JPH09126591A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH09126591A
JPH09126591A JP26682896A JP26682896A JPH09126591A JP H09126591 A JPH09126591 A JP H09126591A JP 26682896 A JP26682896 A JP 26682896A JP 26682896 A JP26682896 A JP 26682896A JP H09126591 A JPH09126591 A JP H09126591A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
pipe
header pipe
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26682896A
Other languages
Japanese (ja)
Other versions
JP2837396B2 (en
Inventor
Norihiro Hosoda
師弘 細田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP8266828A priority Critical patent/JP2837396B2/en
Publication of JPH09126591A publication Critical patent/JPH09126591A/en
Application granted granted Critical
Publication of JP2837396B2 publication Critical patent/JP2837396B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05375Assemblies of conduits connected to common headers, e.g. core type radiators with particular pattern of flow, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0209Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions
    • F28F9/0212Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions the partitions being separate elements attached to header boxes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent dew from being produced on a fan and a blowoff grill by providing each partition plate at a position where parts of cooling pipes constituting a first and a second heat exchangers where a refrigerant is insufficient are not overlapped viewed from the direction of ventilation. SOLUTION: A partition plate 111 and a partition plate 121 are provided on a lower header pipe 11 and an upper header pipe 12 of a first heat exchanger 10 respectively while partition plates 211, 212 are provided on a lower header pipe 21 of a second heat exchanger 20 at two positions and partition plates 221, 222 are provided on an upper header pipe 22 of the same at two positions. Parts of cooling pipes 40 constituting the first and second heat exchangers 10, 20 where a refrigerant is insufficient are provided at positions where they are not overlapped viewed from the direction of ventilation. Accordingly, dew is prevented from being formed on a fan and a blowoff grill owing to bypass air and hence and insulation is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は並流形熱交換器に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a co-current heat exchanger.

【0002】[0002]

【従来の技術】ルームエアコン、パッケージエアコン等
の空気調和機に使用される熱交換器の1種として並流形
熱交換器がある。従来の並流形熱交換器について図面を
参照して説明する。図4から図6にかけては従来技術に
係る図面であって、図4は熱交換器の構造を示す外観斜
視図、図5は冷媒の流れを説明する正面図、図6は冷却
管内の冷媒流入状態の説明図である。
2. Description of the Related Art As one type of heat exchanger used for an air conditioner such as a room air conditioner or a package air conditioner, there is a co-current type heat exchanger. A conventional parallel flow heat exchanger will be described with reference to the drawings. 4 to 6 are drawings according to the related art, FIG. 4 is an external perspective view showing the structure of a heat exchanger, FIG. 5 is a front view illustrating the flow of a refrigerant, and FIG. 6 is a refrigerant inflow in a cooling pipe. It is explanatory drawing of a state.

【0003】熱交換器50はヘッダーパイプ51、5
2、サイドメンバー53、冷却管40、インサート4
1、フィン42を含んでいる。1対の平行な下側のヘッ
ダーパイプ51と上側のヘッダーパイプ52は両側の1
組のサイドメンバー53によって相互に結合されてい
る。
The heat exchanger 50 includes header pipes 51 and 5
2, side member 53, cooling pipe 40, insert 4
1, the fin 42 is included. A pair of parallel lower header pipe 51 and upper header pipe 52 are on both sides.
They are interconnected by a pair of side members 53.

【0004】下側のヘッダーパイプ51は一端部が開放
し、他端部が閉塞されている。上側のヘッダーパイプ5
2は下側のヘッダーパイプ51とは逆に一端部が閉塞
し、他端部が開放されている。ヘッダーパイプ51、5
2の間のサイドメンバー53に挟まれた部分には、ヘッ
ダーパイプ51、52に直交する多数本の冷却管40が
ヘッダーパイプ51、52の軸心方向に所定間隔で配設
されている。各冷却管40はその配設方向で偏平化され
ており、内部に波形のインサート41を有している。冷
却管40の下端はヘッダーパイプ51に連通しており、
上端はヘッダーパイプ52に連通している。各冷却管4
0の間及びサイドメンバー53と両端の冷却管40との
間に波形のフィン42が配設されている。
[0004] One end of the lower header pipe 51 is open and the other end is closed. Upper header pipe 5
2 is opposite to the lower header pipe 51 and has one end closed and the other end open. Header pipe 51, 5
A large number of cooling pipes 40 orthogonal to the header pipes 51 and 52 are arranged at predetermined intervals in the axial direction of the header pipes 51 and 52 in a portion sandwiched between the side members 53 between the two. Each cooling pipe 40 is flattened in the direction of its arrangement, and has a corrugated insert 41 inside. The lower end of the cooling pipe 40 communicates with the header pipe 51,
The upper end communicates with the header pipe 52. Each cooling pipe 4
0 and between the side member 53 and the cooling pipes 40 at both ends.

【0005】ヘッダーパイプ51にその一端側より冷媒
を供給すると、冷媒は多数本の冷却管40を上昇してヘ
ッダーパイプ52の側へ流通する。冷却管40を流通す
る間に冷媒は外部の空気と熱交換される。冷却管40を
通過した冷媒はヘッダーパイプ52から外部に導出され
る。
When the refrigerant is supplied to the header pipe 51 from one end thereof, the refrigerant rises through a number of cooling pipes 40 and flows to the header pipe 52 side. The refrigerant exchanges heat with external air while flowing through the cooling pipe 40. The refrigerant that has passed through the cooling pipe 40 is led out from the header pipe 52 to the outside.

【0006】前記のような構成において、充分な冷媒循
環量が得られない場合には、冷却管40内における冷媒
流速が低下するため、熱交換能力が低下する。このた
め、ヘッダーパイプ51、52の開放端と閉塞端との間
にそれぞれ仕切板511、521を設け、冷媒が最適な
流速となり、且つ冷却管40の管内抵抗が許容しうる冷
却管40の本数となるように定められる。図5矢印で示
すように、下側のヘッダーパイプ51から流入した冷媒
は、下側のヘッダーパイプ51の開放端側と仕切板51
1との間において冷却管40を上昇して上側のヘッダー
パイプ52に流入する。上側のヘッダーパイプ52に流
入した冷媒は上側のヘッダーパイプ52を水平方向に向
きを変え、仕切板521に案内されて冷却管40を下降
して下側のヘッダーパイプ51に流入する。さらに、下
側のヘッダーパイプ51に流入した冷媒は、下側のヘッ
ダーパイプ51の閉塞端部に案内されて冷却管40を上
昇し、上側のヘッダーパイプ52に流入する。そして、
この冷媒は、上側のヘッダーパイプ52の開放端側から
外部に流出するようになっている。すなわち、冷媒は、
熱交換器50の内部を蛇行するようになっているのであ
る。
In the above configuration, when a sufficient amount of the circulated refrigerant cannot be obtained, the flow rate of the refrigerant in the cooling pipe 40 is reduced, so that the heat exchange capacity is reduced. For this reason, partition plates 511 and 521 are provided between the open ends and the closed ends of the header pipes 51 and 52, respectively, so that the number of the cooling pipes 40 is such that the refrigerant has an optimum flow velocity and the internal resistance of the cooling pipes 40 is allowable. It is determined to be. As shown by the arrow in FIG. 5, the refrigerant flowing from the lower header pipe 51 is supplied to the open end of the lower header pipe 51 and the partition plate 51.
1, the cooling pipe 40 rises and flows into the upper header pipe 52. The refrigerant flowing into the upper header pipe 52 changes the direction of the upper header pipe 52 in the horizontal direction, is guided by the partition plate 521, descends the cooling pipe 40, and flows into the lower header pipe 51. Further, the refrigerant that has flowed into the lower header pipe 51 is guided by the closed end of the lower header pipe 51, moves up the cooling pipe 40, and flows into the upper header pipe 52. And
This refrigerant flows out from the open end of the upper header pipe 52 to the outside. That is, the refrigerant is
The inside of the heat exchanger 50 is meandering.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
熱交換器においては、ヘッダーパイプ51、52から冷
却管40に冷媒が流入する際に、冷媒の流速による慣性
及び負圧のために冷媒の流入が不均一となる。以下図6
を参照して説明する。図6において、実線Rは冷房時の
冷媒の流れを示している。なお、図6においては、多数
の冷却管40の冷媒分布を説明するため、便宜上3本の
冷却管40a、40b、40cで、熱交換器50全体を
示している。
However, in the conventional heat exchanger, when the refrigerant flows from the header pipes 51 and 52 into the cooling pipe 40, the refrigerant flows due to inertia due to the flow velocity of the refrigerant and negative pressure. Becomes non-uniform. Figure 6 below
This will be described with reference to FIG. In FIG. 6, the solid line R indicates the flow of the refrigerant during cooling. In FIG. 6, three cooling pipes 40a, 40b, and 40c show the entire heat exchanger 50 for the sake of convenience in describing the refrigerant distribution of the many cooling pipes 40.

【0008】冷房時、下側のヘッダーパイプ51に流入
した冷媒は、冷却管40aの内部を上昇する。しかし、
流入側近傍、すなわち下側のヘッダーパイプ51の開放
端部で冷却管40aに流入して上昇するよりも、下側の
ヘッダーパイプ51を水平に直進し、仕切板511の近
傍で冷却管40aの内部に流入する方が多くなる。従っ
て、流入側近傍の冷却管40aの上部に斜線で図示した
部分Aでは冷媒不足が生じる。
During cooling, the refrigerant flowing into the lower header pipe 51 rises inside the cooling pipe 40a. But,
Rather than flowing into the cooling pipe 40a and rising at the open end of the lower header pipe 51 near the inflow side, the lower header pipe 51 travels straight and horizontally, and the cooling pipe 40a closes to the partition plate 511. More flows into the interior. Accordingly, a shortage of refrigerant occurs in a portion A shown by oblique lines above the cooling pipe 40a near the inflow side.

【0009】また、上側のヘッダーパイプ52に流入し
た冷媒は、流入側近傍、すなわち冷却管40aの近傍で
は冷却管40bに流入して下降するよりも、上側のヘッ
ダーパイプ52を直進し、仕切板521の近傍で冷却管
冷媒40bの内部に流入する方が多くなる。従って、流
入側近傍の冷却管40bの下部に斜線で図示した部分B
では冷媒不足が生じる。
Further, the refrigerant flowing into the upper header pipe 52 flows straight through the upper header pipe 52 near the inflow side, that is, near the cooling pipe 40a, rather than flowing into the cooling pipe 40b and descending. The portion that flows into the cooling pipe refrigerant 40b near the portion 521 increases. Therefore, the lower part of the cooling pipe 40b near the inflow side has a portion B shown by hatching
In this case, a shortage of refrigerant occurs.

【0010】同様の理由により、冷却管40cでは、流
入側近傍の上部に斜線で図示した部分Cでは冷媒不足が
生じる。
[0010] For the same reason, in the cooling pipe 40c, a shortage of refrigerant occurs in a portion C shown by oblique lines in the upper portion near the inflow side.

【0011】一方、暖房時には、上述したのと同様の理
由により、多点図示部分D、EおよびFで冷媒不足が生
じる。前記の冷媒不足を生じた部分は熱交換されず、バ
イパス空気が通過するのみとなる。従って、熱交換器の
能力不足をきたすほか、バイパス空気によって送風機や
吹出しグリル部分に発露する等の難点があった。また前
記冷媒流入の不均一を解消するために長時間のシュミレ
ーションを要するということもあった。
On the other hand, at the time of heating, shortage of refrigerant occurs in the multipoint illustrated portions D, E and F for the same reason as described above. The portion where the refrigerant shortage occurs does not exchange heat, and only the bypass air passes. Therefore, there is a problem that the capacity of the heat exchanger is insufficient, and that the air is blown to the blower and the outlet grill by the bypass air. In addition, a long-time simulation may be required in order to eliminate the non-uniform refrigerant flow.

【0012】本発明は上記事情に鑑みて創案されたもの
で、送風機や吹出グリル等に発露することがない熱交換
器を提供することを目的としている。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a heat exchanger that does not emit air to a blower, an outlet grill, and the like.

【0013】[0013]

【課題を解決するための手段】本発明の熱交換器は上記
のような課題を解決したもので、通風方向に対し直行し
て前後に並設された第1と第2の熱交換器からなり、各
熱交換器は平行な2本のヘッダーパイプと、ヘッダーパ
イプに両端が接続されヘッダーパイプの軸心方向に所定
間隔で並列する多数本の冷却管と、冷却管を流通する冷
媒がヘッダーパイプ間で蛇行するようにヘッダーパイプ
を途中で閉塞する複数個の仕切板を具備しており、前記
各熱交換器のヘッダーパイプは直列に連通するととも
に、冷媒が蒸発又は凝縮により気化又は液化する容積変
化に対応した冷媒通路の断面積にすべく、蒸発器として
は流入口から流出口に向かうに従い冷媒通路断面積が拡
大方向に、凝縮器としては流入口から流出口に向かうに
従い冷媒通路断面積が縮小方向になる位置に各仕切板を
配置し、第1及び第2の熱交換器を構成する冷却管に生
じた冷媒の不足する部分が通風方向からみて重なり合わ
ないような位置に各仕切板が設けられていることを特徴
としている。
The heat exchanger according to the present invention has solved the above-mentioned problems, and includes a first heat exchanger and a second heat exchanger that are arranged side by side in a direction orthogonal to the ventilation direction. Each heat exchanger has two parallel header pipes, a large number of cooling pipes whose both ends are connected to the header pipe and are arranged in parallel in the axial direction of the header pipe at a predetermined interval, and the refrigerant flowing through the cooling pipes has a header. The heat exchanger is equipped with a plurality of partition plates that close the header pipes so that they meander between the pipes. The header pipes of the heat exchangers are connected in series, and the refrigerant is vaporized or liquefied by evaporation or condensation. In order to make the cross-sectional area of the refrigerant passage that corresponds to the volume change, the refrigerant passage cross-sectional area increases in the direction from the inlet to the outlet as an evaporator, and the refrigerant passage cuts in the condenser from the inlet to the outlet. area Each partition plate is arranged at a position in the contraction direction, and each partition plate is located at a position where the portion of the cooling pipe generated in the cooling pipes constituting the first and second heat exchangers does not overlap when viewed from the ventilation direction. Is provided.

【0014】本発明の熱交換器は上記構成にて、冷媒は
各ヘッダーパイプ間を仕切板によって蛇行しながら冷却
管を流通し、第1の熱交換器と第2の熱交換器の間を流
入流出する。各ヘッダーパイプに設けられた各仕切板の
位置は通風方向に対して、重なり合わないように配置さ
れているので、第1、第2のいずれかの熱交換器への冷
媒流入が不均一となっても、他方の熱交換器の冷却力、
除湿力により、いずれか一方の熱交換器で冷媒不足部分
により発生したバイパス空気は冷媒流に吸収される。
[0014] In the heat exchanger of the present invention, the refrigerant flows through the cooling pipe while meandering between the header pipes by the partition plate, and flows between the first heat exchanger and the second heat exchanger. Inflow and outflow. Since the position of each partition plate provided on each header pipe is arranged so as not to overlap with respect to the ventilation direction, the inflow of the refrigerant into any one of the first and second heat exchangers is not uniform. The cooling power of the other heat exchanger,
Due to the dehumidifying power, the bypass air generated by the refrigerant shortage in one of the heat exchangers is absorbed by the refrigerant flow.

【0015】[0015]

【発明の実施の形態】以下、図面を参照して本発明に係
る一実施の形態を説明する。図1は熱交換器の外観斜視
図、図2は同側面図、図3は冷媒流路を示す平面展開図
である。従来技術と同一の部分は同一の符号で示してい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment according to the present invention will be described below with reference to the drawings. FIG. 1 is an external perspective view of the heat exchanger, FIG. 2 is a side view thereof, and FIG. 3 is a developed plan view showing a refrigerant flow path. The same parts as those in the prior art are denoted by the same reference numerals.

【0016】本発明に係る熱交換器1は第1の熱交換器
10と第2の熱交換器20からなっており、図1の白矢
印で示す通風方向に対して直交して前後に並設されてい
る。第1の熱交換器10は1対の平行な下側のヘッダー
パイプ11と上側のヘッダーパイプ12と、サイドメン
バー53と冷却管40を含んでいる。また下側のヘッダ
ーパイプ11には仕切板111が上側のヘッダーパイプ
12には仕切板121が設けられている。前記、ヘッダ
ーパイプ11、12及び仕切板111、121はいずれ
も従来の技術で説明したものに準じて構成されている。
The heat exchanger 1 according to the present invention comprises a first heat exchanger 10 and a second heat exchanger 20, and is arranged in front and rear at right angles to the ventilation direction indicated by the white arrow in FIG. Has been established. The first heat exchanger 10 includes a pair of parallel lower header pipes 11 and upper header pipes 12, side members 53 and cooling pipes 40. A partition plate 111 is provided on the lower header pipe 11, and a partition plate 121 is provided on the upper header pipe 12. The header pipes 11 and 12 and the partition plates 111 and 121 are all configured according to those described in the related art.

【0017】一方、第2の熱交換器20は第1の熱交換
器10に準じて、下側のヘッダーパイプ21、上側のヘ
ッダーパイプ22、サイドメンバー53、冷却管40を
含んでいる。また下側のヘッダーパイプ21には2箇所
に仕切板211、212が、上側のヘッダーパイプ22
には2箇所に仕切板221、222がそれぞれ設けられ
ている。また第1の熱交換器10の下側のヘッダーパイ
プ11と上側のヘッダーパイプ22は連結パイプ30に
よって連通されることにより、第1の熱交換器10と第
2の熱交換器20が連結されている。
On the other hand, the second heat exchanger 20 includes a lower header pipe 21, an upper header pipe 22, a side member 53, and a cooling pipe 40 in accordance with the first heat exchanger 10. Further, the lower header pipe 21 is provided with partition plates 211 and 212 at two places,
Are provided with two partition plates 221 and 222 respectively. In addition, the lower header pipe 11 and the upper header pipe 22 of the first heat exchanger 10 are communicated by the connection pipe 30 so that the first heat exchanger 10 and the second heat exchanger 20 are connected. ing.

【0018】ヘッダーパイプの両端とこれに最も近い位
置に設けた仕切板との間隔及び隣接する仕切板の間隔を
それぞれパスという。前記各パスに配置される冷却管4
0は一般的に冷媒の気体と液体との容積変化によって1
パスあたりの本数を順次変化させるようになっている。
すなわち、冷却管40を通る冷媒の流速が同一となるよ
うに各パスが調整されている。
The distance between both ends of the header pipe and the partition plate provided closest to the both ends and the distance between adjacent partition plates are called paths. Cooling pipe 4 arranged in each path
0 is generally 1 due to the change in volume of the refrigerant gas and liquid.
The number per pass is sequentially changed.
That is, each path is adjusted so that the flow velocity of the refrigerant passing through the cooling pipe 40 becomes the same.

【0019】また仕切板111、121及び211、2
12、221、222の取付位置は前記冷媒の気体と液
体との変化に対して最適の容積変化となるように定める
とともに、前記各仕切板の位置が通風方向に対して互い
に重なり合わないように配置されている。すなわち、各
仕切板111、121、211、212、221、22
2は第1及び第2の熱交換器10、20を構成する冷却
管40に生じた冷媒の不足する部分が通風方向からみて
重なり合わないような位置に設けられているのである。
Further, partition plates 111, 121 and 211, 2
The mounting positions of 12, 221 and 222 are determined so as to have an optimal volume change with respect to the change of the refrigerant gas and liquid, and the positions of the respective partition plates are not overlapped with each other in the ventilation direction. Are located. That is, each partition plate 111, 121, 211, 212, 221, 22
Numeral 2 is provided at a position where the portions of the cooling pipes 40 constituting the first and second heat exchangers 10 and 20 where the refrigerant is insufficient do not overlap when viewed from the ventilation direction.

【0020】冷房時には、冷媒は図3の実線Rで示すよ
うに、第2の熱交換器20の下側のヘッダーパイプ21
から流入し、冷却管40、連結パイプ30及び冷却管4
0を流通し、第1の熱交換器10の上側のヘッダーパイ
プ12から流出する。また暖房時には、冷媒は破線Hで
示すように、上側のヘッダーパイプ12から流入し、冷
却管40、連結パイプ30及び冷却管40を流通し、第
2の熱交換器20の下側のヘッダーパイプ21から流出
する。各仕切板111、121、及び211、212、
221、222は通風方向に対して重なり合わないの
で、第1又は第2いずれかの熱交換器に冷媒流入が不均
一となり、冷媒不足が生じてもどちらかの熱交換器の冷
却力、除湿力によって生じたバイパス空気は他の熱交換
器では冷媒流に吸収されることになる。なお前記実施の
形態における仕切板の数はこれに限定されるものではな
い。
At the time of cooling, the refrigerant flows through the header pipe 21 below the second heat exchanger 20 as shown by the solid line R in FIG.
From the cooling pipe 40, the connecting pipe 30 and the cooling pipe 4
And flows out of the header pipe 12 above the first heat exchanger 10. At the time of heating, the refrigerant flows in from the upper header pipe 12 and flows through the cooling pipe 40, the connecting pipe 30 and the cooling pipe 40 as shown by the broken line H, and the lower header pipe of the second heat exchanger 20. Outflow from 21. Each partition plate 111, 121, and 211, 212,
Since 221 and 222 do not overlap in the ventilation direction, the refrigerant inflow into either the first or second heat exchanger becomes non-uniform, and even if a shortage of refrigerant occurs, the cooling power and dehumidification of either heat exchanger occur. The bypass air created by the force will be absorbed in the refrigerant stream in other heat exchangers. Note that the number of partition plates in the above embodiment is not limited to this.

【0021】[0021]

【発明の効果】以上説明したように、通風方向に対して
直交して前後に2個の熱交換器を並設し、冷媒蛇行流を
発生させる複数個の仕切板の位置を通風方向に対して重
なり合わないように配置している。特に、各仕切板は、
第1及び第2の熱交換器を構成する冷却管に生じた冷媒
の不足する部分が通風方向からみて重なり合わないよう
な位置に設けられているのである。
As described above, two heat exchangers are arranged side by side in a direction orthogonal to the ventilation direction, and a plurality of partition plates for generating a meandering refrigerant flow are positioned in the ventilation direction. Are placed so that they do not overlap. In particular, each partition plate
The portion where the refrigerant generated in the cooling pipes constituting the first and second heat exchangers is insufficient is provided at a position where it does not overlap when viewed from the ventilation direction.

【0022】それ故、いずれか一方の熱交換器で冷媒の
流れが不均一になって冷媒不足部分が発生しても、他の
熱交換器に作用によってバイパス空気が流通することが
ない。従って、バイパス空気による送風機や吹出グリル
部分に発露しないので、絶縁不良等を起こすことがない
し、清掃手入れを要せず便利である。さらに冷媒の安全
な配分決定のために要していた長時間の前記シュミレー
ションも簡略化することができる。しかも、通路断面積
を小にして、熱交換器全体の熱交換効率を向上させ、併
せて圧力損失の可及的抑制も図ることができる。
Therefore, even if the flow of the refrigerant becomes uneven in one of the heat exchangers and a refrigerant shortage occurs, bypass air does not flow to the other heat exchangers due to the action. Therefore, since no dew is generated on the blower or the outlet grill portion by the bypass air, insulation failure or the like does not occur and cleaning maintenance is not required, which is convenient. Further, the long-term simulation required for determining the safe distribution of the refrigerant can be simplified. In addition, it is possible to improve the heat exchange efficiency of the entire heat exchanger by reducing the cross-sectional area of the passage, and to suppress the pressure loss as much as possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱交換器の実施の形態を示す外観斜視
図である。
FIG. 1 is an external perspective view showing an embodiment of a heat exchanger of the present invention.

【図2】本発明の熱交換器の実施の形態を示す側面図で
ある。
FIG. 2 is a side view showing an embodiment of the heat exchanger of the present invention.

【図3】本発明の熱交換器の実施の形態を示す冷媒流路
の平面展開図である。
FIG. 3 is an exploded plan view of a refrigerant channel showing the embodiment of the heat exchanger of the present invention.

【図4】従来の熱交換器の構造を示す外観斜視図であ
る。
FIG. 4 is an external perspective view showing the structure of a conventional heat exchanger.

【図5】従来の熱交換器の冷媒の流れを説明する正面図
である。
FIG. 5 is a front view illustrating a flow of a refrigerant in a conventional heat exchanger.

【図6】従来の熱交換器の冷却管内の冷媒流入状態の説
明図である。
FIG. 6 is an explanatory diagram of a state of a refrigerant flowing into a cooling pipe of a conventional heat exchanger.

【符号の説明】[Explanation of symbols]

1 熱交換器 10 第1の熱交換器 11、12 ヘッダーパイプ 111、121 仕切板 20 第2の熱交換器 21、22 ヘッダーパイプ 211、212、221、222 仕切板 30 連結パイプ 40 冷却管 REFERENCE SIGNS LIST 1 heat exchanger 10 first heat exchanger 11, 12 header pipe 111, 121 partition plate 20 second heat exchanger 21, 22 header pipe 211, 212, 221, 222 partition plate 30 connecting pipe 40 cooling pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 通風方向に対し直行して前後に並設され
た第1と第2の熱交換器からなり、各熱交換器は平行な
2本のヘッダーパイプと、ヘッダーパイプに両端が接続
されヘッダーパイプの軸心方向に所定間隔で並列する多
数本の冷却管と、冷却管を流通する冷媒がヘッダーパイ
プ間で蛇行するようにヘッダーパイプを途中で閉塞する
複数個の仕切板を具備しており、前記各熱交換器のヘッ
ダーパイプは直列に連通するとともに、冷媒が蒸発又は
凝縮により気化又は液化する容積変化に対応した冷媒通
路の断面積にすべく、蒸発器としては流入口から流出口
に向かうに従い冷媒通路断面積が拡大方向に、凝縮器と
しては流入口から流出口に向かうに従い冷媒通路断面積
が縮小方向になる位置に各仕切板を配置し、第1及び第
2の熱交換器を構成する冷却管に生じた冷媒の不足する
部分が通風方向からみて重なり合わないような位置に各
仕切板が設けられていることを特徴とする熱交換器。
1. A heat exchanger comprising first and second heat exchangers arranged in a row at right and left sides in a direction perpendicular to a ventilation direction, each heat exchanger being connected to two parallel header pipes and both ends connected to the header pipes. A plurality of cooling pipes arranged in parallel at predetermined intervals in the axial direction of the header pipe, and a plurality of partition plates for closing the header pipe halfway so that the refrigerant flowing through the cooling pipe meanders between the header pipes. The header pipes of the heat exchangers are connected in series, and the evaporator flows from an inlet as an evaporator so as to have a cross-sectional area of a refrigerant passage corresponding to a volume change in which the refrigerant is vaporized or liquefied by evaporation or condensation. Each partition plate is disposed at a position where the cross-sectional area of the refrigerant passage increases in the direction toward the outlet and decreases in the cross-sectional area of the refrigerant passage from the inlet to the outlet as the condenser. Configure the exchanger A heat exchanger, wherein each partition plate is provided at a position where portions of the cooling pipe generated by the cooling pipe are not overlapped when viewed from the ventilation direction.
JP8266828A 1996-10-08 1996-10-08 Heat exchanger Expired - Fee Related JP2837396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8266828A JP2837396B2 (en) 1996-10-08 1996-10-08 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8266828A JP2837396B2 (en) 1996-10-08 1996-10-08 Heat exchanger

Publications (2)

Publication Number Publication Date
JPH09126591A true JPH09126591A (en) 1997-05-16
JP2837396B2 JP2837396B2 (en) 1998-12-16

Family

ID=17436223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8266828A Expired - Fee Related JP2837396B2 (en) 1996-10-08 1996-10-08 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2837396B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2790825A1 (en) * 1999-03-12 2000-09-15 Sanden Corp STACK TYPE MULTI-CIRCULATION HEAT EXCHANGER
JP2005315567A (en) * 2004-04-02 2005-11-10 Calsonic Kansei Corp Evaporator
JP2006242406A (en) * 2005-02-28 2006-09-14 Calsonic Kansei Corp Evaporator
JP2015230129A (en) * 2014-06-05 2015-12-21 パナソニックIpマネジメント株式会社 Heat exchanger
US20160209130A1 (en) * 2015-01-20 2016-07-21 Samsung Electronics Co., Ltd. Heat exchanger
EP3572743A4 (en) * 2017-01-20 2020-10-14 Danfoss Micro Channel Heat Exchanger (Jiaxing) Co., Ltd. Heat exchanger assembly
WO2021234958A1 (en) * 2020-05-22 2021-11-25 三菱電機株式会社 Heat exchanger, outdoor unit equipped with heat exchanger, and air conditioner equipped with outdoor unit
WO2023173587A1 (en) * 2022-03-16 2023-09-21 广东美的制冷设备有限公司 Air conditioner control method, air conditioner, and computer-readable storage medium

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2790825A1 (en) * 1999-03-12 2000-09-15 Sanden Corp STACK TYPE MULTI-CIRCULATION HEAT EXCHANGER
JP2005315567A (en) * 2004-04-02 2005-11-10 Calsonic Kansei Corp Evaporator
JP2006242406A (en) * 2005-02-28 2006-09-14 Calsonic Kansei Corp Evaporator
JP2015230129A (en) * 2014-06-05 2015-12-21 パナソニックIpマネジメント株式会社 Heat exchanger
US20160209130A1 (en) * 2015-01-20 2016-07-21 Samsung Electronics Co., Ltd. Heat exchanger
EP3572743A4 (en) * 2017-01-20 2020-10-14 Danfoss Micro Channel Heat Exchanger (Jiaxing) Co., Ltd. Heat exchanger assembly
US11624564B2 (en) 2017-01-20 2023-04-11 Danfoss Micro Channel Heat Exchanger (Jiaxing) Co., Ltd. Heat exchanger assembly
WO2021234958A1 (en) * 2020-05-22 2021-11-25 三菱電機株式会社 Heat exchanger, outdoor unit equipped with heat exchanger, and air conditioner equipped with outdoor unit
JPWO2021234958A1 (en) * 2020-05-22 2021-11-25
WO2023173587A1 (en) * 2022-03-16 2023-09-21 广东美的制冷设备有限公司 Air conditioner control method, air conditioner, and computer-readable storage medium

Also Published As

Publication number Publication date
JP2837396B2 (en) 1998-12-16

Similar Documents

Publication Publication Date Title
KR100482825B1 (en) Heat exchanger
US20060162917A1 (en) Heat exchanger
JP6745898B2 (en) Indoor unit of air conditioner and air conditioner
JPH04187991A (en) Heat exchanger
JP2837396B2 (en) Heat exchanger
JP2000161875A (en) Heat exchanger and cooling apparatus
KR101629341B1 (en) Heat exchange coil and air conditioning unit
US20170284682A1 (en) Indoor unit for air-conditioning apparatus
JP2005156095A (en) Heat exchanger
JPH10332162A (en) Heat-exchanger
JPH0749262Y2 (en) Heat exchanger
JP2014001897A (en) Heat exchanger
JPS63231123A (en) Heat exchanger for air-conditioning machine
JP3233551B2 (en) Air conditioner
JP2570310Y2 (en) Heat exchanger
JP4547205B2 (en) Evaporator
JP4328411B2 (en) Heat exchanger
JP2001330271A (en) Underfloor supply type proximity air-conditioning unit
JPH0460387A (en) Laminated heat exchanger
JP2584772Y2 (en) Heat sink structure
JP3255541B2 (en) Air conditioner
JP7399293B2 (en) Heat exchange elements and heat exchange type ventilation equipment
JP3594333B2 (en) Heat exchanger
JPH04340031A (en) Heat exchanger for air conditioner
JPH02171591A (en) Laminated type heat exchanger

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees