JPH09117001A - Method for detecting internal resistance of secondary battery for electric automobile and output meter of electric automobile employing it - Google Patents

Method for detecting internal resistance of secondary battery for electric automobile and output meter of electric automobile employing it

Info

Publication number
JPH09117001A
JPH09117001A JP7264094A JP26409495A JPH09117001A JP H09117001 A JPH09117001 A JP H09117001A JP 7264094 A JP7264094 A JP 7264094A JP 26409495 A JP26409495 A JP 26409495A JP H09117001 A JPH09117001 A JP H09117001A
Authority
JP
Japan
Prior art keywords
battery
internal resistance
secondary battery
voltage
electric vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7264094A
Other languages
Japanese (ja)
Other versions
JP3642092B2 (en
Inventor
Yasuhiko Osawa
康彦 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP26409495A priority Critical patent/JP3642092B2/en
Publication of JPH09117001A publication Critical patent/JPH09117001A/en
Application granted granted Critical
Publication of JP3642092B2 publication Critical patent/JP3642092B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a method for measuring the internal resistance of a battery without feeding a current thereto even during constant speed running by determining the internal resistance according to a first parameter dependent on the battery temperature, a second parameter dependent on the battery temperature and voltage, and a third parameter dependent on the battery temperature, voltage and deterioration of the battery. SOLUTION: Battery temperature, battery voltage and deterioration of the battery are detected and the internal resistance of the battery is determined according to a first parameter dependent only on the battery temperature, a second parameter dependent on the battery temperature and battery voltage, and a third parameter dependent on the battery temperature, battery voltage and deterioration of the battery. Deterioration of the battery is determined based on a parameter of deterioration of the battery, i.e., the total sum of accumulated charged electricity. Actual internal resistance is measured at a constant interval and the accumulated charged electricity is corrected in accordance with the deterioration of the battery. According to the method, internal resistance of the battery can measured without feeding an current thereto even during constant speed running.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】 本発明は、電気自動車用二
次電池の内部抵抗検出法とそれを用いた出力計に関す
る。
TECHNICAL FIELD The present invention relates to an internal resistance detection method for a secondary battery for an electric vehicle and an output meter using the same.

【0002】[0002]

【従来の技術】 電気自動車は、まだ技術的に完成され
ているわけではなく開発段階にあるといえる。現状、要
求性能を充分に満たす電池の開発が大きな課題であり新
型電池の研究が活発に行なわれている。従来のガソリン
車と同等以上の動力性能を出すのは簡単でなくとも、環
境・エネルギー問題の観点からは利点が大きいので電気
自動車を何とか実用化していきたい。そのためには電池
を上手に使いこなし、電気自動車を乗員にとって便利
に、快適に、そして安全に走行できるようにする必要が
ある。この観点からの電気自動車の性能を決める重要な
電池パラメーターとして電池の内部抵抗がある。電池の
内部抵抗は、低温時や寿命末期の電気自動車の動力性能
を支配するのみならず、電池の発熱、回生、容量見積や
充放電エネルギー効率に関わる。電気自動車が走行中に
この内部抵抗を見積るためには、従来は鉛酸電池やニッ
カド電池向けであるが、電流値を二点以上変えて電池の
端子電圧を測定し、その傾きから内部抵抗、切辺から開
放電圧や最大出力(内部抵抗と開放電圧から見積れる)
を見積もるという方法が用いられていた。その例として
特開平6−174806号公報があげられる。また、別
の方法として、外部の抵抗に電流を流しその時の端子電
圧の変化から見積る方法も提案されている(特開平5−
172913号公報)。
2. Description of the Related Art It can be said that an electric vehicle is in a development stage, not technically completed yet. At present, the development of batteries that sufficiently satisfy the required performance is a major issue, and research on new-type batteries is being actively conducted. Even if it is not easy to achieve power performance equal to or better than that of a conventional gasoline vehicle, there are significant advantages from the perspective of environmental and energy issues, so we would like to put an electric vehicle into practical use. For that purpose, it is necessary to make good use of the batteries so that the electric vehicle can be conveniently, comfortably, and safely run by passengers. The internal resistance of the battery is an important battery parameter that determines the performance of the electric vehicle from this viewpoint. The internal resistance of the battery not only controls the power performance of the electric vehicle at low temperatures and at the end of its life, but also relates to heat generation, regeneration, capacity estimation, and charge / discharge energy efficiency of the battery. In order to estimate this internal resistance while an electric vehicle is running, conventionally it is for lead-acid batteries or NiCd batteries, but the terminal voltage of the battery is measured by changing the current value by two or more points, and the internal resistance is calculated from the slope. Open voltage and maximum output from the cut edge (estimated from internal resistance and open voltage)
The method of estimating was used. As an example thereof, there is JP-A-6-174806. Further, as another method, a method has been proposed in which a current is passed through an external resistance and estimation is performed from the change in the terminal voltage at that time (Japanese Patent Laid-Open No. HEI 5-1993).
172913).

【0003】[0003]

【発明が解決しようとする課題】 これらの従来例で
は、電池に実際に電流を流さないと測定できないこと
と、電気自動車が定速走行している時には電流値があま
り変化しないので内部抵抗を見積りにくいという問題が
あった。
In these conventional examples, the internal resistance is estimated because the current value does not change so much when the electric vehicle is running at a constant speed because it cannot be measured without actually passing a current through the battery. There was a problem that it was difficult.

【0004】本発明は前記のような問題を解決して、電
気自動車用二次電池の内部抵抗検出法とその方法を用い
た電気自動車用の出力計を提供することを目的とするも
のである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for detecting the internal resistance of a secondary battery for an electric vehicle and an output meter for an electric vehicle using the method by solving the above problems. .

【0005】[0005]

【課題を解決するための手段】 以上のような問題を解
決するために鋭意検討した結果本発明に至った。本発明
の電気自動車用非水二次電池の内部抵抗検出法は、電池
温度,電池電圧,劣化状態を検出し、電池温度のみに依
存した第一の関数と、電池温度と電圧に依存した第二の
関数と、電池温度電池電圧及び電池の劣化状態に依存し
た第三の関数に基づいて内部抵抗を求めるようにしたこ
とを第一の特徴とする。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present invention has been achieved. An internal resistance detection method for a non-aqueous secondary battery for an electric vehicle according to the present invention detects a battery temperature, a battery voltage, and a deterioration state, and a first function that depends only on the battery temperature and a first function that depends on the battery temperature and the voltage. The first feature is that the internal resistance is obtained based on the second function and the third function depending on the battery temperature, the battery voltage, and the deterioration state of the battery.

【0006】また、本発明は前述の第一の特徴に加え
て、電池の劣化状態を累積充電電気量の総和を検出して
これに基づいて定めることを第二の特徴とする。
Further, in addition to the above-mentioned first characteristic, the present invention has a second characteristic that the deterioration state of the battery is detected based on the total sum of the accumulated charge electricity amount and is determined based on this.

【0007】また、本発明は、前述の第一の特徴に加え
て、第三の関数が電池温度及び電池電圧に依存した第四
の関数に劣化状態を表すパラメーターを乗算して求める
ことを特徴とする。
In addition to the above-mentioned first characteristic, the present invention is characterized in that the third function is obtained by multiplying a fourth function dependent on the battery temperature and the battery voltage by a parameter representing a deterioration state. And

【0008】また、本発明は、一定期間ごとに実際に内
部抵抗を測定して電池の劣化状態のパラメーターである
累積充電電気量をそれに合わせて修正すことを第四の特
徴とする。
A fourth feature of the present invention is that the internal resistance is actually measured at regular intervals and the accumulated charge quantity, which is a parameter of the deterioration state of the battery, is corrected accordingly.

【0009】また、本発明では、電気自動車用非水二次
電池がリチウムイオン電池であることを第五の特徴とす
る。
A fifth feature of the present invention is that the non-aqueous secondary battery for an electric vehicle is a lithium ion battery.

【0010】更に、本発明の電気自動車用出力計は、そ
の時点で実現可能な最大出力とその時点での出力の両方
あるいはこれらの差を表示するものであり、その時点で
可能な最大出力の計算に前述の第一の特徴の方法で検出
した内部抵抗を用いることを特徴とする。
Further, the output meter for an electric vehicle of the present invention displays both the maximum output that can be realized at that time and the output at that time, or the difference between them, and the maximum output that can be obtained at that time is displayed. The internal resistance detected by the method of the above-mentioned first characteristic is used for the calculation.

【0011】[0011]

【発明の実施の形態】以下実施の形態により本発明を更
に具体的に説明する。リチウムイオン電池の内部抵抗に
ついて交流インピーダンス法で詳細に検討した結果、内
部抵抗は図1に示すように近似的にそれぞれ溶液抵抗+
集電体抵抗+端子抵抗などの高周波数でも残る成分で温
度のみの関数で電池電圧や電池の劣化状態に依存しない
因子R1、温度と電池電圧に依存するが電池の劣化状態
によらない因子R2、電池温度,電池電圧,電池の劣化
状態に依存する因子R3の3つに分解できることがわか
った。因子R2とR3の意味はまだ不確かな面もある
が、R2は正極の反応抵抗、R3は負極の反応抵抗と考
えられる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described more specifically by the following embodiments. As a result of detailed examination of the internal resistance of the lithium-ion battery by the AC impedance method, the internal resistances are approximately solution resistance +
A factor R1 that does not depend on the battery voltage or the deterioration state of the battery as a function of only the temperature because it is a component that remains at high frequencies such as current collector resistance + terminal resistance, and a factor R2 that depends on the temperature and the battery voltage but does not depend on the deterioration state of the battery. , And the factor R3, which depends on the battery temperature, the battery voltage, and the deterioration state of the battery. Although the meanings of the factors R2 and R3 are still uncertain, it is considered that R2 is the reaction resistance of the positive electrode and R3 is the reaction resistance of the negative electrode.

【0012】劣化していない電池でのそれぞれの内部抵
抗因子の電池電圧依存性を図2に示す。R2は電池電圧
に緩く依存するが、R3は電池電圧が下がると急激に増
加する特徴を持つ。また、これら内部抵抗因子の温度依
存性は図3(放電状態50%でのデータ)に示すように
これら因子の対数を絶対温度の逆数に対してとプロット
すると右上がりの直線と近似できる。
FIG. 2 shows the battery voltage dependence of each internal resistance factor in the non-degraded battery. R2 has a characteristic that it is loosely dependent on the battery voltage, while R3 has a characteristic that it rapidly increases as the battery voltage decreases. Further, the temperature dependence of these internal resistance factors can be approximated to a straight line rising to the right by plotting the logarithm of these factors with respect to the reciprocal of absolute temperature as shown in FIG. 3 (data at a discharge state of 50%).

【0013】この電池が劣化すると、放電容量が減少
し、内部抵抗が増大するが、それはここでのR3の因子
の増加が支配的であり他の因子はほとんど変化していな
い。劣化電池のR3因子を図3と同様にプロットをする
と同様に直線とみなせて、その勾配は変わらず、直線が
全体的に上(抵抗値が大きい方向)へシフトしているだ
けとみなせる。従って、劣化した電池のR3は劣化して
いない電池のそれに一定の劣化状態因子(以後αとお
く)をかけあわせて近似することができる。電池の充放
電を繰り返すとこのαはコンスタントに増加していき、
電池の累積充放電電気量とよい相関がある。電池の雰囲
気温度30℃でのこの関係を図4に示した。このこと
は、電池の累積充電電気量をモニターすれば電池の劣化
状態因子αを見積れ、それから更に劣化電池のR3因子
を見積れることになる。
When this battery deteriorates, the discharge capacity decreases and the internal resistance increases, which is dominated by the increase of the factor of R3 here, and other factors are almost unchanged. When the R3 factor of the deteriorated battery is plotted in the same manner as in FIG. 3, it can be regarded as a straight line, the slope thereof does not change, and it can be regarded that the straight line is entirely shifted upward (direction in which the resistance value is large). Therefore, R3 of the deteriorated battery can be approximated by multiplying it by a constant deterioration state factor (hereinafter referred to as α) to that of the non-deteriorated battery. When the battery is repeatedly charged and discharged, this α constantly increases,
There is a good correlation with the cumulative charge and discharge electricity of the battery. This relationship when the ambient temperature of the battery is 30 ° C. is shown in FIG. This means that if the accumulated charge electricity of the battery is monitored, the deterioration state factor α of the battery can be estimated, and then the R3 factor of the deteriorated battery can be estimated.

【0014】本発明は以上説明してきたことを基にして
おり、図5に示した流れ図のようにして任意の劣化状
態、電圧、温度での電池の内部抵抗を見積ることができ
る。本発明では、それぞれの内部抵抗因子を関数として
定義し、劣化電池のR3因子を第四の関数として定義
し、初期のR3因子を第三の関数として定義する。つま
り、任意の劣化状態、温度、電圧での内部抵抗は(1)
式のように定義できる。 Rt=R1(T)+R2(T,E)+R4( α,T,E) =R1(T)+R2(T,E)+αR3(T,E) …(1) ここで、Tは温度、Eは電池電圧、Rtは内部抵抗の総
和を表す。
The present invention is based on what has been described above, and it is possible to estimate the internal resistance of a battery at any deterioration state, voltage and temperature as shown in the flow chart of FIG. In the present invention, each internal resistance factor is defined as a function, the R3 factor of a deteriorated battery is defined as a fourth function, and the initial R3 factor is defined as a third function. In other words, the internal resistance at any deterioration state, temperature, and voltage is (1)
It can be defined like an expression. Rt = R1 (T) + R2 (T, E) + R4 (α, T, E) = R1 (T) + R2 (T, E) + αR3 (T, E) (1) where T is Temperature, E is the battery voltage, and Rt is the total internal resistance.

【0015】電気自動車の電池は時には室温より高い温
度で使われると考えられる。その場合には電池の劣化も
いくらか増大し内部抵抗も増大するので、一定期間ごと
に実際に内部抵抗を測定していわば有効累積充電電気量
を求め、そこからあとはその値に充電電気量を加えてい
くことにして、この30℃での関係を用いて電池の劣化
状態因子を見積り、更に劣化状態でのR3を見積れば、
電池が劣化した状態でも、電池電圧と電池温度とを測定
すれば、あらかじめR1とR2の電池温度、電池電圧依
存性を表か近似式にしておくことによって、電流を流す
ことなしに電池の内部抵抗を算出できる。
It is believed that batteries in electric vehicles are sometimes used at temperatures above room temperature. In that case, the deterioration of the battery will increase somewhat and the internal resistance will also increase, so if the internal resistance is actually measured at regular intervals, the effective accumulated charge amount is calculated, and from that value, the charge amount is calculated. In addition, by estimating the deterioration state factor of the battery using this relationship at 30 ° C. and further estimating R3 in the deterioration state,
Even when the battery is deteriorated, if the battery voltage and the battery temperature are measured, the battery temperature and the battery voltage dependency of R1 and R2 are set in advance in a table or an approximate expression, so that the internal condition of the battery can be maintained without passing a current. The resistance can be calculated.

【0016】この方法を実施するための装置のブロック
図を図6に示した。記憶装置ROMには、適当な温度範
囲及び使用電圧範囲でのR1,R2,R3のデータと劣
化状態因子αと有効充電電気量の関係を格納しておく。
記憶装置RAMは累積充電電気量(Qt)と有効累積充
電電気量(Qt,eff)のデータを格納し、電池の充
電時には電流測定装置で電流を読んでそれを時間で積分
して有効充電電気量(Qt,eff)を随時更新してい
く。内部抵抗を算出する時には、RAMの有効充電電気
量(Qt,eff)の値を演算装置(CPU)に読み込
み、その値に対応する劣化状態因子αの値をROMから
読み込む。続いて、電池電圧測定装置で電池電圧を読
み、電池温度測定装置で電池温度を読み込んで、読み込
んだ電池電圧と電池温度に対応したR1,R2,R3の
値をROMから読み込んで(1)式に従って内部抵抗を
計算する。読み込む電池電圧の値は、開回路電圧が好ま
しいが、あまり電流値が大きいときでなければさしつか
えないので、電気自動車での普通の定速走行時にも内部
抵抗を見積ることができる。
A block diagram of an apparatus for carrying out this method is shown in FIG. The storage device ROM stores the data of R1, R2, and R3, the deterioration state factor α, and the effective charge electricity amount in an appropriate temperature range and operating voltage range.
The memory device RAM stores the data of the accumulated charge electricity amount (Qt) and the effective accumulated charge electricity amount (Qt, eff). When the battery is charged, the current is read by the current measuring device, and the current is integrated with time to calculate the effective charge electricity amount. The quantity (Qt, eff) is updated at any time. When calculating the internal resistance, the value of the effective charge electricity amount (Qt, eff) of the RAM is read into the arithmetic unit (CPU), and the value of the deterioration state factor α corresponding to the value is read from the ROM. Next, the battery voltage measuring device reads the battery voltage, the battery temperature measuring device reads the battery temperature, the read battery voltage and the values of R1, R2, and R3 corresponding to the battery temperature are read from the ROM, and the formula (1) is used. Calculate the internal resistance according to. The value of the battery voltage to be read is preferably an open circuit voltage, but since it can be used only when the current value is too large, the internal resistance can be estimated even when the electric vehicle is traveling at a constant speed.

【0017】次にこの方法を用いて算出した内部抵抗を
使っての現時点での電気自動車の可能な最大出力の見積
方法について説明する。電池の最大出力は、電池の電圧
下限がない場合には、電池の開回路電圧をVocv、内
部抵抗をRtとすると、Vocv2/4Rtである。耐久
性の観点から使用電圧下限を設定した方が良いリチウム
イオン電池のような場合には、電圧下限をVoとする
と、Vocv/2>VoのときはVocv2/4Rtであ
るが、Vocv/2<Voのときは可能最大電池出力は
Vo(Vocv−Vo)/Rtとなる(内部抵抗による
電圧降下で端子電圧がVoになるというところで)。電
気自動車の現時点での可能最大出力は、モーター制御装
置とモーターの効率を考慮して求めることができる。こ
の値と、現時点での使用出力の両方、又はそれらの差を
ドライバーに提示できれば、寒冷地での始動時や、電池
寿命末期での低温始動時など電池の内部抵抗が大きいた
めに電気自動車の出力不足が懸念される場合にも運転の
参考として役立つ。
Next, a method of estimating the maximum possible output of the electric vehicle at the present time using the internal resistance calculated using this method will be described. The maximum output of the battery is Vocv 2 / 4Rt when the open circuit voltage of the battery is Vocv and the internal resistance is Rt when there is no lower limit of the battery voltage. In the case of a lithium-ion battery in which it is better to set the lower limit of operating voltage from the viewpoint of durability, if the lower limit of voltage is Vo, Vocv 2 / 4Rt when Vocv / 2> Vo, but Vocv / 2 When <Vo, the maximum possible battery output is Vo (Vocv-Vo) / Rt (where the terminal voltage becomes Vo due to the voltage drop due to the internal resistance). The maximum possible current output of an electric vehicle can be determined by considering the efficiency of the motor controller and the motor. If both this value and the output currently used, or the difference between them, can be presented to the driver, the internal resistance of the battery will be large due to the large internal resistance of the battery, such as when starting in cold regions or when starting cold at the end of the battery life. It is also useful as a reference for driving when there is concern about insufficient output.

【0018】[0018]

【発明の効果】 以上説明したように本発明によれば、
電気自動車用非水二次電池の内部抵抗を、電池の累積充
電電気量と電池温度、電池電圧を測定することによって
電池に電流を流すことなしに算出できる。また、電気自
動車が定速走行中で直接電池の内部抵抗を測定しずらい
場合にも同様にして問題なく算出できる。この内部抵抗
算出法を用いて、電気自動車の現時点での可能最大出力
を算出でき、現時点での出力とこの可能最大出力の両方
あるいはそれらの差をドライバーに運転の目安として提
示することができ、電気自動車の電池が寿命末期のとき
や、寿命末期でなくとも冬場や寒冷地での始動時など電
池温度が非常に低い時にも運転者がその状態で、高速道
路への進入や追い越し、脇道から本道への進入などの際
の目安となり運転者の不安感を感じ、運転しやすくする
ことができるので産業上寄与するところ大である。
According to the present invention as described above,
The internal resistance of a non-aqueous secondary battery for an electric vehicle can be calculated by measuring the cumulative amount of charge electricity of the battery, the battery temperature, and the battery voltage without passing a current through the battery. Further, when the electric vehicle is running at a constant speed and it is difficult to directly measure the internal resistance of the battery, the same calculation can be performed without any problem. Using this internal resistance calculation method, it is possible to calculate the maximum possible output of the electric vehicle at the present time, and it is possible to present both the output at the present time and the maximum possible output or a difference between them to the driver as a guide for driving, Even when the battery of an electric vehicle is at the end of its life, or when the battery temperature is very low even when it is not at the end of its life, such as when starting in winter or in cold regions, the driver can enter the highway, overtake, or drive off the side road. This is a great contribution to the industry as it can be used as a guide when entering the main road and makes the driver feel uneasy and makes it easier to drive.

【図面の簡単な説明】[Brief description of the drawings]

【図1】リチウムイオン電池のCole−Coleプロ
ットの模式図。
FIG. 1 is a schematic view of a Cole-Cole plot of a lithium ion battery.

【図2】リチウムイオン電池の内部抵抗因子の電池電圧
依存性を示す図。
FIG. 2 is a diagram showing battery voltage dependence of an internal resistance factor of a lithium ion battery.

【図3】リチウムイオン電池の内部抵抗因子の温度依存
性を示す図。
FIG. 3 is a diagram showing temperature dependence of an internal resistance factor of a lithium ion battery.

【図4】リチウムイオン電池の劣化状態因子と累積充電
電気量の関係を示す図。
FIG. 4 is a diagram showing a relationship between a deterioration state factor of a lithium-ion battery and accumulated charge electricity.

【図5】本発明により内部抵抗を算出するための流れ
図。
FIG. 5 is a flow chart for calculating internal resistance according to the present invention.

【図6】本発明により内部抵抗を算出するための装置の
実施例を示す図。
FIG. 6 shows an embodiment of an apparatus for calculating internal resistance according to the present invention.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 電気自動車用二次電池の内部抵抗検出法
において、電池温度、電池電圧、劣化状態を検出し、電
池温度のみに依存した第一の関数と、電池温度と電圧に
依存した第二の関数と、電池温度、電池電圧及び電池の
劣化状態に依存した第三の関数に基づいて内部抵抗を求
めるようにしたことを特徴とした電気自動車用二次電池
の内部抵抗検出法。
1. An internal resistance detection method for a secondary battery for an electric vehicle, which detects a battery temperature, a battery voltage, and a deterioration state, and a first function that depends only on the battery temperature and a first function that depends on the battery temperature and the voltage. An internal resistance detecting method for a secondary battery for an electric vehicle, characterized in that the internal resistance is obtained based on a second function and a third function depending on a battery temperature, a battery voltage and a deterioration state of the battery.
【請求項2】 請求項1記載の自動車用二次電池の内部
抵抗検出法において、電池の劣化状態は累積充電電気量
の総和を検出してこれに基づいて定めることを特徴とし
た電気自動車用二次電池の内部抵抗検出法。
2. The method for detecting the internal resistance of a secondary battery for an automobile according to claim 1, wherein the deterioration state of the battery is determined based on the total sum of accumulated charge electricity and is determined based on this. Method for detecting internal resistance of secondary battery.
【請求項3】 請求項1記載の自動車用二次電池の内部
抵抗検出法において、第三の関数は電池温度及び電池電
圧に依存した第四の関数に劣化状態を表すパラメーター
を乗算して求めることを特徴とした電気自動車用二次電
池の内部抵検出法。
3. The method for detecting internal resistance of a secondary battery for an automobile according to claim 1, wherein the third function is obtained by multiplying a fourth function dependent on battery temperature and battery voltage by a parameter representing a deterioration state. An internal resistance detection method for a secondary battery for an electric vehicle, which is characterized by the above.
【請求項4】 請求項2記載の自動車用二次電池の内部
抵抗検出法において、一定期間ごとに実際に内部抵抗を
測定して電池の劣化状態のパラメーターとしての累積充
電電気量を修正することを特徴とした電気自動車用二次
電池の内部抵検出法。
4. The method for detecting an internal resistance of a secondary battery for an automobile according to claim 2, wherein the internal resistance is actually measured at regular intervals to correct the accumulated charge electricity amount as a parameter of the deterioration state of the battery. Internal resistance detection method for secondary batteries for electric vehicles.
【請求項5】 請求項1記載の自動車用二次電池の内部
抵抗検出法において、二次電池がリチウムイオン電池で
あることを特徴とした電気自動車用二次電池の内部抵検
出法。
5. The method for detecting the internal resistance of a secondary battery for an automobile according to claim 1, wherein the secondary battery is a lithium ion battery.
【請求項6】 その時点で実現可能な最大出力とその時
点での出力の両方あるいはこれらの差を表示する電気自
動車の出力計において、その時点で可能な最大出力の計
算に請求項1記載の電気自動車用二次電池の内部抵検出
法で検出した内部抵抗を用いることを特徴とした電気自
動車の出力計。
6. The electric power meter of an electric vehicle displaying both the maximum output that can be realized at that time and the output at that time, or a difference between them, for calculating the maximum output that can be output at that time. An output meter of an electric vehicle characterized by using an internal resistance detected by an internal resistance detection method of a secondary battery for an electric vehicle.
JP26409495A 1995-10-12 1995-10-12 Internal resistance detection system for secondary battery for electric vehicle and internal resistance detection method using the same Expired - Fee Related JP3642092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26409495A JP3642092B2 (en) 1995-10-12 1995-10-12 Internal resistance detection system for secondary battery for electric vehicle and internal resistance detection method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26409495A JP3642092B2 (en) 1995-10-12 1995-10-12 Internal resistance detection system for secondary battery for electric vehicle and internal resistance detection method using the same

Publications (2)

Publication Number Publication Date
JPH09117001A true JPH09117001A (en) 1997-05-02
JP3642092B2 JP3642092B2 (en) 2005-04-27

Family

ID=17398433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26409495A Expired - Fee Related JP3642092B2 (en) 1995-10-12 1995-10-12 Internal resistance detection system for secondary battery for electric vehicle and internal resistance detection method using the same

Country Status (1)

Country Link
JP (1) JP3642092B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004053365A (en) * 2002-07-18 2004-02-19 Nissan Motor Co Ltd Earth detector
JP2004152755A (en) * 2002-10-11 2004-05-27 Canon Inc Internal resistance detection method of secondary battery, internal resistance detecting device, internal resistance detection program, and medium storing the program
JP2004311257A (en) * 2003-04-08 2004-11-04 Mitsubishi Motors Corp Internal impedance estimation device of battery
WO2008001568A1 (en) * 2006-06-30 2008-01-03 Mitsui Mining & Smelting Co., Ltd. Rechargeable battery with nonaqueous electrolyte
JP2008089447A (en) * 2006-10-03 2008-04-17 Nissan Motor Co Ltd Device for estimating internal resistance of battery
EP2472636A2 (en) 2003-12-15 2012-07-04 Mitsubishi Chemical Corporation Nonaqueous-Electrolyte Secondary Battery
WO2014046179A1 (en) * 2012-09-20 2014-03-27 積水化学工業株式会社 Accumulator operation control device, accumulator operation control method, and program
CN108614218A (en) * 2018-04-19 2018-10-02 中国科学院广州能源研究所 A kind of continuous method for measuring lithium ion battery dynamic internal resistance
CN109425834A (en) * 2017-08-24 2019-03-05 丰田自动车株式会社 Impedance estimating device
JP2019039764A (en) * 2017-08-24 2019-03-14 トヨタ自動車株式会社 Impedance estimating device
JP2019039763A (en) * 2017-08-24 2019-03-14 トヨタ自動車株式会社 Temperature estimating device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101610530B1 (en) 2014-10-24 2016-04-07 현대자동차주식회사 Method for measuring internal resistance of battery
RU2698473C1 (en) * 2018-08-21 2019-08-28 Тойота Дзидося Кабусики Кайся Equipment for impedance estimation

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004053365A (en) * 2002-07-18 2004-02-19 Nissan Motor Co Ltd Earth detector
JP2004152755A (en) * 2002-10-11 2004-05-27 Canon Inc Internal resistance detection method of secondary battery, internal resistance detecting device, internal resistance detection program, and medium storing the program
JP2004311257A (en) * 2003-04-08 2004-11-04 Mitsubishi Motors Corp Internal impedance estimation device of battery
EP2472639A1 (en) 2003-12-15 2012-07-04 Mitsubishi Chemical Corporation Nonaqueous-electrolyte secondary battery
EP2472636A2 (en) 2003-12-15 2012-07-04 Mitsubishi Chemical Corporation Nonaqueous-Electrolyte Secondary Battery
EP2472637A2 (en) 2003-12-15 2012-07-04 Mitsubishi Chemical Corporation Nonaqueous-electrolyte secondary battery
EP2472638A2 (en) 2003-12-15 2012-07-04 Mitsubishi Chemical Corporation Nonaqueous-Electrolyte Secondary Battery
WO2008001568A1 (en) * 2006-06-30 2008-01-03 Mitsui Mining & Smelting Co., Ltd. Rechargeable battery with nonaqueous electrolyte
JP2008089447A (en) * 2006-10-03 2008-04-17 Nissan Motor Co Ltd Device for estimating internal resistance of battery
WO2014046179A1 (en) * 2012-09-20 2014-03-27 積水化学工業株式会社 Accumulator operation control device, accumulator operation control method, and program
JP5731717B2 (en) * 2012-09-20 2015-06-10 積水化学工業株式会社 Storage battery operation control device, storage battery operation control method, and program
CN109425834A (en) * 2017-08-24 2019-03-05 丰田自动车株式会社 Impedance estimating device
JP2019039764A (en) * 2017-08-24 2019-03-14 トヨタ自動車株式会社 Impedance estimating device
JP2019039763A (en) * 2017-08-24 2019-03-14 トヨタ自動車株式会社 Temperature estimating device
US11121386B2 (en) 2017-08-24 2021-09-14 Toyota Jidosha Kabushiki Kaisha Temperature estimating apparatus
CN108614218A (en) * 2018-04-19 2018-10-02 中国科学院广州能源研究所 A kind of continuous method for measuring lithium ion battery dynamic internal resistance

Also Published As

Publication number Publication date
JP3642092B2 (en) 2005-04-27

Similar Documents

Publication Publication Date Title
US10802080B2 (en) Battery system in vehicle and aging deterioration estimation method for battery
JP3395694B2 (en) Calculation method for battery capacity deterioration of secondary battery
CN110549876B (en) Energy output control method and device and hydrogen fuel hybrid electric vehicle
EP1065511B1 (en) Battery capacity detection system
JP3659772B2 (en) Battery deterioration judgment device
US6359419B1 (en) Quasi-adaptive method for determining a battery&#39;s state of charge
JP4057276B2 (en) Method and apparatus for determining the state of a secondary storage battery mounted on a vehicle
US8529125B2 (en) Dynamic estimation of cell core temperature by simple external measurements
US7646166B2 (en) Method and apparatus for modeling diffusion in an electrochemical system
US20120112754A1 (en) Apparatus quantifying state-of-charge of vehicle-mounted rechargeable battery
US20150197159A1 (en) Impedance based battery parameter estimation
US20200049772A1 (en) Methods to determine battery cell voltage relaxation time based on cell usage history and temperature
JP3642092B2 (en) Internal resistance detection system for secondary battery for electric vehicle and internal resistance detection method using the same
JP2007323999A (en) Battery control device of automobile
JP5040733B2 (en) Method for estimating chargeable / dischargeable power of battery
JP5644190B2 (en) Battery state estimation device and battery information notification device
US20180162232A1 (en) A method and system for optimizing the lifetime of an energy storage system
US10641836B1 (en) Battery state of health estimation using open circuit voltage slope
JP2016125932A (en) Deterioration state estimation device for secondary battery
WO2015011773A1 (en) Method and apparatus for diagnosing deterioration of secondary battery, and charging system
JPWO2009118904A1 (en) Battery state detection system and automobile equipped with the same
JP3376804B2 (en) Calculation device for maximum charge / discharge power of batteries
JP3966810B2 (en) Storage battery full charge determination device, remaining capacity estimation device, full charge determination method, and remaining capacity estimation method
JP2001224103A (en) Hybrid vehicle control device
JP2004325263A (en) Self-discharge amount detection device of battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees