JPH09119907A - Method and device for measuring three-dimensional distribution of element concentration - Google Patents

Method and device for measuring three-dimensional distribution of element concentration

Info

Publication number
JPH09119907A
JPH09119907A JP7275951A JP27595195A JPH09119907A JP H09119907 A JPH09119907 A JP H09119907A JP 7275951 A JP7275951 A JP 7275951A JP 27595195 A JP27595195 A JP 27595195A JP H09119907 A JPH09119907 A JP H09119907A
Authority
JP
Japan
Prior art keywords
sample
concentration distribution
film thickness
thickness direction
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7275951A
Other languages
Japanese (ja)
Other versions
JP3323042B2 (en
Inventor
Takashi Aoyama
青山  隆
Tomoko Sekiguchi
智子 関口
Koji Kimoto
浩司 木本
Masakazu Saito
雅和 斎藤
Shigeto Isagozawa
成人 砂子澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27595195A priority Critical patent/JP3323042B2/en
Publication of JPH09119907A publication Critical patent/JPH09119907A/en
Application granted granted Critical
Publication of JP3323042B2 publication Critical patent/JP3323042B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To measure an element concentration distribution in the film thickness (three-dimensional) direction of a sample while maintaining a high space resolution in the direction inside the surface of the sample. SOLUTION: While characteristic X rays 5 generated from a sample 1 by applying electrons 4 are detected by an EDX detector 2 and the concentration signal of an element is generated, electrons which pass through the sample are detected by an EELS detector 3 and the concentration signal of the element is generated from electron energy-loss spectrum. Then, by calculating the two concentration signals, the element concentration distribution in the film thickness direction of the sample 1 is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高い空間分解能を
有する元素濃度分布測定方法及び装置に関し、特に、分
析電子顕微鏡を用いて三次元(膜厚)方向の元素濃度分
布を測定する方法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for measuring element concentration distribution having high spatial resolution, and more particularly, a method and apparatus for measuring element concentration distribution in a three-dimensional (film thickness) direction using an analytical electron microscope. It is about.

【0002】[0002]

【従来の技術】半導体素子中の元素濃度分布は素子の基
本特性を決め、また、半導体素子中に重金属などがある
と欠陥生成の原因となる。従って、半導体素子の歩留ま
り向上とも関連して、半導体素子中の元素濃度分布を精
密に測定することが求められている。
2. Description of the Related Art The element concentration distribution in a semiconductor device determines the basic characteristics of the device, and the presence of heavy metals in the semiconductor device causes defects. Therefore, it is required to measure the element concentration distribution in the semiconductor element precisely in connection with the improvement of the yield of the semiconductor element.

【0003】従来、膜の厚さ方向の元素濃度分布を測定
する手法として二次イオン質量分析法(Secondary Ion
Mass Spectroscopy、略してSIMS)があるが、SI
MSで用いられるプローブ径は約1μmであり、0.5
μm以下の加工寸法で製造される半導体素子中の元素濃
度分布測定には適用できない。そこで、半導体素子中の
元素分析には、高い空間分解能を有する分析電子顕微鏡
−特性X線分析法(Energy Dipersive X-ray Spectrosc
opy、略してEDX)が用いられている。また、主とし
て軽元素の分析を行うには、分析電子顕微鏡−電子エネ
ルギ損失分光(Electron Energy Loss Spectroscopy、
略してEELS)法も用いられている。
Conventionally, as a method for measuring the element concentration distribution in the thickness direction of the film, the secondary ion mass spectrometry (Secondary Ion) method is used.
Mass Spectroscopy, abbreviated SIMS), but SI
The probe diameter used in MS is about 1 μm and is 0.5
It cannot be applied to the measurement of element concentration distribution in a semiconductor device manufactured with a processing dimension of μm or less. Therefore, for elemental analysis in semiconductor devices, an energy dipersive X-ray spectroscopy method having a high spatial resolution is used.
opy, or EDX for short) is used. In addition, in order to analyze light elements mainly, analytical electron microscope-electron energy loss spectroscopy (Electron Energy Loss Spectroscopy,
The EELS method for short is also used.

【0004】[0004]

【発明が解決しようとする課題】分析電子顕微鏡−ED
X法により半導体素子中の元素濃度分布を求める場合、
理論的には、平面薄膜試料を作成することによりx−y
方向の分布が測定でき、断面薄膜試料を作成することに
よりx−z、あるいはy−z方向の分布が測定できる。
Analytical Electron Microscope-ED
When obtaining the element concentration distribution in the semiconductor element by the X method,
Theoretically, by making a planar thin film sample, xy
The distribution in the direction can be measured, and the distribution in the xz or yz direction can be measured by preparing a cross-sectional thin film sample.

【0005】分析電子顕微鏡のプローブ径は普通、1n
mから10nmである。一方、薄膜試料の膜厚は、0.
1μmから0.2μmであるため、測定領域は、長さ/
直径の比が100以上のきわめて細長い円柱状であり、
基本的にこの長さ(膜厚)方向で元素濃度は一定である
と仮定している。しかし、実際の試料では、この長さ
(膜厚)方向に濃度分布があり、これが精密な元素濃度
分布測定の障害となっている。このことは、分析電子顕
微鏡−EELS法においても全く同じである。膜厚方向
の元素濃度分布を計測する手段として、試料を傾斜させ
て分析を行い、最終的に膜厚方向の元素濃度分布を算出
する手法も提案されている。しかし、この方法は、x−
y平面上での位置精度が悪くなるだけでなく、試料傾斜
に伴ってx−y平面上での測定位置が広がるとともに変
化し、結局、プローブ径に比べてx−y平面上では広範
囲の領域で均一な濃度分布が要求されることになり、精
密な元素濃度分布測定から逸脱してしまう。
The probe diameter of an analytical electron microscope is usually 1n.
m to 10 nm. On the other hand, the film thickness of the thin film sample is 0.
Since it is 1 μm to 0.2 μm, the measurement area is
It is a very elongated cylinder with a diameter ratio of 100 or more,
Basically, it is assumed that the element concentration is constant in this length (film thickness) direction. However, in an actual sample, there is a concentration distribution in this length (film thickness) direction, which is an obstacle to accurate element concentration distribution measurement. This is exactly the same in the analytical electron microscope-EELS method. As a means for measuring the element concentration distribution in the film thickness direction, a method of tilting a sample for analysis and finally calculating the element concentration distribution in the film thickness direction has also been proposed. However, this method
Not only the position accuracy on the y-plane deteriorates, but also the measurement position on the xy-plane expands and changes as the sample tilts, and as a result, a wider area on the xy-plane than the probe diameter. Therefore, a uniform concentration distribution is required, which deviates from precise element concentration distribution measurement.

【0006】本発明は、分析電子顕微鏡による計測にお
いて、試料の平面方向で高い空間分解能を維持しなが
ら、膜厚方向の元素濃度分布を精密に評価することので
きる方法及び装置を提供することを目的とする。
The present invention provides a method and apparatus capable of precisely evaluating the element concentration distribution in the film thickness direction while maintaining a high spatial resolution in the plane direction of a sample in the measurement by an analytical electron microscope. To aim.

【0007】[0007]

【課題を解決するための手段】本発明では、分析電子顕
微鏡におけるEDXとEELSの信号を演算することで
膜厚方向の元素濃度分布を求める。EELSの信号の代
わりに、複数のEDX信号を用いることも可能である。
単一のEDX検出器を用いた場合でも、EDXの検出角
を走査して計測したり、形状が非対称である試料を電子
線照射軸の回りに回転することで、試料による遮蔽状態
を変えて複数回計測することで膜厚方向の元素濃度分布
測定が可能となる。
In the present invention, the element concentration distribution in the film thickness direction is obtained by calculating the signals of EDX and EELS in an analytical electron microscope. It is also possible to use a plurality of EDX signals instead of the EELS signals.
Even when a single EDX detector is used, the detection angle of the EDX can be scanned and measured, or the sample with an asymmetrical shape can be rotated around the electron beam irradiation axis to change the shielding state of the sample. By measuring a plurality of times, it is possible to measure the element concentration distribution in the film thickness direction.

【0008】EELS検出器と単一のEDX検出器を用
いた場合には、電子エネルギー損失スペクトル強度から
試料の膜厚方向の平均元素濃度を求めることができ、特
性X線信号と電子エネルギー損失スペクトル信号との差
から試料膜厚方向の元素濃度分布の濃度勾配を求めるこ
とができる。複数のEDX検出器を用いたり、単一のE
DX検出器でもその検出角度を走査して多くの計測値を
得ると、それらの計測値を演算することにより、試料膜
厚方向の元素濃度分布を2次以上の多項式で近似するこ
とができる。
When the EELS detector and the single EDX detector are used, the average element concentration in the film thickness direction of the sample can be obtained from the electron energy loss spectrum intensity, and the characteristic X-ray signal and the electron energy loss spectrum can be obtained. The concentration gradient of the element concentration distribution in the sample film thickness direction can be obtained from the difference from the signal. Use multiple EDX detectors or use a single E
Even if the DX detector scans the detected angle to obtain many measured values, the element concentration distribution in the sample film thickness direction can be approximated by a polynomial of quadratic or higher order by calculating these measured values.

【0009】また、本発明による三次元元素濃度分布測
定装置は、電子線発生手段と、電子線発生手段により発
生した電子線を試料に照射する手段と、試料から発生し
た特性X線を検出する第1の検出器と、試料を透過した
電子線の電子エネルギー損失スペクトルを検出する第2
の検出器と、第1の検出器及び第2の検出器の出力を演
算して試料の膜厚方向の元素分布を求める演算手段とを
含むことを特徴とする。
Further, the three-dimensional element concentration distribution measuring device according to the present invention detects the characteristic X-rays generated from the sample, the electron beam generating means, the means for irradiating the sample with the electron beam generated by the electron beam generating means. A first detector and a second detector for detecting an electron energy loss spectrum of an electron beam transmitted through a sample
And a calculating means for calculating outputs of the first detector and the second detector to obtain an element distribution in the film thickness direction of the sample.

【0010】以下、図面を参照して、より詳細に説明す
る。図1は、計測領域からの信号をEDXとEELSで
取り込む分析電子顕微鏡の模式図である。電子銃6から
放出された電子線4は収束レンズ7によって試料1上に
収束される。このとき電子線照射によって試料1から発
せられた特性X線5はEDX検出器2によって検出され
る。一方、試料1を透過した電子線は、対物レンズ8及
び投射レンズ9によって像10として結像され、スリッ
ト11の後方に配置されたEELS検出器3は試料計測
領域を透過した電子線をエネルギー分析して電子のエネ
ルギー損失スペクトルを求める。EDX検出器2の出力
信号とEELS検出器3の出力信号は、演算装置12に
入力されて演算される。
Hereinafter, a more detailed description will be given with reference to the drawings. FIG. 1 is a schematic diagram of an analytical electron microscope that captures signals from a measurement region by EDX and EELS. The electron beam 4 emitted from the electron gun 6 is converged on the sample 1 by the converging lens 7. At this time, the characteristic X-rays 5 emitted from the sample 1 by the electron beam irradiation are detected by the EDX detector 2. On the other hand, the electron beam transmitted through the sample 1 is imaged as an image 10 by the objective lens 8 and the projection lens 9, and the EELS detector 3 arranged behind the slit 11 analyzes the energy of the electron beam transmitted through the sample measurement region. Then, the energy loss spectrum of the electron is obtained. The output signal of the EDX detector 2 and the output signal of the EELS detector 3 are input to the arithmetic unit 12 and arithmetically operated.

【0011】EELSに関しては、試料1を透過する電
子線は、試料中の各元素で固有のエネルギー損失を生じ
てEELS検出器3に入り、電子のエネルギー損失量と
その強度から元素の種類と濃度が算出できる。この場
合、透過電子線はほぼ全量が検出器に入るため、試料の
膜厚方向の元素濃度分布には無関係に、各元素は平均濃
度が検出される。一方、EDX測定では、試料1を透過
する電子線は、試料中の各元素に固有の特性X線を放出
させ、このX線のエネルギーと強度を検出して、元素の
種類と濃度を算出する。このとき、特性X線5は試料1
から等方的に放出されるが、EDX検出器2に取り込ま
れるのはその一部である。そして、試料の膜厚方向に元
素濃度分布があると、試料自身の遮蔽効果により信号強
度に変化が生じる。
Regarding EELS, an electron beam passing through the sample 1 causes an energy loss specific to each element in the sample and enters the EELS detector 3, and the type and concentration of the element are determined based on the energy loss amount of the electron and its intensity. Can be calculated. In this case, almost all of the transmitted electron beam enters the detector, so that the average concentration of each element is detected regardless of the element concentration distribution in the film thickness direction of the sample. On the other hand, in the EDX measurement, the electron beam passing through the sample 1 emits a characteristic X-ray unique to each element in the sample, the energy and intensity of this X-ray are detected, and the type and concentration of the element are calculated. . At this time, the characteristic X-ray 5 is the sample 1
It is isotropically emitted from the EDX detector, but only a part thereof is taken into the EDX detector 2. When the element concentration distribution exists in the film thickness direction of the sample, the signal intensity changes due to the shielding effect of the sample itself.

【0012】すなわち、図2に示すように、ある元素が
膜試料1の上部領域に存在すると、放出されたX線5a
はEDX検出器2の立体角にほぼ等しい割合で取り込ま
れる。しかし、その元素が膜の下部領域にあると、放出
されたX線5bは膜試料1自体で吸収されるため、ED
X検出器2の立体角に比べて低い割合でしか取り込まれ
ない。
That is, as shown in FIG. 2, when a certain element exists in the upper region of the film sample 1, the emitted X-ray 5a is emitted.
Are taken in at a rate substantially equal to the solid angle of the EDX detector 2. However, when the element is in the lower region of the film, the emitted X-rays 5b are absorbed by the film sample 1 itself, so that the ED
It is taken in only at a low rate compared to the solid angle of the X detector 2.

【0013】このことから、平均の元素濃度を与えるE
ELS信号と、膜厚方向の元素濃度分布に依存するED
X信号を組合せて演算装置12で演算することにより、
試料の膜厚方向の元素濃度分布を算出することが可能と
なる。なお、従来、分析電子顕微鏡に備付けられたED
XとEELSとを用いて、分析結果の確認をした例はあ
る(日本電子顕微鏡学会第51回学術講演会予稿集、
p.33,1995年5月)。しかし、両者の信号の差
を演算することにより、新たな情報を得ようとした試み
はこれまでにない。
From this fact, E which gives the average elemental concentration is obtained.
ED that depends on ELS signal and element concentration distribution in the film thickness direction
By combining the X signals and calculating by the calculation device 12,
It is possible to calculate the element concentration distribution in the film thickness direction of the sample. In addition, the ED conventionally provided in the analytical electron microscope.
There is an example in which the analysis result was confirmed using X and EELS (Proceedings of the 51st Scientific Lecture Meeting of the Electron Microscope Society of Japan,
p. 33, May 1995). However, there has been no attempt to obtain new information by calculating the difference between the two signals.

【0014】図3(a),(b)は、Si中のW元素濃
度分布が膜厚方向で異なる場合のEDX検出効率の差を
示す。図中、実線はSi中の実際のW元素濃度を表し、
破線は実線で示されるような元素濃度勾配がある試料か
ら発せられるX線をEDX検出器で検出するとき、膜厚
方向各位置のW元素から発せられたX線がEDX検出器
の総カウント数に対して寄与する寄与度を表す。図の横
軸は、図2の配置で膜試料1の底面から測った膜厚方向
の距離z(μm)を表し、縦軸の左の目盛りはW元素の
濃度を、右の目盛りはEDX検出器のカウント数に対す
る寄与度を任意尺度で表す。
FIGS. 3A and 3B show the difference in EDX detection efficiency when the W element concentration distribution in Si differs in the film thickness direction. In the figure, the solid line represents the actual W element concentration in Si,
The broken line indicates the total number of counts of the EDX detector when the X-rays emitted from the W element at each position in the film thickness direction are detected when the X-rays emitted from the sample having the element concentration gradient as shown by the solid line are detected by the EDX detector. Represents the degree of contribution to. The horizontal axis of the figure represents the distance z (μm) in the film thickness direction measured from the bottom surface of the film sample 1 in the arrangement of FIG. 2, the left scale on the vertical axis is the concentration of W element, and the right scale is the EDX detection. The contribution to the number of vessels is represented by an arbitrary scale.

【0015】図3(a)はW元素が試料の膜厚方向に直
線的な濃度勾配をもって上部領域に多く存在する場合を
表し、図3(b)はW元素が試料の膜厚方向に直線的な
濃度勾配をもって逆に下部領域に多く存在する場合を表
す。なお、EDX検出器の総カウント数は、図中の破線
の下側領域を積分したものに相当する。W元素が膜の上
部領域に多く存在する図3(a)の場合に比べ、図3
(b)のようにW元素が膜の下部領域に多く存在するほ
ど、W元素から放出される8.4eVのX線が膜を構成
しているSi元素によって吸収、散乱される割合が増加
し、検出効率は低下する。従って、EELSとEDX各
々1台からの信号を用いると、膜厚方向に直線(一次
式)で近似した元素濃度分布が得られることになる。す
なわち、EDX信号から算出した見かけ上の元素濃度
と、EELS信号による元素濃度が等しい場合、この元
素濃度は膜厚方向で一様である。しかし、EDX信号に
よる見かけ上の元素濃度がEELS信号による元素濃度
よりも小(大)のとき、この元素濃度は膜厚方向に下部
から上部に向かって減少(増加)している。言いかえれ
ば、EELSの信号は濃度直線の切片(厚さ方向中央部
での濃度)を与え、EELSとEDXの信号強度の差は
濃度直線の傾きを与える。
FIG. 3A shows a case where a large amount of W element is present in the upper region with a linear concentration gradient in the film thickness direction of the sample, and FIG. 3B shows that W element is linear in the film thickness direction of the sample. On the contrary, a large concentration gradient is present in the lower region. The total count number of the EDX detector corresponds to the integral of the lower area of the broken line in the figure. As compared with the case of FIG. 3A in which a large amount of W element is present in the upper region of the film, FIG.
As shown in (b), the more W element is present in the lower region of the film, the more the 8.4 eV X-rays emitted from the W element are absorbed and scattered by the Si element constituting the film. , The detection efficiency decreases. Therefore, if signals from one EELS and one EDX are used, an element concentration distribution approximated by a straight line (linear equation) in the film thickness direction can be obtained. That is, when the apparent element concentration calculated from the EDX signal is equal to the element concentration obtained from the EELS signal, the element concentration is uniform in the film thickness direction. However, when the apparent element concentration by the EDX signal is smaller (larger) than the element concentration by the EELS signal, this element concentration decreases (increases) from the lower portion to the upper portion in the film thickness direction. In other words, the EELS signal gives the intercept of the concentration straight line (the concentration at the central portion in the thickness direction), and the difference between the signal intensities of EELS and EDX gives the slope of the concentration straight line.

【0016】さらに、EDX検出器を試料面に対して異
なった角度で2台設置すると、2つの膜厚方向情報が得
られるため、膜厚方向の元素濃度分布を二次曲線で近似
することが可能になる。同様に、図4に示すように、E
DX検出器を試料面に対する角度で走査して多数の信号
を取り込むと、図5に示すように、膜厚方向に多次曲線
で近似した元素濃度分布曲線が得られる。
Furthermore, if two EDX detectors are installed at different angles with respect to the sample surface, two pieces of information in the film thickness direction can be obtained, so that the element concentration distribution in the film thickness direction can be approximated by a quadratic curve. It will be possible. Similarly, as shown in FIG.
When a DX detector is scanned at an angle with respect to the sample surface and a large number of signals are taken in, an element concentration distribution curve approximated by a multi-order curve in the film thickness direction is obtained, as shown in FIG.

【0017】検出器の数を増やすかわりに、試料形状を
工夫する方法もある。すなわち、収束イオンビーム(Fo
cused Ion Beam、略してFIB)を用いて、図6に示す
ように膜厚がステップ状に変化している形状に試料を加
工すれば(あるいは、膜厚方向にステップ状に加工され
た試料部位を利用してもよい)、固定した取り込み角を
持つ単一のEDX検出器とEELSを使用しても、試料
をx−y面上で例えば180°回転して2回信号を取り
込むことにより、膜厚方向に二次曲線で近似した元素濃
度分布を得ることが可能である。
There is also a method of devising the sample shape instead of increasing the number of detectors. That is, the focused ion beam (Fo
If the sample is processed into a shape in which the film thickness changes stepwise as shown in FIG. 6 using cused ion beam (FIB for short) (or the sample portion processed stepwise in the film thickness direction) , And using a single EDX detector with a fixed acquisition angle and EELS, by rotating the sample, for example 180 ° in the xy plane, to acquire the signal twice, It is possible to obtain an element concentration distribution that is approximated by a quadratic curve in the film thickness direction.

【0018】本発明の原理を一般化して説明する。膜厚
がtである試料の膜厚方向(z方向)の元素濃度分布を
f(z)、試料面に対して角度θで設置されたEDX検出
器による検出信号をCEDX(θ)、試料中の膜厚方向位置
zから放出されたX線がX線発生点とEDX検出器の間
に介在する試料で吸収、散乱を受けることを考慮した検
出効率をg(θ,z)とすると、以下の関係が成立する。
The principle of the present invention will be generalized and explained. The element concentration distribution in the film thickness direction (z direction) of the sample having the film thickness t is f (z), the detection signal by the EDX detector installed at an angle θ with respect to the sample surface is C EDX (θ), the sample Letting g (θ, z) be the detection efficiency considering that the X-ray emitted from the position z in the film thickness direction is absorbed and scattered by the sample interposed between the X-ray generation point and the EDX detector, The following relationship holds.

【0019】CEDX(θ)=∫f(z)g(θ,z)dz ここでg(θ,z)は、試料による既知のX線減衰係数、
試料の形状、試料とEDX検出器の位置関係から求める
ことができ、典型的には図9のようになる。図9は膜厚
方向の距離zを横軸とし、膜厚が0.1μmのとき試料
表面から発せられたX線を検出するときの検出効率を1
としたEDX検出器の検出効率を縦軸として、検出角度
が30°の時の検出効率曲線g(30°,z)と検出角度
が60°の時の検出効率曲線g(60°,z)を示したも
のである。
C EDX (θ) = ∫f (z) g (θ, z) dz where g (θ, z) is the known X-ray attenuation coefficient of the sample,
It can be determined from the shape of the sample and the positional relationship between the sample and the EDX detector, and is typically as shown in FIG. In FIG. 9, the distance z in the film thickness direction is taken as the horizontal axis, and the detection efficiency when detecting X-rays emitted from the sample surface when the film thickness is 0.1 μm is 1
The detection efficiency curve g (30 °, z) when the detection angle is 30 ° and the detection efficiency curve g (60 °, z) when the detection angle is 60 ° are shown with the detection efficiency of the EDX detector as the vertical axis. Is shown.

【0020】いま、元素濃度分布f(z)を次のn次の多
項式で近似する。 f(z)=a0+a1z+a22+…+ann EELS信号CEELSはf(z)の平均値を表し、Aを比例
係数として次式が成立する。 CEELS=A∫f(z)dz/t 試料面に対して角度θ1,θ2,…,θnで設置したED
X検出器の検出信号CE DX1),CEDX2),…,C
EDXn)を検出すると、(n+1)個の未知数a0
1,a2,…,anに対してEELS信号CEELSと合わ
せて(n+1)個の関係式が得られるため、連立方程式
を解いて係数a0,a1,a2,…,anの値を決定するこ
と、すなわち膜厚方向の元素濃度分布f(z)を求めるこ
とができる。
Now, the element concentration distribution f (z) is approximated by the following n-th order polynomial. f (z) = a 0 + a 1 z + a 2 z 2 + ... + a n z n The EELS signal C EELS represents the average value of f (z), and the following equation is established with A as a proportional coefficient. C EELS = A∫f (z) dz / t ED installed at angles θ 1 , θ 2 , ..., θ n with respect to the sample surface
Detection signals of the X detector C E DX1 ), C EDX2 ), ..., C
When EDXn ) is detected, (n + 1) unknowns a 0 ,
a 1, a 2, ..., in conjunction with EELS signals C EELS against a n (n + 1) for the number of relational expressions can be obtained, the coefficient by solving the simultaneous equations a 0, a 1, a 2 , ..., a It is possible to determine the value of n , that is, to obtain the element concentration distribution f (z) in the film thickness direction.

【0021】EELS検出器を用いない場合であって
も、EDX検出器の検出角度を変えた検出信号をもう一
つ増やすことにより、同様にして(n+1)個の連立方
程式を解いて係数a0,a1,a2,…,anを求めること
が可能である。
Even when the EELS detector is not used, another detection signal obtained by changing the detection angle of the EDX detector is increased to solve (n + 1) simultaneous equations and solve the coefficient a 0. , a 1, a 2, ... , it is possible to determine the a n.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施例について説
明する。ただし、以下に記載した数値や数式はあくまで
も説明の便宜のためのものであり、これによって本発明
が限定されるものではない。第1の実施例について説明
する。試料は半導体シリコン素子のコンタクト部であ
り、合金Al−Cu−Siとシリコンの間には、アルミ
ニウムとシリコンとの反応を避けるために、バリアメタ
ルと呼ばれるタングステンが使われている。FIBを用
いてTEM用断面試料を作成した。膜厚は約0.1μm
である。
Embodiments of the present invention will be described below. However, the numerical values and mathematical formulas described below are for convenience of description only, and the present invention is not limited thereby. A first embodiment will be described. The sample is a contact portion of a semiconductor silicon element, and tungsten called a barrier metal is used between the alloy Al—Cu—Si and silicon in order to avoid a reaction between aluminum and silicon. A cross-section sample for TEM was prepared using FIB. The film thickness is about 0.1 μm
It is.

【0023】図7に試料の断面構造を模式的に示す。シ
リコン基板21上に部分的に酸化膜22(LOCOS)
を形成した後、ボロンリンガラス膜(BPSG)23を
気相成長法により堆積する。ホトエッチング工程により
コンタクト部分を開口した後、バリアメタルであるタン
グステン24をDCマグネトロンスパッタ法により形成
する。次に、700℃、30分間の熱処理を行ってシリ
サイド膜26を形成する。続いて、Al−Cu−Si合
金をスパッタ法により形成し、ホトエッチング工程によ
りアルミニウム配線25を完成させる。タングステンシ
リサイド領域26で、図中に示した丸印は、電子ビーム
を当てて元素分析を行う位置を示している。
FIG. 7 schematically shows the cross-sectional structure of the sample. Partial oxide film 22 (LOCOS) on the silicon substrate 21
After forming, the boron phosphorus glass film (BPSG) 23 is deposited by vapor phase epitaxy. After opening the contact portion by a photoetching process, a barrier metal tungsten 24 is formed by a DC magnetron sputtering method. Next, heat treatment is performed at 700 ° C. for 30 minutes to form the silicide film 26. Subsequently, an Al-Cu-Si alloy is formed by a sputtering method, and the aluminum wiring 25 is completed by a photoetching process. In the tungsten silicide region 26, circles shown in the figure indicate positions where elemental analysis is performed by applying an electron beam.

【0024】従来は、膜厚方向(z軸方向)の元素濃度
は一定と仮定して、x−y面上での元素濃度分布を測定
していた。実際には膜厚方向に濃度分布があるため、各
点のz軸方向の濃度分布計測について述べる。検出器
は、試料面すなわちx−y面に対して60°の角度で設
置したEDXと、EELSを用いた。EELSスペクト
ルでは、SiとWは、それぞれ99eV、1897eV
の位置にピークが観察され、ピーク強度比からWの平均
濃度は14.8at%となった。次に、EDX測定で
は、SiとWは、それぞれ1.74eVと8.40eVの
位置に特性X線のピークが観察され、ピーク強度比から
Wの見かけ上の濃度は5.14at%となった。EDX
によるWの見かけ上の濃度が、EELSによるWの平均
濃度より大であるため、定性的には、Wは膜の上面から
下面方向に減少していることがわかる。
Conventionally, the element concentration distribution on the xy plane has been measured assuming that the element concentration in the film thickness direction (z-axis direction) is constant. Since the concentration distribution actually exists in the film thickness direction, the measurement of the concentration distribution in the z-axis direction at each point will be described. The detector used was EDX and EELS installed at an angle of 60 ° with respect to the sample surface, that is, the xy plane. In the EELS spectrum, Si and W are 99 eV and 1897 eV, respectively.
A peak was observed at the position of, and the average concentration of W was 14.8 at% from the peak intensity ratio. Next, in the EDX measurement, Si and W were observed to have characteristic X-ray peaks at positions of 1.74 eV and 8.40 eV, respectively, and the apparent concentration of W was 5.14 at% from the peak intensity ratio. . EDX
Since the apparent concentration of W according to (1) is higher than the average concentration of W according to EELS, it is qualitatively understood that W decreases from the upper surface to the lower surface of the film.

【0025】z軸方向のWの濃度分布f(z)を次の一次
式で近似する場合は以下のようになる。 f(z)=a0+a1z 膜厚0.1μmの試料におけるEDXの検出効率g(60
°,z)は、経験的に次式で与えられる。
When the concentration distribution f (z) of W in the z-axis direction is approximated by the following linear expression, it is as follows. f (z) = a 0 + a 1 z Detection efficiency of EDX in a sample having a film thickness of 0.1 μm g (60
°, z) is empirically given by the following equation.

【0026】g(60°,z)=exp30(z−0.1) 従って、次式でzを0と0.1μmの間で積分して CEDX(60°)=∫f(z)g(60°,z)dz =∫(a0+a1z){exp30(z−0.1)}dz =3.16×10-20+4.39×10-31 一方、EELSによる測定値から次式が得られる。ただ
し、zの積分は0と0.1μmの間で行う。
G (60 °, z) = exp30 (z-0.1) Therefore, z is integrated between 0 and 0.1 μm by the following equation, and C EDX (60 °) = ∫f (z) g (60 °, z) dz = ∫ (a 0 + a 1 z) {exp30 (z-0.1)} dz = 3.16 × 10 -2 a 0 + 4.39 × 10 -3 a 1 On the other hand, according to EELS The following formula is obtained from the measured values. However, z integration is performed between 0 and 0.1 μm.

【0027】CEELS=∫f(z)dz=0.1a0+5×
10-31=1.48×10-2 この連立方程式を解くと、a0=0.140、a1=0.1
65となる。よって、膜厚方向の元素濃度分布は下式で
表される。 f(z)=0.140+0.165z 以上のようにして各点のz軸方向の分布を求め、最終的
にx−y−z三次元空間におけるW元素濃度分布を示す
と、例えば図8のようになる。図8は、x−y面上のコ
ンタクト端部で、W濃度は大きなz軸依存性を示すこと
を表している。
C EELS = ∫f (z) dz = 0.1a 0 + 5 ×
10 −3 a 1 = 1.48 × 10 −2 When this simultaneous equation is solved, a 0 = 0.140, a 1 = 0.1
It becomes 65. Therefore, the element concentration distribution in the film thickness direction is expressed by the following equation. f (z) = 0.140 + 0.165z As described above, the distribution of each point in the z-axis direction is obtained, and finally the W element concentration distribution in the xyz three-dimensional space is shown. Like FIG. 8 shows that the W concentration shows a large z-axis dependence at the contact end portion on the xy plane.

【0028】次に、第2の実施例を示す。ここでは、E
ELSは用いずに、2台のEDX検出器を使用し、試料
面に対する検出角は0°と60°に設定してある。ED
X検出器の取り出し角が0°の場合、検出効率に対する
膜厚方向の元素濃度分布の影響はほとんどなくなる。す
なわち、第1の実施例におけるEELS検出器と同様の
役割を果たす。従って、この信号強度から平均元素濃度
を算出し、両者の信号強度の差から濃度勾配を算出する
ことができる。
Next, a second embodiment will be shown. Here, E
Two EDX detectors were used without using ELS, and the detection angles with respect to the sample surface were set to 0 ° and 60 °. ED
When the take-out angle of the X detector is 0 °, the influence of the element concentration distribution in the film thickness direction on the detection efficiency becomes almost zero. That is, it plays the same role as the EELS detector in the first embodiment. Therefore, the average element concentration can be calculated from this signal intensity, and the concentration gradient can be calculated from the difference in signal intensity between the two.

【0029】次に、第3の実施例について説明する。試
料としては図7に断面構造を示す第1の実施例の場合と
同じ半導体シリコン素子のコンタクト部を用いた。検出
器としては検出角度を60°及び30°とした2台のE
DXと1台のEELSを用いた。すなわち、第1の実施
例の場合に比較して検出角度が30°のEDX検出器を
1台増やして測定を行った。
Next, a third embodiment will be described. As the sample, the same contact portion of the semiconductor silicon element as that of the first embodiment whose sectional structure is shown in FIG. 7 was used. Two detectors with detection angles of 60 ° and 30 °
DX and one EELS were used. That is, as compared with the case of the first embodiment, the number of EDX detectors having a detection angle of 30 ° was increased by one and the measurement was performed.

【0030】前述のように、検出角度が60°のEDX
によるW元素濃度の実測値CEDX(60°)は5.14at
%、EESLによるW元素濃度の測定値CEELSは14.
8at%であり、本実施例で新たに測定した検出角度が
30°のEDXによるW元素濃度の実測値CEDX(30
°)は3.80at%であった。いま、試料のz方向の元
素濃度分布は次の2次の多項式で表されるとする。
As described above, the EDX with the detection angle of 60 °
The actual measured value C EDX (60 °) of W element concentration by 5.14at
%, The measured value C EELS of the W element concentration by EESL is 14.
8 at%, and the actual measurement value of the W element concentration C EDX (30
°) was 3.80 at%. Now, assume that the element concentration distribution in the z direction of the sample is expressed by the following quadratic polynomial.

【0031】f(z)=a0+a1z+a22 2台のEDXによる見かけの検出濃度CEDX(60°),
EDX(30°)は各々次式で表される。 CEDX(60°)=∫f(z)g(60°,z)dz CEDX(30°)=∫f(z)g(30°,z)dz 検出角度がそれぞれ60°と30°の時のEDXの検出
効率g(60°,z),g(30°,z)は経験的に次式で与
えられる。
F (z) = a 0 + a 1 z + a 2 z 2 Apparent detection density C EDX (60 °) by two EDX units,
C EDX (30 °) is expressed by the following equations. C EDX (60 °) = ∫f (z) g (60 °, z) dz C EDX (30 °) = ∫f (z) g (30 °, z) dz The detection angles are 60 ° and 30 °, respectively. The detection efficiencies g (60 °, z) and g (30 °, z) of the EDX at this time are empirically given by the following equations.

【0032】g(60°,z)=exp30(z−0.1) g(30°,z)=exp40(z−0.1) これらの関係式を用いると次の連立方程式が得られる。 CEDX(60°)=0.317a0+2.28×10-31+1.81×10-4
2=5.14×10-3EDX(30°)=0.0246a0+1.89×10-31+1.56×10-4
2=3.80×10-3EELS=0.1a0+5×10-21+3.33×10-42=1.48×10
-2 これを解くことによりa0,a1,a2が求められ、次式
で表されるW元素の濃度分布f(z)が得られる。
G (60 °, z) = exp30 (z-0.1) g (30 °, z) = exp40 (z-0.1) The following simultaneous equations are obtained by using these relational expressions. C EDX (60 °) = 0.317a 0 + 2.28 × 10 -3 a 1 + 1.81 × 10 -4 a
2 = 5.14 x 10 -3 C EDX (30 °) = 0.0246a 0 +1.89 x 10 -3 a 1 +1.56 x 10 -4
a 2 = 3.80 × 10 -3 C EELS = 0.1a 0 + 5 × 10 -2 a 1 + 3.33 × 10 -4 a 2 = 1.48 × 10
-2 By solving this, a 0 , a 1 , and a 2 are obtained, and the concentration distribution f (z) of W element represented by the following equation is obtained.

【0033】f(z)=6.66z−55.5z2 図10は、この濃度分布を図示したものである。図10
と図8を比較すると明らかなように、EDX検出器の数
を増やすことで試料の厚さ方向の濃度分布の測定精度が
向上する。次に、第4の実施例について説明する。本実
施例では、図4に示すように、EDX検出器の検出角度
θを試料面に対して+45°から−45°まで走査して
信号を取り込むことで、WとSiに対する信号を各検出
角度の関数として得る。各検出角度θにおけるEDX検
出器の検出効率g(θ,z)は、計算によりあるいは経験
的に知ることができるので、前述の方法と同様にして元
素の膜厚方向濃度分布を演算することができる。この場
合、データ数が増えた分だけ測定精度を上げることがで
きる。
F (z) = 6.66z-55.5z 2 FIG. 10 illustrates this concentration distribution. FIG.
As is clear from a comparison between FIG. 8 and FIG. 8, increasing the number of EDX detectors improves the measurement accuracy of the concentration distribution of the sample in the thickness direction. Next, a fourth embodiment will be described. In the present embodiment, as shown in FIG. 4, by scanning the detection angle θ of the EDX detector from + 45 ° to −45 ° with respect to the sample surface and capturing signals, the signals for W and Si are detected at the respective detection angles. Get as a function of. Since the detection efficiency g (θ, z) of the EDX detector at each detection angle θ can be known by calculation or empirically, the concentration distribution of the element in the film thickness direction can be calculated in the same manner as the above method. it can. In this case, it is possible to improve the measurement accuracy by the amount of increased data.

【0034】[0034]

【発明の効果】本発明によれば、試料の平面方向で高い
空間分解能を維持したまま、試料の膜厚(三次元)方向
の元素濃度分布を求めることが可能になる。
According to the present invention, it is possible to obtain the element concentration distribution in the film thickness (three-dimensional) direction of the sample while maintaining a high spatial resolution in the plane direction of the sample.

【図面の簡単な説明】[Brief description of the drawings]

【図1】分析電子顕微鏡の概略図。FIG. 1 is a schematic view of an analytical electron microscope.

【図2】特性X線発生の模式図。FIG. 2 is a schematic diagram of characteristic X-ray generation.

【図3】膜厚方向の元素濃度分布の違いによるEDX検
出効率の差を説明する図。
FIG. 3 is a diagram illustrating a difference in EDX detection efficiency due to a difference in element concentration distribution in the film thickness direction.

【図4】EDX検出器を角度走査する例の説明図。FIG. 4 is an explanatory diagram of an example in which an EDX detector is angularly scanned.

【図5】膜厚方向の元素濃度分布の説明図。FIG. 5 is an explanatory diagram of an element concentration distribution in the film thickness direction.

【図6】試料形状を利用して膜厚方向の元素濃度分布を
求める例の説明図。
FIG. 6 is an explanatory diagram of an example of obtaining an element concentration distribution in the film thickness direction using a sample shape.

【図7】試料の断面模式図。FIG. 7 is a schematic sectional view of a sample.

【図8】x−y−z方向の元素濃度分布実測例。FIG. 8 is an example of actual measurement of element concentration distribution in xyz directions.

【図9】EDX検出効率の膜厚及び検出角度依存性を説
明する図。
FIG. 9 is a diagram illustrating the dependence of EDX detection efficiency on film thickness and detection angle.

【図10】膜厚方向の元素濃度分布を示す図。FIG. 10 is a diagram showing an element concentration distribution in the film thickness direction.

【符号の説明】[Explanation of symbols]

1…試料、2…EDX検出器、3…EELS検出器、4
…電子線、5…特性X線、6…電子銃、7…収束レン
ズ、8…対物レンズ、9…投射レンズ、10…電子顕微
鏡像、11…スリット、12…演算装置、21…シリコ
ン(Si)、22…シリコン酸化膜(SiO2)、23
…ボロホスホシリケートガラス(BPSG)、24…タ
ングステン膜、25…Al−Cu−Si膜、26…シリ
サイド領域
1 ... Sample, 2 ... EDX detector, 3 ... EELS detector, 4
... electron beam, 5 ... characteristic X-ray, 6 ... electron gun, 7 ... converging lens, 8 ... objective lens, 9 ... projection lens, 10 ... electron microscope image, 11 ... slit, 12 ... arithmetic unit, 21 ... silicon (Si ), 22 ... Silicon oxide film (SiO 2 ), 23
... Borophosphosilicate glass (BPSG), 24 ... Tungsten film, 25 ... Al-Cu-Si film, 26 ... Silicide region

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斎藤 雅和 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 砂子澤 成人 茨城県ひたちなか市市毛882番地 株式会 社日立製作所計測器事業部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masakazu Saito Inventor Masakazu Saito 7-1-1 Omika-cho, Hitachi City, Ibaraki Hitachi Ltd. Hitachi Research Laboratory, Ltd. Bachi Stock Company Hitachi Ltd. Measuring Instruments Division

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 電子線照射によって試料から発生する特
性X線による濃度信号と、試料を透過した電子線の電子
エネルギー損失スペクトルから得られる濃度信号とを演
算することにより試料の膜厚方向の元素濃度分布を求め
ることを特徴とする三次元元素濃度分布測定方法。
1. An element in a film thickness direction of a sample by calculating a concentration signal by a characteristic X-ray generated from the sample by electron beam irradiation and a concentration signal obtained from an electron energy loss spectrum of an electron beam transmitted through the sample. A three-dimensional element concentration distribution measuring method characterized by obtaining a concentration distribution.
【請求項2】 電子線照射によって試料から発生する特
性X線を検出角度を異にする複数の検出器で計測し、各
検出器の信号強度を演算することにより試料の膜厚方向
の元素濃度分布を求めることを特徴とする三次元元素濃
度分布測定方法。
2. A characteristic X-ray generated from a sample by electron beam irradiation is measured by a plurality of detectors having different detection angles, and the signal intensity of each detector is calculated to calculate the element concentration in the film thickness direction of the sample. A three-dimensional element concentration distribution measuring method characterized by obtaining a distribution.
【請求項3】 電子線照射によって試料から発生する特
性X線を検出角度を変化させて複数回計測し、各検出角
度における信号強度を演算することにより試料の膜厚方
向の元素濃度分布を求めることを特徴とする三次元元素
濃度分布測定方法。
3. A characteristic X-ray generated from a sample by electron beam irradiation is measured a plurality of times by changing a detection angle, and a signal intensity at each detection angle is calculated to obtain an element concentration distribution in the film thickness direction of the sample. A three-dimensional element concentration distribution measuring method characterized by the following.
【請求項4】 電子線照射によって試料から発生する特
性X線を、試料による遮蔽状態の異なる複数の方向から
計測し、試料によって遮蔽された特性X線強度の変化か
ら試料の膜厚方向の元素濃度分布を求めることを特徴と
する三次元元素濃度分布測定方法。
4. A characteristic X-ray generated from a sample by electron beam irradiation is measured from a plurality of directions in which the sample has different shielding states, and an element in the film thickness direction of the sample is determined from the change in the characteristic X-ray intensity shielded by the sample. A three-dimensional element concentration distribution measuring method characterized by obtaining a concentration distribution.
【請求項5】 形状が非対称な試料を用い、試料を電子
線照射軸の回りに回転して試料から発生する特性X線を
複数回計測し、計測した信号強度を演算することにより
試料の膜厚方向の元素濃度分布を求めることを特徴とす
る三次元元素濃度分布測定方法。
5. A film of a sample is obtained by using a sample having an asymmetric shape, rotating the sample around an electron beam irradiation axis, measuring the characteristic X-rays generated from the sample a plurality of times, and calculating the measured signal intensity. A three-dimensional element concentration distribution measuring method characterized by obtaining an element concentration distribution in the thickness direction.
【請求項6】 分析電子顕微鏡を用いる元素分析方法に
おいて、試料に電子線を照射し、試料から発生する特性
X線と試料を透過した電子線の電子エネルギー損失スペ
クトルを検出し、電子エネルギー損失スペクトル強度か
ら試料の膜厚方向の平均元素濃度を求め、特性X線信号
と電子エネルギー損失スペクトル信号との差から試料膜
厚方向の元素濃度分布の濃度勾配を求めることを特徴と
する元素分析方法。
6. In an elemental analysis method using an analytical electron microscope, a sample is irradiated with an electron beam, and a characteristic X-ray generated from the sample and an electron energy loss spectrum of the electron beam transmitted through the sample are detected to obtain an electron energy loss spectrum. An elemental analysis method, characterized in that the average elemental concentration in the film thickness direction of the sample is obtained from the intensity, and the concentration gradient of the elemental concentration distribution in the sample film thickness direction is obtained from the difference between the characteristic X-ray signal and the electron energy loss spectrum signal.
【請求項7】 電子線発生手段と、前記電子線発生手段
により発生した電子線を試料に照射する手段と、試料か
ら発生した特性X線を検出する第1の検出器と、試料を
透過した電子線の電子エネルギー損失スペクトルを検出
する第2の検出器と、前記第1の検出器及び第2の検出
器の出力を演算して試料の膜厚方向の元素分布を求める
演算手段とを含むことを特徴とする三次元元素濃度分布
測定装置。
7. An electron beam generating means, a means for irradiating the sample with an electron beam generated by the electron beam generating means, a first detector for detecting a characteristic X-ray generated from the sample, and a sample which has passed through the sample. A second detector for detecting an electron energy loss spectrum of the electron beam; and a calculating means for calculating outputs of the first detector and the second detector to obtain an element distribution in the film thickness direction of the sample. A three-dimensional element concentration distribution measuring device characterized in that
JP27595195A 1995-10-24 1995-10-24 Method and apparatus for measuring three-dimensional element concentration distribution Expired - Fee Related JP3323042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27595195A JP3323042B2 (en) 1995-10-24 1995-10-24 Method and apparatus for measuring three-dimensional element concentration distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27595195A JP3323042B2 (en) 1995-10-24 1995-10-24 Method and apparatus for measuring three-dimensional element concentration distribution

Publications (2)

Publication Number Publication Date
JPH09119907A true JPH09119907A (en) 1997-05-06
JP3323042B2 JP3323042B2 (en) 2002-09-09

Family

ID=17562707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27595195A Expired - Fee Related JP3323042B2 (en) 1995-10-24 1995-10-24 Method and apparatus for measuring three-dimensional element concentration distribution

Country Status (1)

Country Link
JP (1) JP3323042B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030055841A (en) * 2001-12-27 2003-07-04 삼성전자주식회사 Method for measuring thickness of a BPSG film and measuring density of impurity in the BPSG film
WO2008099501A1 (en) * 2007-02-16 2008-08-21 Fujitsu Limited Electronic microscope, and observing method
JP2010140905A (en) * 2008-12-12 2010-06-24 Fei Co X-ray detector for electron microscope
JP2015011018A (en) * 2013-07-02 2015-01-19 株式会社東芝 Sample analysis method, program, and sample analyzer
CN114018760A (en) * 2021-10-19 2022-02-08 长江存储科技有限责任公司 Method and device for detecting semiconductor structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101639882B1 (en) * 2014-10-24 2016-07-25 주식회사 포스코 Apparatus and Method for measuring thickness/composition of metal foil
KR102495839B1 (en) * 2021-11-30 2023-02-06 한국기초과학지원연구원 A method and device for imaging a structure of an organic semiconductor material using an Electron Energy Loss Spectroscopy Method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030055841A (en) * 2001-12-27 2003-07-04 삼성전자주식회사 Method for measuring thickness of a BPSG film and measuring density of impurity in the BPSG film
WO2008099501A1 (en) * 2007-02-16 2008-08-21 Fujitsu Limited Electronic microscope, and observing method
JPWO2008099501A1 (en) * 2007-02-16 2010-05-27 富士通株式会社 Electron microscope and observation method
US8299430B2 (en) 2007-02-16 2012-10-30 Fujitsu Limited Electron microscope and observation method
JP5254046B2 (en) * 2007-02-16 2013-08-07 富士通株式会社 Electron microscope and observation method
JP2010140905A (en) * 2008-12-12 2010-06-24 Fei Co X-ray detector for electron microscope
US8993963B2 (en) 2008-12-12 2015-03-31 Fei Company Mounting structures for multi-detector electron microscopes
JP2015011018A (en) * 2013-07-02 2015-01-19 株式会社東芝 Sample analysis method, program, and sample analyzer
CN114018760A (en) * 2021-10-19 2022-02-08 长江存储科技有限责任公司 Method and device for detecting semiconductor structure

Also Published As

Publication number Publication date
JP3323042B2 (en) 2002-09-09

Similar Documents

Publication Publication Date Title
US5128543A (en) Particle analyzer apparatus and method
US4236073A (en) Scanning ion microscope
US5444242A (en) Scanning and high resolution electron spectroscopy and imaging
US20130126727A1 (en) Time-of-Flight Electron Energy Analyzer
Jagutzki et al. Fast position and time-resolved read-out of micro-channelplates with the delay-line technique for single-particle and photon-detection
Pijper et al. Detection of energy-selected secondary electrons in coincidence with energy-loss events in thin carbon foils
Claus et al. Low‐energy electron diffraction with energy resolution
Cohen et al. Tunable laboratory extended x‐ray absorption fine structure system
Graczyk et al. Scanning electron diffraction attachment with electron energy filtering
KR20190126721A (en) Eels detection technique in an electron microscope
US5347126A (en) Time-of-flight direct recoil ion scattering spectrometer
US5594246A (en) Method and apparatus for x-ray analyses
US20030080292A1 (en) System and method for depth profiling
JP3323042B2 (en) Method and apparatus for measuring three-dimensional element concentration distribution
US20040238735A1 (en) System and method for depth profiling and characterization of thin films
JPS61284690A (en) Device and method of detecting electron spin polarized pole
Botton et al. Analytical electron microscopy
Higatsberger Solid surfaces analysis
JPH08220027A (en) X-ray fluorescence analyzer
Munakata et al. Scanning photoelectron spectromicroscope based on coherent vacuum ultraviolet radiation
JP2002243671A (en) X-ray filter and x-ray fluorescence analyzer
Kern Instrumentation for laboratory X-ray scattering techniques
Kono et al. Developments of a surface-analysis apparatus and techniques using micro-probe electron beams
JP4537149B2 (en) X-ray fluorescence analysis method
Kelly et al. Proposed configurations for a high-repetition-rate position-sensitive atom probe

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080628

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080628

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100628

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100628

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120628

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120628

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130628

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees