は内部に一定方
向の自発分極を有しており、その表面に正及び負電荷を
発生させる。大気中における定常状態では、大気中の分
子が持つ電荷と結合して中性状態になっている。すべて
の物体は、温度に応じた赤外線を放出しており、赤外線
検出部に入射した赤外線量に応じた温度変化を強誘電体
に生じさせる。そのため、赤外線検出部の熱応答性を良
好にする必要がある。
A pyroelectric infrared detector is a sensor utilizing the pyroelectric effect of a ferroelectric substance. The ferroelectric substance has spontaneous polarization in a certain direction inside, and positive and negative charges are formed on its surface. generate. In the steady state in the atmosphere, it is in a neutral state by combining with the electric charge of molecules in the atmosphere. All objects emit infrared rays according to temperature, and cause a temperature change in the ferroelectric substance according to the amount of infrared rays incident on the infrared detecting section. Therefore, it is necessary to improve the thermal response of the infrared detector.

【0004】以下、従来の焦電型赤外線検出器について
図面を参照しながら説明する。図3(a),(b),
(c)及び(d)は従来の焦電型赤外線検出器に用いる
焦電素子の表面を示す斜視図、裏面を示す斜視図、組立
状態を示す断面図、及び等価回路図である。図3
(a),(b)及び(c)において、焦電素子は平板状
の焦電体23と、この焦電体23の表面側中央部に形成
された赤外線の吸収膜としての機能を有した受光電極2
5と、この受光電極25に対応して焦電体23の裏面に
下部電極24a,24bを有している。
A conventional pyroelectric infrared detector will be described below with reference to the drawings. 3 (a), (b),
(C) And (d) is the perspective view which shows the surface of the pyroelectric element used for the conventional pyroelectric infrared detector, the perspective view which shows a back surface, the sectional view which shows an assembled state, and an equivalent circuit diagram. FIG.
In (a), (b) and (c), the pyroelectric element had a function as a flat pyroelectric body 23 and an infrared ray absorbing film formed in the central portion on the front surface side of the pyroelectric body 23. Light receiving electrode 2
5 and lower electrodes 24a and 24b on the back surface of the pyroelectric body 23 corresponding to the light receiving electrodes 25.

【0005】通常、前記焦電体23の出力インピーダン
スは極めて高く、外部雑音の影響を受けやすいので、イ
ンピーダンス変換する必要がある。焦電体23は高入力
インピーダンスを持つ増幅器であるFET(電解効果型
トランジスタ)27と、前記FET27への入力抵抗素
子としてのチップ抵抗26とに焦電体23の裏面の下部
電極24a,24bを利用して接続され、インピーダン
ス変換される。前記各素子、すなわち焦電体23、チッ
プ抵抗26及びFET27はパッケージ化するために用
いるときのベースとなるステム30と導電樹脂等で焦電
体23に形成したGND電極28及びFET引き出し電
極29a,29bを介して接続され、外部端子31によ
り引き出される。
Usually, the output impedance of the pyroelectric body 23 is extremely high and is easily affected by external noise, so it is necessary to perform impedance conversion. The pyroelectric body 23 includes an FET (electrolytic effect transistor) 27 which is an amplifier having a high input impedance, a chip resistor 26 as an input resistance element to the FET 27, and lower electrodes 24a and 24b on the back surface of the pyroelectric body 23. It is connected by utilizing the impedance conversion. Each of the elements, that is, the pyroelectric body 23, the chip resistor 26, and the FET 27 is a stem 30 serving as a base when used for packaging and a GND electrode 28 and an FET lead electrode 29a formed on the pyroelectric body 23 with a conductive resin or the like. It is connected via 29b and is drawn out by the external terminal 31.

【0006】このように焦電体23上にチップ抵抗26
及びFET27を直接マウントすることにより、配線用
の回路基板を使用しない簡単な構成で製造上も低コスト
を実現する構成となっているものであった。
As described above, the chip resistor 26 is provided on the pyroelectric body 23.
By directly mounting the FET 27 and the FET 27, a simple structure that does not use a circuit board for wiring realizes a low cost in manufacturing.

【0007】[0007]

【発明が解決しようとする課題】しかしながら上記従来
の構成では、温度変化に敏感な焦電体23上にFET2
7が熱分離されずに直接マウントされているため、FE
T27の発熱により焦電体23の熱応答性を著しく低下
させ、温度検知においては正確に温度を検出できなかっ
たり、人体検知においては周囲温度と体温が近い時など
温度変化の小さい場合は検出できないという問題があっ
た。
However, in the above-mentioned conventional configuration, the FET 2 is formed on the pyroelectric body 23 which is sensitive to temperature changes.
Since FE is directly mounted without thermal separation, FE
The heat responsiveness of the pyroelectric body 23 is significantly lowered by the heat generation of T27, and the temperature cannot be accurately detected in the temperature detection, or cannot be detected in the human body detection when the temperature change is small such as when the ambient temperature is close to the body temperature. There was a problem.

【0008】また、焦電体23は薄くなるほど熱応答性
が良いため、通常厚みは0.1mm以下となっている
が、焦電体23を壊すことなくマウンターなどの機械で
薄い焦電体23上に直接チップ抵抗26及びFET27
をマウントすることは困難であった。
Further, the thinner the pyroelectric body 23, the better the thermal response, so that the thickness is usually 0.1 mm or less. However, the pyroelectric body 23 can be thinned by a machine such as a mounter without breaking the pyroelectric body 23. Chip resistor 26 and FET 27 directly on top
Was difficult to mount.

【0009】本発明はこのような上記問題点を解決する
ものであり、赤外線検出部における熱応答性に優れ、低
コスト、小型・薄型化そして高集積化が可能で生産性に
優れた信頼性の高い焦電型赤外線検出器を提供すること
を目的とするものである。
The present invention solves the above-mentioned problems, and is excellent in thermal response in the infrared detecting section, low cost, small and thin, and highly integrated, and excellent in productivity and reliability. It is an object of the present invention to provide a high-intensity pyroelectric infrared detector.

【0010】[0010]

【課題を解決するための手段】この課題を解決するため
に本発明の焦電型赤外線検出器は、第一の電極と焦電体
と第二の電極を積層して形成された赤外線検出部と、一
部に空洞を設けた面を上記赤外線検出部の第一の電極側
に結合した少なくとも単結晶からなる基板により構成さ
れた焦電素子と、この焦電素子に接続された電解効果型
トランジスタからなる構成としたものである。
In order to solve this problem, a pyroelectric infrared detector according to the present invention is an infrared detecting section formed by laminating a first electrode, a pyroelectric body and a second electrode. And a pyroelectric element composed of a substrate made of at least a single crystal having a surface provided with a cavity on the side of the first electrode of the infrared detection section, and an electrolytic effect type connected to the pyroelectric element. It is configured with a transistor.

【0011】この本発明によれば、焦電体の下層部分に
相当する基板の表層部に空洞を設けるので、赤外線検出
部における熱容量を焦電体と下部電極と上部受光電極と
だけの熱容量の合成容量とすることができ、熱応答性が
向上するとともに、FETを焦電体が熱分離された堅固
な空洞部の周辺にマウントしているためFETの発熱の
影響もなく、焦電体を壊すこともない、熱応答性に優
れ、低コスト、小型・薄型化そして高集積化が可能で生
産性に優れた信頼性の高い構造を実現することができ
る。
According to the present invention, since the cavity is provided in the surface layer portion of the substrate corresponding to the lower layer portion of the pyroelectric body, the heat capacity of the infrared detecting section is equal to that of the pyroelectric body, the lower electrode and the upper light receiving electrode. Since it can be used as a composite capacitance, the thermal response is improved, and because the FET is mounted around the solid cavity where the pyroelectric body is thermally separated, there is no effect of heat generation of the FET and the pyroelectric body is It is possible to realize a highly reliable structure that does not break, has excellent thermal responsiveness, can be manufactured at low cost, can be made small and thin, and can be highly integrated.

【0012】[0012]

【発明の実施の形態】本発明の請求項に記載の発明は、
第一の電極と焦電体と第二の電極を積層して形成された
赤外線検出部と、一部に空洞を設けた面を上記赤外線検
出部の第一の電極側に結合した少なくとも単結晶からな
る基板により構成された焦電素子と、この焦電素子の引
き出し電極上にベアチップの状態で直接マウントされて
接続された電解効果型トランジスタからなる構成とした
ものであり、熱応答性に優れ、小型・薄型化ができると
いう作用を有するものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention described in the claims of the present invention
An infrared detector formed by laminating a first electrode, a pyroelectric body, and a second electrode, and at least a single crystal in which a surface provided with a cavity in part is bonded to the first electrode side of the infrared detector. It is composed of a pyroelectric element composed of a substrate consisting of and a field effect transistor directly mounted and connected in a bare chip state on the extraction electrode of this pyroelectric element, and has excellent thermal response. It has an effect that it can be made small and thin.

【0013】以下、本発明の一実施の形態について図面
を参照しながら説明する。図1(a),(b),(c)
は同実施の形態における焦電型赤外線検出器に用いる焦
電素子の平面図と断面図、ならびに焦電型赤外線検出器
の組立状態を示す斜視図、図2(a),(b)は複数の
焦電薄膜を有する焦電素子を実装した焦電型赤外線検出
器の一例を示した平面図とその等価回路図を示したもの
である。
An embodiment of the present invention will be described below with reference to the drawings. 1 (a), (b), (c)
Is a plan view and a sectional view of a pyroelectric element used in the pyroelectric infrared detector according to the same embodiment, and a perspective view showing an assembled state of the pyroelectric infrared detector, and FIGS. 2 (a) and 2 (b) are plural. 2 is a plan view showing an example of a pyroelectric infrared detector mounted with a pyroelectric element having the pyroelectric thin film of FIG. 1 and its equivalent circuit diagram.

【0014】図1に示すように本発明の焦電型赤外線検
出器は、素子部として、結晶方位(100)面MgO単
結晶基板(以下、基板という)11と、この基板11上
に下部電極12を有し、この下部電極12上に焦電薄膜
13を有し、この焦電薄膜13上に赤外線吸収効果を有
する受光電極15を有した赤外線検出部とからなり、前
記赤外線検出部が接する基板11の表層部に空洞16を
設け、この焦電素子の前記空洞16の周辺の下部電極1
2から引き出した電極上にFET17を直接マウント
し、焦電素子、チップ抵抗18及びFET17をワイヤ
19でステム20と接続した構成としたものである。
As shown in FIG. 1, the pyroelectric infrared detector of the present invention has a crystal orientation (100) plane MgO single crystal substrate (hereinafter referred to as a substrate) 11 as an element portion, and a lower electrode on the substrate 11. And an infrared detector having a pyroelectric thin film 13 on the lower electrode 12 and a light receiving electrode 15 having an infrared absorbing effect on the pyroelectric thin film 13, and the infrared detector is in contact with the infrared detector. A cavity 16 is provided in the surface layer portion of the substrate 11, and the lower electrode 1 around the cavity 16 of the pyroelectric element is provided.
The FET 17 is directly mounted on the electrode pulled out from No. 2, and the pyroelectric element, the chip resistor 18 and the FET 17 are connected to the stem 20 by a wire 19.

【0015】以上のように構成された本発明の焦電型赤
外線検出器について、その製造方法を以下に説明する。
A method of manufacturing the pyroelectric infrared detector of the present invention having the above-mentioned structure will be described below.

【0016】まず、基板11として結晶方位(100)
面MgO単結晶からなる基板を用いる。そして、下部電
極12を形成する工程として上記基板11上に150n
m程度の膜厚を有するPt薄膜をスパッタリング法で形
成する。次に、焦電薄膜13を形成する工程として下部
電極12上に焦電薄膜13としてランタンを含有したチ
タン酸鉛を高周波マグネトロンスパッタリング法で形成
する。次に、フォトリソグラフィ法で焦電薄膜13を所
定の形状にパターニングする。
First, the crystal orientation (100) is used as the substrate 11.
A substrate made of planar MgO single crystal is used. Then, as a process of forming the lower electrode 12, 150 n is formed on the substrate 11.
A Pt thin film having a thickness of about m is formed by the sputtering method. Next, as a step of forming the pyroelectric thin film 13, lead titanate containing lanthanum is formed as the pyroelectric thin film 13 on the lower electrode 12 by a high frequency magnetron sputtering method. Next, the pyroelectric thin film 13 is patterned into a predetermined shape by photolithography.

【0017】次に、下部電極12を所定の形状にパター
ニングする。次に、フォトリソグラフィ法で層間絶縁膜
14を所定の形状にパターニングする。次に、赤外線吸
収効果を有する受光電極15を形成する工程として焦電
薄膜13上の少なくとも一部に、20nm程度の膜厚を
有する赤外光の反射率が少なく吸収効果の高いNiCr
薄膜をスパッタリング法で形成し、続いてフォトリソグ
ラフィ法により所定の形状にパターニングする。
Next, the lower electrode 12 is patterned into a predetermined shape. Next, the interlayer insulating film 14 is patterned into a predetermined shape by photolithography. Next, as a step of forming the light receiving electrode 15 having an infrared absorption effect, NiCr having a film thickness of about 20 nm and having a low reflectance and a high absorption effect for infrared light is formed on at least a part of the pyroelectric thin film 13.
A thin film is formed by a sputtering method, and then patterned into a predetermined shape by a photolithography method.

【0018】最後に空洞16を形成する工程として、初
めにフォトリソグラフィ法によりエッチングマスクを介
してエッチング液を注入して、前記基板11に前記下部
電極12と接する側より、空洞16を形成する。このと
きのエッチング液として燐酸を用いる。その結果、結晶
方位(100)方向のエッチングの進行速度が非常に速
いことを確認している。次に、この焦電素子の前記空洞
16の周辺の下部電極12から引き出した電極上に導電
性樹脂を塗布後、裏面がゲート電極であるベアチップの
FET17を直接マウントし、チップ抵抗18はステム
20上にマウントしてワイヤ19で焦電素子と接続し、
焦電素子及びFET17をワイヤ19でステム20と接
続した構成とするものである。なお、チップ抵抗18は
直接焦電素子上に形成し省略することも可能である。
Finally, as a step of forming the cavity 16, the cavity 16 is formed from the side in contact with the lower electrode 12 in the substrate 11 by first injecting an etching solution through a photolithography method through an etching mask. Phosphoric acid is used as an etching solution at this time. As a result, it has been confirmed that the progress rate of etching in the crystal orientation (100) direction is very high. Next, a conductive resin is applied on the electrode drawn from the lower electrode 12 around the cavity 16 of the pyroelectric element, and then the bare chip FET 17 whose back surface is the gate electrode is directly mounted, and the chip resistor 18 is connected to the stem 20. Mount it on top and connect it to the pyroelectric element with wire 19,
The pyroelectric element and the FET 17 are connected to the stem 20 by a wire 19. The chip resistor 18 may be directly formed on the pyroelectric element and omitted.

【0019】上記のように構成された本発明の焦電型赤
外線検出器について、以下その特性について説明する。
The characteristics of the pyroelectric infrared detector of the present invention constructed as above will be described below.

【0020】赤外線検出部が基板11の表層部に設けら
れた空洞16を介して保持され、かつ断熱されているた
め、NiCr薄膜からなる電極15が受けた赤外線エネ
ルギーを熱に変換し、焦電薄膜13が熱エネルギーを効
率よく吸収することが可能となり、応答速度が速く、感
度を良好にすることができる。
Since the infrared detecting portion is held and insulated through the cavity 16 provided in the surface layer portion of the substrate 11, the infrared energy received by the electrode 15 made of the NiCr thin film is converted into heat and the pyroelectric power is generated. The thin film 13 can efficiently absorb the heat energy, the response speed is fast, and the sensitivity can be improved.

【0021】また、焦電薄膜13が基板11及びFET
17と熱分離されているため熱応答性に優れたものにす
ることができる。
Further, the pyroelectric thin film 13 is the substrate 11 and the FET.
Since it is thermally separated from 17, it can be made excellent in thermal response.

【0022】また、残りの基板11がセンサー部の支持
基板としてそのまま使用でき、焦電素子の小型化が可能
となるとともに、焦電薄膜13を壊すことなくFET1
7を直接マウントできるため製造上の歩留まりもよく、
生産性に優れた信頼性の高い構造を実現することができ
る。
Further, the remaining substrate 11 can be used as it is as a supporting substrate of the sensor portion, the pyroelectric element can be downsized, and the FET 1 can be formed without destroying the pyroelectric thin film 13.
Since 7 can be directly mounted, the manufacturing yield is good,
It is possible to realize a highly reliable structure with excellent productivity.

【0023】図2(a)は焦電薄膜13が複数個存在す
る場合の焦電素子を実装した焦電型赤外線検出器の一例
を示したものであり、この例ではFET17の共通電源
電極22を焦電素子上に形成してワイヤ19で接続して
おり、図2(b)は図2(a)の等価回路図を示したも
のである。
FIG. 2A shows an example of a pyroelectric infrared detector mounted with a pyroelectric element when a plurality of pyroelectric thin films 13 are present. In this example, the common power supply electrode 22 of the FET 17 is shown. Are formed on the pyroelectric element and are connected by wires 19, and FIG. 2 (b) shows an equivalent circuit diagram of FIG. 2 (a).

【0024】[0024]

【発明の効果】以上のように本発明によれば、焦電体の
下層部分に相当する基板の表層部に空洞を設けた構成と
することにより、赤外線検出部における熱容量を焦電体
と下部電極と上部の受光電極とだけの熱容量の合成容量
とすることができるとともに、FETが熱分離された空
洞部の周辺にあるためにFETの発熱の影響もなく熱応
答性に優れ、FETをマウンターなどの機械でマウント
する際にも堅固な空洞部の周辺にマウントするため焦電
体を壊すこともなく、低コスト、小型・薄型化そして高
集積化が可能で生産性に優れた信頼性の高い構造を実現
可能にするものである。
As described above, according to the present invention, by providing a cavity in the surface layer portion of the substrate corresponding to the lower layer portion of the pyroelectric body, the heat capacity in the infrared detecting section can be made lower than that of the pyroelectric body. The combined heat capacity of the electrodes and the upper light-receiving electrode can be used as the combined capacity, and because the FET is located around the thermally separated cavity, it has excellent thermal response without being affected by the heat generated by the FET. When mounting with a machine such as, it does not break the pyroelectric body because it mounts around a solid cavity, low cost, small size, thinness and high integration are possible and highly reliable with high productivity This makes it possible to realize a high structure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)本発明の一実施の形態における焦電型赤
外線検出器に用いる焦電素子の平面図 (b)同断面図 (c)同実施の形態における焦電型赤外線検出器の組立
状態を示す斜視図
FIG. 1A is a plan view of a pyroelectric element used in a pyroelectric infrared detector according to an embodiment of the present invention. FIG. 1B is a cross-sectional view thereof. FIG. 1C is a diagram of a pyroelectric infrared detector according to the embodiment. Perspective view showing the assembled state

【図2】(a)本発明の他の実施の形態における複数の
焦電薄膜を有する焦電素子を実装した例の焦電型赤外線
検出器の平面図 (b)同等価回路図
FIG. 2A is a plan view of a pyroelectric infrared detector as an example in which a pyroelectric element having a plurality of pyroelectric thin films according to another embodiment of the present invention is mounted. FIG.

【図3】(a)従来の焦電型赤外線検出器に用いる焦電
素子の表面の斜視図 (b)同裏面の斜視図 (c)従来の焦電型赤外線検出器の組立状態を示す断面
図 (d)同等価回路図
3A is a perspective view of the surface of a pyroelectric element used in a conventional pyroelectric infrared detector, FIG. 3B is a perspective view of the back surface thereof, and FIG. 3C is a cross-sectional view showing the assembled state of the conventional pyroelectric infrared detector. Figure (d) Same equivalent circuit diagram

【符号の説明】[Explanation of symbols]

11 基板 12 下部電極 13 焦電薄膜 14 層間絶縁膜 15 受光電極 16 空洞 17 FET 18 チップ抵抗 19 ワイヤ 20 ステム 21 GND電極 22 共通電源電極 11 substrate 12 lower electrode 13 pyroelectric thin film 14 interlayer insulating film 15 light receiving electrode 16 cavity 17 FET 18 chip resistance 19 wire 20 stem 21 GND electrode 22 common power supply electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第一の電極と焦電体と第二の電極を積層
して形成された赤外線検出部と、一部に空洞を設けた面
を上記赤外線検出部の第一の電極側に結合した少なくと
も単結晶からなる基板により構成された焦電素子と、こ
の焦電素子に接続された電解効果型トランジスタからな
る焦電型赤外線検出器。
1. An infrared detecting section formed by laminating a first electrode, a pyroelectric body and a second electrode, and a surface having a cavity partially provided on the first electrode side of the infrared detecting section. A pyroelectric infrared detector comprising a pyroelectric element composed of a bonded substrate composed of at least a single crystal and a field effect transistor connected to the pyroelectric element.
【請求項2】 電解効果型トランジスタが焦電素子の引
き出し電極上にベアチップの状態で直接マウントされた
ものである請求項1記載の焦電型赤外線検出器。
2. The pyroelectric infrared detector according to claim 1, wherein the field effect transistor is directly mounted in a bare chip state on the extraction electrode of the pyroelectric element.
JP28832195A 1995-11-07 1995-11-07 Pyroelectric infrared detector Pending JPH09126895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28832195A JPH09126895A (en) 1995-11-07 1995-11-07 Pyroelectric infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28832195A JPH09126895A (en) 1995-11-07 1995-11-07 Pyroelectric infrared detector

Publications (1)

Publication Number Publication Date
JPH09126895A true JPH09126895A (en) 1997-05-16

Family

ID=17728673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28832195A Pending JPH09126895A (en) 1995-11-07 1995-11-07 Pyroelectric infrared detector

Country Status (1)

Country Link
JP (1) JPH09126895A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7754517B2 (en) 2008-03-11 2010-07-13 Oki Semiconductor Co., Ltd. Method for manufacturing infrared detecting device
JP2014187193A (en) * 2013-03-22 2014-10-02 Seiko Epson Corp Infrared sensor and thermoelectric conversion element
JP5797814B1 (en) * 2014-06-12 2015-10-21 Necトーキン株式会社 Pyroelectric infrared sensor
US9182287B2 (en) 2013-03-25 2015-11-10 Seiko Epson Corporation Infrared sensor, heat sensing element, and heat sensing method using the same
US9274004B2 (en) 2013-03-25 2016-03-01 Seiko Epson Corporation Infrared sensor and heat sensing element
CN111610699A (en) * 2019-02-22 2020-09-01 上海微电子装备(集团)股份有限公司 Mask alignment sensor and photoetching machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7754517B2 (en) 2008-03-11 2010-07-13 Oki Semiconductor Co., Ltd. Method for manufacturing infrared detecting device
JP2014187193A (en) * 2013-03-22 2014-10-02 Seiko Epson Corp Infrared sensor and thermoelectric conversion element
US9182287B2 (en) 2013-03-25 2015-11-10 Seiko Epson Corporation Infrared sensor, heat sensing element, and heat sensing method using the same
US9274004B2 (en) 2013-03-25 2016-03-01 Seiko Epson Corporation Infrared sensor and heat sensing element
JP5797814B1 (en) * 2014-06-12 2015-10-21 Necトーキン株式会社 Pyroelectric infrared sensor
CN111610699A (en) * 2019-02-22 2020-09-01 上海微电子装备(集团)股份有限公司 Mask alignment sensor and photoetching machine

Similar Documents

Publication Publication Date Title
EP0376721B1 (en) Moisture-sensitive device
CA1225721A (en) Infra-red radiation detector
CN107546319B (en) A kind of pyroelectric infrared detector and preparation method thereof
US5122666A (en) Pyroelectric and other infrared detection devices with thin films
JPH0850060A (en) Heat detector and manufacture therrof
JPH11344377A (en) Infrared detecting element and its manufacture
JPH09126895A (en) Pyroelectric infrared detector
KR102054312B1 (en) sensor for detecting infrared of human body and electric device having the same
JP3223461B2 (en) Pyroelectric element
CA1175130A (en) Pyroelectric detector and method for manufacturing same
JPH08271345A (en) Pyroelectric infrared detecting element
JPH06283766A (en) Infrared ray sensor and its manufacture
JPH06160177A (en) Infrared ray detector
JPH08184514A (en) Pressure sensor
JPH116763A (en) Pyroelectric type infrared detection element
JP2000230859A (en) Microdevice and manufacture thereof
JP2694711B2 (en) Pyroelectric element and manufacturing method thereof
JPH08271341A (en) Manufacture of pyroelectric infrared ray detecting element
JP2014095674A (en) Infrared detector and manufacturing method thereof
JPH11132855A (en) Power-collection-type infrared sensor
JPH08304173A (en) Hybrid heat detector structure and preparation thereof
JPH03287022A (en) Infrared detecting element, infrared detector and production of infrared detecting element
KR20010026737A (en) A infrared detector using a ferroelectric layer and thin film transistor and a method for fabricating and operating the same
JPH08145799A (en) Pyroelectric infrared radiation detecting element and manufacture thereof
JPH0755574A (en) Pyroelectric infrared detector