JPH09119891A - Viscosity detection apparatus and apparatus for controlling injection of engine fuel - Google Patents

Viscosity detection apparatus and apparatus for controlling injection of engine fuel

Info

Publication number
JPH09119891A
JPH09119891A JP27602995A JP27602995A JPH09119891A JP H09119891 A JPH09119891 A JP H09119891A JP 27602995 A JP27602995 A JP 27602995A JP 27602995 A JP27602995 A JP 27602995A JP H09119891 A JPH09119891 A JP H09119891A
Authority
JP
Japan
Prior art keywords
fuel
viscosity
sensor
detecting
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27602995A
Other languages
Japanese (ja)
Inventor
Masaki Moronuki
正樹 諸貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP27602995A priority Critical patent/JPH09119891A/en
Publication of JPH09119891A publication Critical patent/JPH09119891A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure a state of a fuel continuously and highly accurately by a small viscosity detection apparatus. SOLUTION: A viscosity detection apparatus 13 is provided with a viscosity detection sensor 20 which has a piezoelectric body 21 with an electrode 22 and is soaked in a liquid to be measured, and an oscillation circuit 23 connected to the electrode 22 of the viscosity detection sensor 20 for applying a vibration voltage to the viscosity detection sensor 20. A change of a viscosity of the liquid is detected from a change of an oscillation frequency of the piezoelectric body 21. The engine fuel-injection control apparatus includes the viscosity detection apparatus 13 detecting a viscosity of a fuel from a change of the oscillation frequency of the piezoelectric body 21 soaked in the fuel, a temperature sensor 12 for detecting a temperature of the fuel, and a fuel control circuit 18 for calculating a kinematic viscosity of the fuel from outputs of the viscosity detection apparatus 13 and the temperature sensor 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】この発明は粘性検出装置及び
エンジン燃料噴射制御装置、特に小型かつ軽量の粘性検
出装置及びエンジンの燃料の粘性を検出して、適性量の
燃料を適性なタイミングでエンジンに供給できるエンジ
ン燃料制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a viscosity detecting device and an engine fuel injection control device, and more particularly, to a small and lightweight viscosity detecting device and a fuel detecting device for detecting the viscosity of fuel of an engine to supply an appropriate amount of fuel to the engine at an appropriate timing. The present invention relates to an engine fuel control device that can be supplied.

【0002】[0002]

【従来の技術】ディーゼルエンジンを搭載した自動車の
走行性能が燃料の温度及び粘性により影響されることは
公知である。また、エンジン性能は夏期及び使用地域に
よって変化する燃料の粘度の影響を受ける。しかしなが
ら、従来のディーゼルエンジンでは、燃料の温度及び粘
性の変化に対応して燃料供給量及び噴射時期を制御でき
ないため、燃料の温度及び粘性の変化に対応する適性な
エンジン出力を得ることはできなかった。
2. Description of the Related Art It is known that the running performance of a vehicle equipped with a diesel engine is affected by the temperature and viscosity of fuel. In addition, the engine performance is affected by the viscosity of the fuel which varies depending on the summer and the use area. However, in the conventional diesel engine, the fuel supply amount and the injection timing cannot be controlled in accordance with the change in the temperature and the viscosity of the fuel, so that it is not possible to obtain an appropriate engine output corresponding to the change in the temperature and the viscosity of the fuel. Was.

【0003】ディーゼルエンジンの排出ガス規制に伴
い、最近では低エミッションへの要求が高まり、より最
適な燃焼制御を実現するため、従来の機械式に代わって
電子式の燃料噴射装置が開発されている。電子式燃料噴
射装置では、燃料噴射量の最適制御に必要な入力パラメ
ータは、アクセル位置、エンジン回転数、エンジン上死
点位置(TDC)、吸入空気量(吸気圧)、過給圧、燃
料流量、噴射開始、吸入空気・冷却水・燃料の温度、コ
ントロールスリーブ位置(燃料噴射量)、SOI(噴射
開始)及び車速である。冷却水の温度情報はエンジンの
始動特性を改善するため、エンジン回転数、スタータス
イッチの情報に加えてコールドスタート時の噴射量増量
の補正に利用される。また、燃料密度の温度変化は燃料
温度の情報を用いて補正される。噴射量を決定するプラ
ンジャのストロークは、コントロールスリーブ位置によ
り決定される。コントロールスリーブ位置は電子ガバナ
のガバナシャフトの回転角度により決まり、この回転角
度はコントロールスリーブ位置センサにより検出され、
燃料の噴射量はフィードバック制御される。
[0003] With the emission regulations of diesel engines, there has recently been an increasing demand for low emissions, and in order to realize more optimal combustion control, electronic fuel injection devices have been developed instead of conventional mechanical fuel injection devices. . In the electronic fuel injection device, input parameters necessary for optimal control of the fuel injection amount include an accelerator position, an engine speed, an engine top dead center position (TDC), an intake air amount (intake pressure), a supercharging pressure, and a fuel flow rate. , Injection start, intake air / cooling water / fuel temperature, control sleeve position (fuel injection amount), SOI (injection start), and vehicle speed. The cooling water temperature information is used to correct the increase in the injection amount at the time of a cold start in addition to the information on the engine speed and the starter switch in order to improve the starting characteristics of the engine. The temperature change of the fuel density is corrected using the information of the fuel temperature. The stroke of the plunger that determines the injection amount is determined by the position of the control sleeve. The control sleeve position is determined by the rotation angle of the governor shaft of the electronic governor, and this rotation angle is detected by the control sleeve position sensor,
The fuel injection amount is feedback-controlled.

【0004】図12は従来の電子式燃料噴射制御装置の
ブロック図を示す。エンジンの回転数を検出する回転数
センサ101及び燃料の温度を検出する温度センサ10
2が燃料噴射ポンプ100に取付けられる。また、アク
セルの開度を検出するアクセルセンサ103、エンジン
の吸入空気量を検出するエアフローセンサ104、エン
ジンへの吸入空気の温度を検出する吸気温度センサ10
5、冷却水の温度を検出する水温センサ106、エンジ
ンの回転数を検出する回転数センサ101及び燃料の温
度を検出する温度センサ102からの情報は燃料制御回
路107に入力され、データ処理された後、最適な燃料
噴射量及び噴射時期が決定される。
FIG. 12 is a block diagram showing a conventional electronic fuel injection control device. A rotational speed sensor 101 for detecting the rotational speed of the engine and a temperature sensor 10 for detecting the temperature of the fuel
2 is attached to the fuel injection pump 100. An accelerator sensor 103 for detecting the degree of opening of the accelerator, an air flow sensor 104 for detecting the amount of intake air of the engine, and an intake air temperature sensor 10 for detecting the temperature of intake air to the engine.
5. Information from the water temperature sensor 106 for detecting the temperature of the cooling water, the rotation speed sensor 101 for detecting the rotation speed of the engine, and the temperature sensor 102 for detecting the temperature of the fuel is input to the fuel control circuit 107 and subjected to data processing. Thereafter, the optimal fuel injection amount and injection timing are determined.

【0005】図13に示す従来の燃料噴射量の決定手順
では、通常走行時にエンジン回転数を検出する回転数セ
ンサ101とアクセル踏み込み量を検出するアクセルセ
ンサ103との出力に基づいて、基本的な燃料噴射量Q
0を算出する。また、水温センサ106の出力から冷却
水温が低い時、バッテリ電圧の降下時、エアコン運転時
等の負荷変動に応じてエンジン回転数を一定に保つよう
に、基本噴射量Q0に対して燃料噴射量を制御してアイ
ドリング補正による補正値Qiを加えて、Q0+Qiを得
る。
[0005] In the conventional procedure for determining the fuel injection amount shown in FIG. 13, a basic fuel injection amount is determined based on the outputs of a rotation speed sensor 101 for detecting the engine rotation speed and an accelerator sensor 103 for detecting the accelerator depression amount during normal running. Fuel injection quantity Q
Calculate 0 . Further, when the cooling water temperature from the output of the water temperature sensor 106 is low, when drop of the battery voltage, so as to keep the engine speed constant in response to the load variation such as when the air conditioner operation, the fuel injection to the basic injection quantity Q 0 by adding the correction value Q i by idling corrected by controlling the amount to obtain the Q 0 + Q i.

【0006】一方、エアフローセンサ104及び吸気温
度センサ105の出力から吸入空気量を算出し、回転数
センサ101からのエンジン回転数の情報と合せて最大
噴射量Qmaxを算出する。最大噴射量Qmaxは通常走行時
のエンジン回転数に対応する最大噴射可能量であり、通
常走行時に、スモーク発生を防止し、エンジンの保全を
行うため、いかなる走行状態でも最大噴射量を越えず、
かつエンジン特性から最大トルクを確保するため、エン
ジン回転数及び吸入空気量から計算する。
On the other hand, the amount of intake air is calculated from the outputs of the air flow sensor 104 and the intake air temperature sensor 105, and the maximum injection amount Qmax is calculated together with the information on the engine speed from the speed sensor 101. The maximum injection amount Qmax is the maximum injection amount corresponding to the engine speed during normal driving. During normal driving, in order to prevent generation of smoke and maintain the engine, the maximum injection amount does not exceed the maximum injection amount in any running state. ,
In addition, in order to secure the maximum torque from the engine characteristics, the calculation is performed from the engine speed and the intake air amount.

【0007】次に基本噴射量Q0にアイドリング補正量
iを加えたQ0+Qiと最大噴射量Qmaxを比較して、小
さい方を選択する。その後、温度センサ102の出力か
ら燃料密度を算出して燃料密度補正を行う。即ち、燃料
温度が高く、燃料密度が低い時に噴射量を増量し、逆に
燃料温度が低く、燃料密度が高い時には噴射量を減量す
る。
Next, Q 0 + Q i obtained by adding the idling correction amount Q i to the basic injection amount Q 0 is compared with the maximum injection amount Q max , and the smaller one is selected. After that, the fuel density is calculated from the output of the temperature sensor 102 and the fuel density is corrected. That is, when the fuel temperature is high and the fuel density is low, the injection amount is increased, and when the fuel temperature is low and the fuel density is high, the injection amount is reduced.

【0008】また、始動時にはスタータスイッチ、エン
ジン回転数及び冷却水温の情報から適正噴射量を決定
し、低温時には噴射量を増量する。
At the time of starting, an appropriate injection amount is determined from information on a starter switch, engine speed and cooling water temperature, and at low temperatures, the injection amount is increased.

【0009】このように電子制御化された燃料噴射装置
でも燃料温度センサ102により検知した燃料温度によ
り燃料の密度変化による噴射量の変動を補正するだけ
で、燃料の動粘度変化による噴射量変動については補正
は行われていない。
[0009] Even in the electronically controlled fuel injection device, the change in the injection amount due to the change in the kinematic viscosity of the fuel is corrected only by correcting the change in the injection amount due to the change in the density of the fuel based on the fuel temperature detected by the fuel temperature sensor 102. Has not been corrected.

【0010】また、図14に示す噴射時期の決定手順で
は、図13に示す決定手順により算出された目標噴射量
と回転数センサ101からのエンジン回転数によりエン
ジンクランク角度に対しての進角値を算出する。これに
より走行中に変動するエンジン負荷に応じて燃料噴射時
期(タイミング)を最適な状態に制御している。このよ
うなエンジン回転数と進角値との関係はロードタイマ特
性と呼ばれ、通常走行時とエンジン始動時では別々の特
性が設定されている。進角値を算出した後、燃料制御回
路107は始動時か否かを決定する。始動時でないと
き、走行時と判断して、ロードタイマ特性により算出さ
れた進角値に対して水温センサ106からの情報により
補正を行い、更にエアフローセンサ104、吸気温度セ
ンサ105による補正を行い、噴射時期を計算する。噴
射時期についても燃料の動粘度変化による変動について
補正は行わない。始動時も同様にロードタイマ特性によ
り算出された進角値に対して水温センサ106からの情
報により補正を行い、更にエアフローセンサ104、吸
気温度センサ105による補正を行い、噴射時期を計算
するが、補正値は走行時とは異なる。
In the procedure for determining the injection timing shown in FIG. 14, the advance value with respect to the engine crank angle is calculated based on the target injection amount calculated by the determination procedure shown in FIG. Is calculated. Thereby, the fuel injection timing (timing) is controlled to an optimal state according to the engine load that fluctuates during traveling. Such a relationship between the engine speed and the advance value is called a load timer characteristic, and different characteristics are set during normal running and when the engine is started. After calculating the advance value, the fuel control circuit 107 determines whether or not it is at the time of starting. When it is not the start time, it is determined that the vehicle is traveling, and the advance value calculated by the load timer characteristic is corrected by the information from the water temperature sensor 106, and further, the correction is performed by the air flow sensor 104 and the intake air temperature sensor 105, Calculate the injection timing. The injection timing is not corrected for the fluctuation due to the change in the kinematic viscosity of the fuel. At the time of starting, similarly, the advance angle value calculated by the load timer characteristic is corrected by the information from the water temperature sensor 106, further corrected by the air flow sensor 104 and the intake air temperature sensor 105, and the injection timing is calculated. The correction value is different from that during traveling.

【0011】他面、燃料の比重、誘電率、粘度から燃料
性状を検出する方法が試みられている。特開昭61−5
6939号公報に開示された連続的に燃料粘度を測定す
る機械的なタービン式回転粘度測定装置を図15及び図
16に示す。このタービン式回転粘度測定装置は、ベア
リング201a、201bとにより支持され、かつ互い
に逆方向に回転する一対のタービン203と、タービン
203に固着された平坦な円板202と、2つのタービ
ン203により駆動される回転部材とその回転速度を検
出するセンサ204から構成される。液体は入口205
から測定室206に入り、出口207より流出する。タ
ービン203に取付けられた2枚の円板202は隙間2
08を介して平行に配置され、逆方向に回転する。隙間
208に液体が存在するとせん断力が作用する。せん断
力τは液体の粘度μと2つの円板間202の速度勾配
(du/dy)の積となる。従って、液体の粘度μが変
化すると、せん断力τが変化し、2つの円板202間で
変化する相対速度を回転数センサ204により検出す
る。
On the other hand, a method for detecting fuel properties from the specific gravity, dielectric constant, and viscosity of fuel has been attempted. JP-A-61-5
FIGS. 15 and 16 show a mechanical turbine-type rotational viscosity measuring device disclosed in Japanese Patent No. 6939 for continuously measuring fuel viscosity. This turbine-type rotational viscosity measuring device is driven by a pair of turbines 203 supported by bearings 201a and 201b and rotating in opposite directions, a flat disk 202 fixed to the turbines 203, and two turbines 203. And a sensor 204 for detecting the rotational speed of the rotating member. The liquid enters the inlet 205
From the measuring chamber 206 and flows out from the outlet 207. The two disks 202 attached to the turbine 203 have a gap 2
08 and are rotated in the opposite direction. When a liquid exists in the gap 208, a shear force acts. The shearing force τ is the product of the viscosity μ of the liquid and the velocity gradient (du / dy) between the two disks 202. Accordingly, when the viscosity μ of the liquid changes, the shearing force τ changes, and the relative speed that changes between the two disks 202 is detected by the rotation speed sensor 204.

【0012】[0012]

【発明が解決しようとする課題】高粘度の2号軽油に対
応してエンジン出力を最適に調整し、スモークが発生し
ないように調整したエンジンに低粘度の特3号軽油を供
給した場合には、燃料粘度の減少により燃料流量も減少
するため、スモークは発生しないが、エンジン出力は低
下する。逆に低粘度の特3号軽油に対応するように調整
したエンジンに高粘度の2号軽油を供給すると、燃料流
量は増加し過剰となるため、エンジン出力は上昇する
が、スモーク限界を越える難点が生じる。
In the case where low-viscosity No. 3 light oil is supplied to an engine whose engine output is optimally adjusted to correspond to high-viscosity No. 2 light oil and adjusted so as not to generate smoke. Since the fuel flow rate also decreases due to the decrease in fuel viscosity, no smoke is generated, but the engine output decreases. Conversely, if high-viscosity No. 2 diesel oil is supplied to an engine adjusted to correspond to low-viscosity No. 3 diesel oil, the fuel flow will increase and become excessive, resulting in an increase in engine output, but a difficulty exceeding the smoke limit. Occurs.

【0013】従来、通常走行時の燃料噴射ポンプの最大
噴射量はエンジン特性に合せて最大トルクを確保するた
め、回転数センサ101、エアフローセンサ104から
の情報により、エンジン回転数に応じて予めマップに値
が設定されている。しかしながら、マップに設定された
この値は一定の動粘度ν(=μ/ρ)を基準として調整
されるため、実際には変化する動粘度νに対して最適な
燃料噴射量が得られない欠点があった。
Conventionally, the maximum injection amount of the fuel injection pump during normal running is mapped in advance according to the engine speed based on information from the speed sensor 101 and the air flow sensor 104 in order to secure the maximum torque in accordance with the engine characteristics. Is set to a value. However, since this value set in the map is adjusted based on a constant kinematic viscosity ν (= μ / ρ), an optimum fuel injection amount cannot be obtained for the kinematic viscosity ν that actually changes. was there.

【0014】燃料噴射量に与える動粘度の影響により燃
料温度が上昇するとエンジンへの燃料供給量が減少する
ため、エンジン出力は低下することが知られている。燃
料温度の上昇による噴射量の減少は、燃料温度を計測し
て適正な噴射量に補正することが可能である。しかしな
がら、図17に示す燃料の動粘度νと燃料流量との関係
から明らかなように、同一運転条件で燃料の動粘度を変
化させると、動粘度νの増加に伴って約10%程度燃料
流量が増加する。従来では、動粘度νの変化に対して燃
料噴射量を補正することはできなかった。
It is known that when the fuel temperature rises due to the effect of kinematic viscosity on the fuel injection amount, the amount of fuel supplied to the engine decreases, and the engine output decreases. The decrease in the injection amount due to the increase in the fuel temperature can be corrected to an appropriate injection amount by measuring the fuel temperature. However, as is clear from the relationship between the kinematic viscosity ν of the fuel and the fuel flow rate shown in FIG. 17, when the kinematic viscosity of the fuel is changed under the same operating conditions, the fuel flow rate is increased by about 10% with the increase of the kinematic viscosity ν. Increase. Conventionally, it has not been possible to correct the fuel injection amount for a change in kinematic viscosity ν.

【0015】また、燃料はプランジャにより圧送されノ
ズルから燃焼室内に噴射されるが、圧送開始から実際に
噴射されるまでの間に噴射遅れがある。この噴射遅れは
圧力波の伝播速度に起因し、圧力波の伝播速度である音
速が低下すると噴射遅れが増大することが知られてい
る。燃料の音速は図10及び図11示すように動粘度ν
との相関があり、動粘度の変化が噴射時期(タイミン
グ)に影響を与えている。動粘度νが低下すると音速も
低下するため、噴射遅れは増大する。従来では、音速の
変化に対応して発生する噴射遅れに起因する噴射時期の
変動を補正することは困難であったが、音速の変化に影
響を与える動粘度νを検知することができなかった。
The fuel is fed by the plunger and injected into the combustion chamber from the nozzle, but there is an injection delay from the start of the feeding until the actual injection. It is known that the injection delay is caused by the propagation speed of the pressure wave, and the injection delay increases when the sound speed, which is the propagation speed of the pressure wave, decreases. The sound velocity of the fuel has a kinematic viscosity ν as shown in FIGS.
And the change in the kinematic viscosity affects the injection timing (timing). When the kinematic viscosity ν decreases, the sound speed also decreases, so that the injection delay increases. Conventionally, it has been difficult to correct a change in injection timing due to an injection delay that occurs in response to a change in sound speed, but it was not possible to detect a kinematic viscosity ν that affects a change in sound speed. .

【0016】噴射ポンプに装着したタービン式回転粘度
測定装置によって燃料の粘度を測定する装置が特開昭6
1−56939号公報に開示されているが、このタービ
ン式回転粘度測定装置は形状が大きい欠点がある。ま
た、平坦な円板が固着され互いに逆方向に回転する2つ
のタービンにより液体にせん断力を発生させるため、燃
料流路に取付ける必要があり、一定流速を越える速度で
流れる燃料でなければ、十分な精度で燃料の粘度を測定
できない欠点があた。
An apparatus for measuring the viscosity of fuel using a turbine-type rotational viscosity measuring apparatus mounted on an injection pump is disclosed in Japanese Unexamined Patent Publication No. Sho.
Although disclosed in Japanese Patent Application Laid-Open No. 1-56939, this turbine-type rotational viscosity measuring device has a disadvantage in that it has a large shape. In addition, since a flat disk is fixed and a shear force is generated in the liquid by two turbines rotating in opposite directions, it is necessary to attach the liquid to the fuel flow path. There is a disadvantage that the viscosity of the fuel cannot be measured with high accuracy.

【0017】更に、タービンの形状が複雑で加工が困難
であり、またベアリングで支持する可動部を含むため、
タービンに固着された2つの円板の感覚を長期にわたっ
て一定に保つことが困難で測定に誤差を生じやすい難点
もあった。
Furthermore, since the turbine has a complicated shape and is difficult to machine, and includes a movable part supported by a bearing,
It was difficult to keep the sense of the two disks fixed to the turbine constant over a long period of time, and there was also a problem that an error easily occurred in measurement.

【0018】そこで本発明の目的は、連続的かつ高精度
に燃料性状を計測可能な小型の粘性検出装置及びエンジ
ンの燃料噴射制御装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a small-sized viscous detection device and a fuel injection control device for an engine capable of continuously and accurately measuring fuel properties.

【0019】[0019]

【課題を解決するための手段】この発明による粘性検出
装置は、電極が形成された圧電体を備えかつ被測定液体
内に浸漬される粘性検出センサと、粘性検出センサの電
極に接続され粘性検出センサに振動電圧を印加する発振
回路とを備え、圧電体の発振周波数の変化により液体の
粘性変化を検出する。
According to the present invention, there is provided a viscosity detecting device comprising a piezoelectric body having electrodes formed therein and immersed in a liquid to be measured, a viscosity detecting sensor connected to the electrodes of the viscosity detecting sensor. An oscillation circuit for applying an oscillating voltage to the sensor is provided, and a change in the viscosity of the liquid is detected by a change in the oscillation frequency of the piezoelectric body.

【0020】この発明によるエンジン燃料噴射制御装置
は、燃料内に浸漬された圧電体の発振周波数の変化によ
り燃料の粘性を検出する粘性検出装置と、燃料の温度を
検出する温度センサと、粘性検出装置及び温度センサの
出力から燃料の動粘度を算出する燃料制御回路とを含
む。
An engine fuel injection control device according to the present invention includes a viscosity detecting device for detecting the viscosity of fuel by a change in the oscillation frequency of a piezoelectric body immersed in fuel, a temperature sensor for detecting the temperature of the fuel, and a viscosity sensor. A fuel control circuit for calculating the kinematic viscosity of the fuel from the output of the device and the temperature sensor.

【0021】また、この発明によるエンジン燃料噴射制
御装置は、被測定液体内に浸漬される圧電体の発振周波
数の変化により燃料の粘性を検出する粘性検出装置と、
アクセルの開度を検出するアクセルセンサと、エンジン
の回転数を検出する回転数センサと、エンジンの吸入空
気量を検出するエアフローセンサと、燃料の温度を検出
する温度センサとを備え、温度センサの出力により燃料
密度を算出し、粘性検出装置の出力及び燃料密度により
燃料の動粘度を算出すると共に、アクセルセンサ、回転
数センサ及びエアフローセンサの信号から燃料噴射装置
の基本噴射量を演算しかつ燃料の動粘度から算出した基
本噴射量を目標噴射量に補正する燃料制御回路とを備え
ている。
The engine fuel injection control device according to the present invention includes a viscosity detecting device for detecting the viscosity of the fuel based on a change in the oscillation frequency of a piezoelectric body immersed in the liquid to be measured.
An accelerator sensor for detecting the degree of opening of the accelerator, a rotational speed sensor for detecting the rotational speed of the engine, an air flow sensor for detecting the intake air amount of the engine, and a temperature sensor for detecting the temperature of the fuel, The fuel density is calculated from the output, the kinematic viscosity of the fuel is calculated from the output of the viscosity detection device and the fuel density, and the basic injection amount of the fuel injection device is calculated from the signals of the accelerator sensor, the rotation speed sensor and the air flow sensor. And a fuel control circuit for correcting the basic injection amount calculated from the kinematic viscosity of the fuel cell to the target injection amount.

【0022】更に、この発明によるエンジン燃料噴射制
御装置は、燃料内に浸漬された圧電体の発振周波数の変
化により燃料の粘性を検出する粘性検出装置と、温度セ
ンサの出力により燃料密度を算出し、粘性検出装置及び
密度算出手段の出力により燃料の動粘度を算出すると共
に、回転数センサの信号から燃料噴射装置の基本噴射時
期を演算しかつ燃料の動粘度から音速を算出し、基本噴
射時期を目標噴射時期に補正する燃料制御回路とを備え
ている。
Further, the engine fuel injection control device according to the present invention calculates a fuel density by the output of a temperature sensor and a viscosity detection device for detecting the viscosity of the fuel by a change in the oscillation frequency of a piezoelectric body immersed in the fuel. Calculating the kinematic viscosity of the fuel from the outputs of the viscosity detecting device and the density calculating means, calculating the basic injection timing of the fuel injection device from the signal of the rotation speed sensor, and calculating the sonic speed from the kinematic viscosity of the fuel, To a target injection timing.

【0023】粘性検出センサを被測定液体内に浸漬した
状態で、発振回路から振動電圧を粘性検出センサに印加
すると、圧電体は振動出力を発生し、発振周波数の変化
を検出する。発振周波数と被測定液体の密度と粘度の積
(ρη)の平方根との間には一定の物理的特性関係(比
例関係)があり、発振周波数を求めると共に、被測定液
体の温度を検出する温度センサの出力から被測定液体の
密度を得ることにより被測定液体の動粘度を求めること
ができる。
When a vibration voltage is applied from the oscillation circuit to the viscosity detection sensor while the viscosity detection sensor is immersed in the liquid to be measured, the piezoelectric body generates a vibration output and detects a change in the oscillation frequency. There is a certain physical characteristic relationship (proportional relationship) between the oscillation frequency and the square root of the product (ρη) of the density and the viscosity of the liquid to be measured, and the temperature at which the oscillation frequency is determined and the temperature of the liquid to be measured is detected. By obtaining the density of the liquid to be measured from the output of the sensor, the kinematic viscosity of the liquid to be measured can be obtained.

【0024】また、アクセルセンサ、回転数センサ、水
温センサ、吸気温度センサ及びエアフローセンサの信号
から燃料噴射装置の基本噴射量を演算しかつ動粘度によ
る補正を行って目標噴射量を算定し、燃料の粘度の変動
に対応して燃料を供給することができる。回転数セン
サ、水温センサ、エアフローセンサ及び吸気温度センサ
からの信号から基本噴射時期を演算しかつ動粘度による
補正を行って目標噴射時期を算定し、燃料の粘度の変動
に応じて噴射時期を調整することができる。
Further, a basic injection amount of the fuel injection device is calculated from signals of an accelerator sensor, a rotation speed sensor, a water temperature sensor, an intake air temperature sensor, and an air flow sensor, and the target injection amount is calculated by performing correction based on kinematic viscosity. The fuel can be supplied according to the fluctuation of the viscosity of the fuel. The basic injection timing is calculated from the signals from the rotation speed sensor, water temperature sensor, air flow sensor, and intake air temperature sensor, and the target injection timing is calculated by correcting with the kinematic viscosity, and the injection timing is adjusted according to the fluctuation of the fuel viscosity. can do.

【0025】[0025]

【発明の実施の形態】本発明による粘性検出装置の実施
の形態を図1〜図11について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a viscosity detecting device according to the present invention will be described with reference to FIGS.

【0026】図1〜図3に示すように、本発明による粘
性検出装置13は両面に電極22が形成された圧電共振
子からなる圧電体21を備えた粘性検出センサ20と、
電極22に接続された発振回路23とを有する。被測定
液体である燃料中に浸漬した粘性検出センサ20に発振
回路23から振動電圧を印加し、周波数検出回路24に
より粘性検出センサ20から出力される発振周波数出力
を検出する。図4に示すように、粘性検出センサ20の
出力から検出した発振周波数と密度と粘度の積(ρη)
の平方根とは直線状の比例関係となり、被測定液体の粘
性変化を周波数の変化による関数として検出することが
できる。
As shown in FIGS. 1 to 3, a viscosity detecting device 13 according to the present invention includes a viscosity detecting sensor 20 having a piezoelectric body 21 composed of a piezoelectric resonator having electrodes 22 formed on both sides thereof.
An oscillation circuit 23 connected to the electrode 22. An oscillating voltage is applied from the oscillation circuit 23 to the viscosity detection sensor 20 immersed in the fuel to be measured, and an oscillation frequency output from the viscosity detection sensor 20 is detected by the frequency detection circuit 24. As shown in FIG. 4, the product of the oscillation frequency, density, and viscosity (ρη) detected from the output of the viscosity detection sensor 20
Has a linear proportional relationship with the square root of, and a change in viscosity of the liquid to be measured can be detected as a function of a change in frequency.

【0027】動粘度ν、粘度η及び密度ρには次式の関
係がある。 ν=η/ρ 燃料中に浸漬した粘性検出装置13から出力される周波
数変化に対応して求められる物理量は密度と粘度の積
(ρη)の平方根であり、これを2乗して、温度センサ
からの出力により温度の関数として計算により求められ
る燃料密度ρの2乗で割れば、下式のように動粘度νを
算出できる。
The kinematic viscosity ν, viscosity η, and density ρ have the following relationship. ν = η / ρ The physical quantity determined in response to the frequency change output from the viscosity detector 13 immersed in the fuel is the square root of the product of the density and the viscosity (ρη), and squared to obtain a temperature sensor. Is divided by the square of the fuel density ρ calculated as a function of the temperature from the output from, the kinematic viscosity ν can be calculated as in the following equation.

【0028】[0028]

【数1】 (Equation 1)

【0029】得られた動粘度νから燃料噴射量、噴射時
期を補正することができる。
The fuel injection amount and the injection timing can be corrected from the obtained kinematic viscosity ν.

【0030】図5及び図6は、本発明による粘性検出装
置13を適用したエンジンの燃料噴射制御装置のブロッ
ク図を示す。燃料の粘性を検出する粘性検出装置13と
燃料の温度を検出する温度センサ12は噴射ポンプ10
に装着される。温度センサ12、粘性検出装置13はそ
れぞれ燃料密度算出手段12a、粘性算出手段13aを
備え、エンジンの吸気口に流入する空気量を測定するエ
アフローセンサ15と吸気口に流入する空気の温度を測
定する吸気温度センサ16は、吸入空気量算出手段15
aに接続される。
FIGS. 5 and 6 are block diagrams of an engine fuel injection control device to which the viscosity detecting device 13 according to the present invention is applied. A viscosity detecting device 13 for detecting the viscosity of the fuel and a temperature sensor 12 for detecting the temperature of the fuel include an injection pump 10.
Attached to. The temperature sensor 12 and the viscosity detecting device 13 include a fuel density calculating unit 12a and a viscosity calculating unit 13a, respectively, and measure an air flow sensor 15 for measuring an amount of air flowing into an intake port of the engine and a temperature of air flowing into the intake port. The intake air temperature sensor 16 is provided by an intake air amount calculating unit 15.
a.

【0031】また、アクセルの開度を検出するアクセル
センサ14、エンジンの回転数を検出する回転数センサ
11、吸入空気量算出手段15a、燃料密度算出手段1
2a、粘性算出手段13a及び冷却水の温度を検出する
水温センサ17は燃料制御回路18の入力端子に接続さ
れ、燃料制御回路18の出力は燃料噴射ポンプ10に接
続される。
An accelerator sensor 14 for detecting the degree of opening of the accelerator, a rotational speed sensor 11 for detecting the rotational speed of the engine, an intake air amount calculating means 15a, and a fuel density calculating means 1
2a, the viscosity calculating means 13a and the water temperature sensor 17 for detecting the temperature of the cooling water are connected to the input terminal of the fuel control circuit 18, and the output of the fuel control circuit 18 is connected to the fuel injection pump 10.

【0032】燃料噴射量は図7に示すフローチャートに
従って決定される。
The fuel injection amount is determined according to the flowchart shown in FIG.

【0033】まず、エンジンの回転数を検出する回転数
センサ11とアクセルの開度を検出するアクセルセンサ
14の各出力から、燃料制御回路18は、基本噴射量Q
を算出し、冷却水の温度を検出する水温センサ17の
出力値より基本噴射量Q0についてアイドリング特性の
補正値Qiを加えて補正噴射量Q0+Qiを得る。また、
燃料制御回路18は、エンジンの吸気口に流入する空気
量を測定するエアフローセンサ15及び吸気口に流入す
る空気の温度を測定する吸気温度センサ16の出力によ
り吸入空気量を算出し、エンジンの回転数を検出する回
転数センサ11からのエンジン回転数の情報と合せて最
大噴射量Qmaxを算出する。最大噴射量Qmaxは通常走行
時のエンジン回転数に対応した最大噴射可能量であり、
いかなる場合もこれを越えない。
First, the fuel control circuit 18 determines the basic injection amount Q from the outputs of a rotation speed sensor 11 for detecting the rotation speed of the engine and an accelerator sensor 14 for detecting the opening of the accelerator.
Then, a correction value Q i of the idling characteristic is added to the basic injection amount Q 0 from the output value of the water temperature sensor 17 for detecting the temperature of the cooling water to obtain a correction injection amount Q 0 + Q i . Also,
The fuel control circuit 18 calculates the amount of intake air based on the outputs of the air flow sensor 15 that measures the amount of air flowing into the intake port of the engine and the intake temperature sensor 16 that measures the temperature of the air flowing into the intake port. The maximum injection amount Qmax is calculated together with the information on the engine speed from the speed sensor 11 for detecting the engine speed. The maximum injection amount Qmax is the maximum injectable amount corresponding to the engine speed during normal running,
In no case will this be exceeded.

【0034】補正噴射量Q0+Qiと最大噴射量Qmax
比較して、小さい方を選択する。その後、燃料の温度を
検出する温度センサ12の出力から温度の関数として燃
料密度ρを算出し、被測定液体である燃料中に浸漬した
粘性検出装置13の出力から燃料の粘性を表す周波数の
変化を検出する。粘性検出装置13が検出した周波数か
ら密度と粘度の積(ρη)の平方根を求め、密度と粘度
の積(ρη)の平方根を2乗すると共に、温度センサ1
2から得られた燃料密度ρを2乗する。その後、密度と
粘度の積(ρη)の平方根を2乗した値を燃料密度ρを
2乗した値で割った除数として動粘度νを算出できる。
算出した動粘度νから燃料性状補正を行う。
The correction injection amount Q 0 + Q i is compared with the maximum injection amount Q max and the smaller one is selected. Thereafter, the fuel density ρ is calculated as a function of the temperature from the output of the temperature sensor 12 for detecting the temperature of the fuel, and the frequency change representing the viscosity of the fuel is calculated from the output of the viscosity detecting device 13 immersed in the fuel to be measured. Is detected. The square root of the product of density and viscosity (ρη) is determined from the frequency detected by the viscosity detecting device 13, and the square root of the product of density and viscosity (ρη) is squared.
2 is squared with the fuel density ρ obtained from Step 2. Thereafter, the kinematic viscosity ν can be calculated as a divisor obtained by dividing the square of the square root of the product of the density and the viscosity (ρη) by the square of the fuel density ρ.
Fuel property correction is performed from the calculated kinematic viscosity ν.

【0035】燃料温度が高く、燃料動粘度νが低いと
き、目標噴射量に対して実際の噴射量は減少するため、
噴射量を制御する噴射ポンプのプランジャストロークを
目標値よりも大きく補正して、燃料噴射量を増加させ
る。逆に、燃料温度が低く、燃料動粘度νが高いとき、
プランジャストロークを目標値よりも小さく補正して、
燃料噴射量を減少させる。
When the fuel temperature is high and the fuel kinematic viscosity ν is low, the actual injection amount decreases with respect to the target injection amount.
The fuel injection amount is increased by correcting the plunger stroke of the injection pump for controlling the injection amount to be larger than the target value. Conversely, when the fuel temperature is low and the fuel kinematic viscosity ν is high,
Correct the plunger stroke to be smaller than the target value,
Decrease the fuel injection amount.

【0036】また、噴射時期は図8に示すフローチャー
トにより決定される。
The injection timing is determined according to the flowchart shown in FIG.

【0037】図7に示す手順により算出した目標噴射量
と回転数センサ11から検出したエンジンの回転数によ
りクランク角度に対しての進角値を算出する。これによ
り走行中に変動するエンジン負荷に対応して燃料噴射時
期(タイミング)を最適な状態に制御することができ
る。このようなエンジン回転数と進角値との関係はロー
ドタイマ特性と呼ばれ、進角値を算出した後、燃料制御
回路18は、始動時か否かを判断し、エンジンの始動時
点からの時間を計測することにより、通常走行時と始動
時とを個別の特性から基本噴射時期を決定する。
An advance value with respect to the crank angle is calculated based on the target injection amount calculated by the procedure shown in FIG. 7 and the engine speed detected from the speed sensor 11. This makes it possible to control the fuel injection timing (timing) to an optimal state in accordance with the engine load that fluctuates during traveling. Such a relationship between the engine speed and the advance value is referred to as a load timer characteristic. After calculating the advance value, the fuel control circuit 18 determines whether or not the engine is at the start, and determines whether the engine has been started. By measuring the time, the basic injection timing is determined based on individual characteristics at the time of normal running and at the time of starting.

【0038】始動時でないと判断したとき、通常走行時
と判断し、ロードタイマ特性により算出した進角値に対
して水温センサ17の出力により補正を行い、更にエア
フローセンサ15、吸気温度センサ16による補正を行
う。その後、温度センサ12の出力から燃料密度ρを算
出し、粘性検出装置13の出力と合せて、動粘度νを算
出し、基本噴射時期を補正して、目標噴射時期を決定す
る。
When it is determined that the vehicle is not starting, it is determined that the vehicle is running normally, and the advance value calculated based on the load timer characteristic is corrected by the output of the water temperature sensor 17. Make corrections. Thereafter, the fuel density ρ is calculated from the output of the temperature sensor 12, the kinematic viscosity ν is calculated in combination with the output of the viscosity detecting device 13, the basic injection timing is corrected, and the target injection timing is determined.

【0039】燃料動粘度νの減少に伴い音速も低下し、
噴射遅れが増大するため、噴射ポンプのタイミングコン
トロールバルブのデューティ比を補正し、噴射時期を早
めるように補正する。逆に燃料動粘度νが増加すると音
速も増加し、噴射遅れは小さくなるので補正量は小さく
なる。
As the fuel kinematic viscosity ν decreases, the sound speed also decreases,
Since the injection delay increases, the duty ratio of the timing control valve of the injection pump is corrected so that the injection timing is advanced. Conversely, when the fuel kinematic viscosity ν increases, the sound speed also increases, and the injection delay decreases, so that the correction amount decreases.

【0040】燃料制御回路18が始動時と判断したと
き、前記と同様に、ロードタイマ特性により算出した進
角値に対して水温センサ17の出力により補正を行い、
更にエアフローセンサ15、吸気温度センサ16による
補正を行う。その後、温度センサ12の出力から燃料密
度ρを算出し、粘性検出装置13の出力と合せて、動粘
度νを算出し、基本噴射時期を補正して目標噴射時期を
決定する。始動時と判断したときは、通常走行時と判断
したときとは異なる補正量が与えられる。
When the fuel control circuit 18 determines that the engine has been started, similarly to the above, the advance value calculated by the load timer characteristic is corrected by the output of the water temperature sensor 17, and
Further, correction by the air flow sensor 15 and the intake air temperature sensor 16 is performed. Thereafter, the fuel density ρ is calculated from the output of the temperature sensor 12, the kinematic viscosity ν is calculated in combination with the output of the viscosity detection device 13, the basic injection timing is corrected, and the target injection timing is determined. When it is determined that the vehicle is running, a different correction amount is provided than when it is determined that the vehicle is traveling normally.

【0041】図9は本発明による燃料噴射制御方法の第
2の実施の形態を示す。図9では、図5に示す箇所と同
一の部分には同一の符号を付し、説明を省略する。
FIG. 9 shows a second embodiment of the fuel injection control method according to the present invention. In FIG. 9, the same portions as those shown in FIG. 5 are denoted by the same reference numerals, and description thereof will be omitted.

【0042】燃料タンク19に設置した粘性検出装置1
3の出力は燃料制御回路18に送出され、燃料噴射量及
び噴射時期共に前記実施の形態と同様の制御を行う。
The viscosity detecting device 1 installed in the fuel tank 19
The output of No. 3 is sent to the fuel control circuit 18, and the same control as in the above embodiment is performed for both the fuel injection amount and the injection timing.

【0043】燃料の動粘度νは図10に示すように体積
弾性係数と相関があり、また図11に示すように音速と
も相関がある。燃料噴射ポンプには燃料の噴射量及び噴
射時期が重要であり、これらに影響を与える体積弾性係
数、音速と直接的な相関のある物理量である動粘度νを
検知することにより、従来の制御では困難であった高精
度な燃料噴射制御が可能になる。
The kinematic viscosity ν of the fuel has a correlation with the bulk modulus as shown in FIG. 10, and also has a correlation with the speed of sound as shown in FIG. In the fuel injection pump, the fuel injection amount and the injection timing are important, and by detecting the kinematic viscosity ν, which is a physical quantity that directly correlates with the bulk modulus and the sound velocity that affect these, conventional control Difficult and precise fuel injection control becomes possible.

【0044】本発明の実施態様は前記実施の形態に限定
されず、変更が可能である。例えば、前記実施の形態で
は独立して個別に装着した粘性検出装置13と温度セン
サとを一体化して構成してもよい。更に本発明はディー
ゼル機関を含む種々のエンジン以外に、ボイラー等の燃
料粘度を検出し、最適供給量、噴射時期を制御する燃料
制御装置にも適用できる。また、エンジンの燃料以外の
他の液体又は気体にも本発明を適用することが可能であ
る。
The embodiment of the present invention is not limited to the above embodiment, but can be modified. For example, in the above-described embodiment, the viscosity detection device 13 and the temperature sensor which are independently and individually mounted may be integrally formed. Further, the present invention is applicable not only to various engines including a diesel engine, but also to a fuel control device that detects a fuel viscosity of a boiler or the like and controls an optimum supply amount and an injection timing. Further, the present invention can be applied to other liquids or gases other than the fuel of the engine.

【0045】[0045]

【発明の効果】本発明では、連続的かつ高精度に燃料動
粘度を計測できる小型の粘性検出装置及びエンジンの燃
料噴射制御装置が得られる。また、エンジンの燃料噴射
制御装置に適用した場合、燃料の動粘度の変化に対応し
て燃料噴射量、噴射時期を補正して、エンジンの出力の
改善又はスモーク低減の効果を期待することができる。
According to the present invention, it is possible to obtain a small-sized viscosity detecting device and a fuel injection control device for an engine capable of continuously and highly accurately measuring a fuel kinematic viscosity. Further, when applied to a fuel injection control device for an engine, the effect of improving the output of the engine or reducing smoke can be expected by correcting the fuel injection amount and the injection timing in accordance with the change in the kinematic viscosity of the fuel. .

【0046】本発明では、被測定液体が流れず、停止状
態でも液体の粘性を測定できるため、所望の測定場所を
選択できる利点があり、機械的な可動部が無いため耐久
性に優れ、信頼性も高い。
According to the present invention, since the liquid to be measured does not flow and the viscosity of the liquid can be measured even when the liquid is stopped, there is an advantage that a desired measuring place can be selected. The nature is also high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明による粘性検出装置のブロック図FIG. 1 is a block diagram of a viscosity detecting device according to the present invention.

【図2】 粘性検出装置の断面図FIG. 2 is a cross-sectional view of a viscosity detection device.

【図3】 粘性検出装置の平面図FIG. 3 is a plan view of a viscosity detection device.

【図4】 粘性検出装置の出力と発振周波数との関係を
示すグラフ
FIG. 4 is a graph showing the relationship between the output of the viscosity detection device and the oscillation frequency.

【図5】 粘性検出装置を適用したエンジン制御装置の
ブロック図
FIG. 5 is a block diagram of an engine control device to which the viscosity detection device is applied.

【図6】 粘性検出装置を使用した噴射ポンプの制御ブ
ロック図
FIG. 6 is a control block diagram of an injection pump using a viscosity detection device.

【図7】 粘性検出装置を使用して燃料噴射量を決定す
るフローチャート
FIG. 7 is a flowchart for determining a fuel injection amount using a viscosity detection device.

【図8】 粘性検出装置を使用して噴射時期を決定する
フローチャート
FIG. 8 is a flowchart for determining an injection timing using a viscosity detection device.

【図9】 本発明の第2の実施の形態を示すエンジン制
御装置ブロック図
FIG. 9 is a block diagram of an engine control device showing a second embodiment of the present invention.

【図10】 燃料動粘度と体積弾性係数との関係を示す
グラフ
FIG. 10 is a graph showing the relationship between fuel kinematic viscosity and bulk modulus.

【図11】 燃料動粘度と音速との関係を示すグラフFIG. 11 is a graph showing a relationship between fuel kinematic viscosity and sound speed.

【図12】 従来の燃料噴射制御装置のブロック図FIG. 12 is a block diagram of a conventional fuel injection control device.

【図13】 燃料噴射量決定する従来のフローチャートFIG. 13 is a conventional flowchart for determining a fuel injection amount.

【図14】 燃料噴射時期決定する従来のフローチャー
FIG. 14 is a conventional flowchart for determining fuel injection timing.

【図15】 従来の粘度測定装置の断面図FIG. 15 is a cross-sectional view of a conventional viscosity measuring device.

【図16】 図15のI−I線に沿う断面図FIG. 16 is a sectional view taken along the line II of FIG. 15;

【図17】 燃料動粘度による燃料流量変化を示すグラ
FIG. 17 is a graph showing a change in fuel flow rate depending on fuel kinematic viscosity.

【符号の説明】[Explanation of symbols]

10..燃料噴射ポンプ、 11..回転数センサ、
12..温度センサ、12a..燃料密度算出手段、
13..粘性検出装置、 13a..粘性算出手段、
14..アクセルセンサ、 15..エアフローセン
サ、 15a..吸入空気量算出手段、 16..吸気
温度センサ、 17..水温センサ、18..燃料制御
回路、 20..粘性検出センサ、 21..圧電体、
22..電極、 23..発振回路、
10. . 10. fuel injection pump; . Speed sensor,
12. . Temperature sensor, 12a. . Fuel density calculation means,
13. . Viscosity detector, 13a. . Viscosity calculation means,
14. . Accelerator sensor, 15. . Air flow sensor, 15a. . 15. intake air amount calculating means; . 16. intake air temperature sensor; . Water temperature sensor, 18. . Fuel control circuit, 20. . 20. viscosity detection sensor; . Piezoelectric body,
22. . Electrode, 23. . Oscillation circuit,

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電極が形成された圧電体を備えかつ被測
定液体内に浸漬される粘性検出センサと、粘性検出セン
サの電極に接続され粘性検出センサに振動電圧を印加す
る発振回路とを備え、圧電体の発振周波数の変化により
液体の粘性変化を検出することを特徴とする粘性検出装
置。
1. A viscosity detection sensor comprising a piezoelectric body having electrodes formed therein and immersed in a liquid to be measured, and an oscillation circuit connected to the electrodes of the viscosity detection sensor and applying an oscillating voltage to the viscosity detection sensor. A viscosity detecting device for detecting a change in the viscosity of the liquid based on a change in the oscillation frequency of the piezoelectric body.
【請求項2】 燃料内に浸漬された圧電体の発振周波数
の変化により燃料の粘性を検出する粘性検出装置と、燃
料の温度を検出する温度センサと、粘性検出装置及び温
度センサの出力から燃料の動粘度を算出する燃料制御回
路とを備えたことを特徴とするエンジン燃料噴射制御装
置。
2. A viscosity detecting device for detecting the viscosity of the fuel by a change in the oscillation frequency of a piezoelectric body immersed in the fuel, a temperature sensor for detecting the temperature of the fuel, and a fuel based on the output of the viscosity detecting device and the temperature sensor. And a fuel control circuit for calculating a kinematic viscosity of the engine.
【請求項3】 被測定液体内に浸漬される圧電体の発振
周波数の変化により燃料の粘性を検出する粘性検出装置
と、アクセルの開度を検出するアクセルセンサと、エン
ジンの回転数を検出する回転数センサと、エンジンの吸
入空気量を検出するエアフローセンサと、燃料の温度を
検出する温度センサと、アクセルセンサ、回転数セン
サ、エアフローセンサ、温度センサ及び粘性検出装置に
接続された燃料制御回路とを備え、 燃料制御回路は温度センサの出力により燃料の密度を算
出し、燃料の密度と、粘性検出装置の出力により燃料の
動粘度を算出すると共に、アクセルセンサ、回転数セン
サ及びエアフローセンサの信号から燃料噴射装置の基本
噴射量を演算しかつ燃料の動粘度から算出した基本噴射
量を目標噴射量に補正することを特徴とするエンジン燃
料噴射制御装置。
3. A viscosity detecting device for detecting a viscosity of fuel by a change in an oscillation frequency of a piezoelectric body immersed in a liquid to be measured, an accelerator sensor for detecting an accelerator opening degree, and detecting an engine speed. A speed sensor, an air flow sensor for detecting the amount of intake air of the engine, a temperature sensor for detecting the temperature of the fuel, and a fuel control circuit connected to an accelerator sensor, a speed sensor, an air flow sensor, a temperature sensor and a viscosity detecting device. The fuel control circuit calculates the density of the fuel based on the output of the temperature sensor, calculates the density of the fuel and the kinematic viscosity of the fuel based on the output of the viscosity detection device, and controls the acceleration sensor, the rotation speed sensor, and the air flow sensor. The basic injection amount of the fuel injection device is calculated from the signal and the basic injection amount calculated from the kinematic viscosity of the fuel is corrected to the target injection amount. That the engine fuel injection control device.
【請求項4】 燃料内に浸漬された圧電体の発振周波数
の変化により燃料の粘性を検出する粘性検出装置と、温
度センサの出力により燃料密度を算出し、粘性検出装置
の出力及び燃料密度により燃料の動粘度を算出すると共
に、回転数センサの信号から燃料噴射装置の基本噴射時
期を演算しかつ燃料の動粘度から音速を算出し、基本噴
射時期を目標噴射時期に補正する燃料制御回路とを備え
たことを特徴とするエンジン燃料噴射制御装置。
4. A viscosity detecting device for detecting the viscosity of the fuel by a change in the oscillation frequency of a piezoelectric body immersed in the fuel, a fuel density is calculated by an output of the temperature sensor, and a fuel density is calculated by an output of the viscosity detecting device and the fuel density. A fuel control circuit that calculates the kinematic viscosity of the fuel, calculates the basic injection timing of the fuel injection device from the signal of the rotation speed sensor, calculates the sonic speed from the kinematic viscosity of the fuel, and corrects the basic injection timing to the target injection timing. An engine fuel injection control device comprising:
JP27602995A 1995-10-24 1995-10-24 Viscosity detection apparatus and apparatus for controlling injection of engine fuel Pending JPH09119891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27602995A JPH09119891A (en) 1995-10-24 1995-10-24 Viscosity detection apparatus and apparatus for controlling injection of engine fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27602995A JPH09119891A (en) 1995-10-24 1995-10-24 Viscosity detection apparatus and apparatus for controlling injection of engine fuel

Publications (1)

Publication Number Publication Date
JPH09119891A true JPH09119891A (en) 1997-05-06

Family

ID=17563809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27602995A Pending JPH09119891A (en) 1995-10-24 1995-10-24 Viscosity detection apparatus and apparatus for controlling injection of engine fuel

Country Status (1)

Country Link
JP (1) JPH09119891A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100691584B1 (en) * 2000-07-12 2007-03-09 에스케이 주식회사 The Measurement of the Apparent Viscosity Using the Auto Viscometer and device for measurment of Apparent Viscosity
JP2008303860A (en) * 2007-06-11 2008-12-18 Toyota Motor Corp Fuel property correction device
JP2009002196A (en) * 2007-06-20 2009-01-08 Toyota Motor Corp Fuel injection system for internal combustion engine
JP2013217277A (en) * 2012-04-09 2013-10-24 Bosch Corp Fuel kinematic viscosity calculation method, and common rail type fuel injection control device
WO2016200362A1 (en) * 2015-06-08 2016-12-15 Micro Motion, Inc. Controlling a viscosity of fuel in a fuel control system with a vibratory meter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100691584B1 (en) * 2000-07-12 2007-03-09 에스케이 주식회사 The Measurement of the Apparent Viscosity Using the Auto Viscometer and device for measurment of Apparent Viscosity
JP2008303860A (en) * 2007-06-11 2008-12-18 Toyota Motor Corp Fuel property correction device
JP2009002196A (en) * 2007-06-20 2009-01-08 Toyota Motor Corp Fuel injection system for internal combustion engine
JP2013217277A (en) * 2012-04-09 2013-10-24 Bosch Corp Fuel kinematic viscosity calculation method, and common rail type fuel injection control device
WO2016200362A1 (en) * 2015-06-08 2016-12-15 Micro Motion, Inc. Controlling a viscosity of fuel in a fuel control system with a vibratory meter

Similar Documents

Publication Publication Date Title
JPH10288108A (en) Fuel system for internal combustion engine
JP2577210B2 (en) Electronically controlled fuel injection device for internal combustion engine
TWI388719B (en) Operation control device for internal combustion engine
JPH09119891A (en) Viscosity detection apparatus and apparatus for controlling injection of engine fuel
JP2006329110A (en) Controller for internal combustion engine
JPH09158768A (en) Engine fuel injection control device
JPH09287507A (en) Throttle valve controller for internal combustion engine
TW200401864A (en) Control system for plunger-type fuel pump
JPH02227532A (en) Fuel injection control device
JPS6088831A (en) Method of controlling operation characteristic quantity for operation control means of internal-combustion engine
JPS6267258A (en) Driving control method for internal combustion engine
JPH11173188A (en) Fuel injection control device of internal combustion engine
JP2000249017A (en) Method for operating direct injection type internal combustion engine for automobile especially in start operation and device therefor
JPH08261909A (en) Viscosity detecting device, and engine fuel injection control device
JP2001153702A (en) Method for correcting measuring error of heat generating resistor type air flow measuring apparatus
JPH0893572A (en) Control method for egr quantity of gas engine and its device
JPH0430358Y2 (en)
JPH11183353A (en) Liquid viscosity measuring method, liquid viscosity measuring device, engine fuel injection control method, and engine fuel injection control device
JPH09317568A (en) Abnormality detecting device for diesel engine
CN1328496C (en) Fuel injection control device
JPH11200915A (en) Combustion control method of gas engine
JP3246328B2 (en) Detection method in internal combustion engine
JP3512932B2 (en) Fuel supply control device for internal combustion engine
JPH10220270A (en) Fuel injection amount controller of internal combustion engine
JPS6055697B2 (en) Diesel engine idle speed electronic control method