JPH09116125A - Soi wafer and its manufacture - Google Patents

Soi wafer and its manufacture

Info

Publication number
JPH09116125A
JPH09116125A JP20822896A JP20822896A JPH09116125A JP H09116125 A JPH09116125 A JP H09116125A JP 20822896 A JP20822896 A JP 20822896A JP 20822896 A JP20822896 A JP 20822896A JP H09116125 A JPH09116125 A JP H09116125A
Authority
JP
Japan
Prior art keywords
wafer
bonding
wafers
bonded
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20822896A
Other languages
Japanese (ja)
Other versions
JP2930194B2 (en
Inventor
Koji Aga
浩司 阿賀
Kiyoshi Mitani
清 三谷
Masayasu Katayama
正健 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP20822896A priority Critical patent/JP2930194B2/en
Publication of JPH09116125A publication Critical patent/JPH09116125A/en
Application granted granted Critical
Publication of JP2930194B2 publication Critical patent/JP2930194B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Element Separation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a firmly bonded SOI wafer wherein no peeling is generated in the case of manufacturing the very thin SOI wafer and also in the course of creating a semiconductor device out of this SOI wafer. SOLUTION: An SOI wafer obtained by a manufacturing method comprising a process for forming an oxide film on the mirror finished surface of a first silicon wafer of two silicon wafers with mirror finished surfaces, a process for forming a heavily doped layer on the mirror finished surface of a second wafer, a process for joining thereafter the two wafers in contact with each other, and a process for applying a heat treatment to the joined wafers to bond firmly to each other, wherein the joining process is performed after polishing the surface to be joined of this second wafer with the formed heavily doped layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体ウェーハの貼
り合わせ技術に関するものであり、特にSOI(silico
n on insulator)ウェーハ及びその製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bonding technique for semiconductor wafers, and particularly to SOI (silico)
Non-insulator) wafer and its manufacturing method.

【0002】[0002]

【従来の技術】鏡面研磨された2枚のシリコンウェー
ハ、あるいは少なくとも、その一方にシリコン酸化膜を
形成せしめたシリコンウェーハの鏡面同士を清浄な条件
下で接触させると、接着剤等を用いなくとも、ウェーハ
同士は接着する(以後、この状態を接合と称す)。しか
しこの接合状態は完全なものではないので、その後、こ
れらに熱処理を加えると、ウェーハ同士は強固に結合す
る(以後、この状態を結合と称す)。この後者の、少な
くとも一方のウェーハに表面を酸化した2枚のシリコン
ウェーハを、その酸化膜を介して結合させたものがSO
Iウェーハである。このようなSOIウェーハは、ウェ
ーハ間に接着剤等の異種物質を介在させる必要がないた
め、その後の高温処理や各種化学処理が自由にでき、ま
たpn接合や誘電体埋め込みも簡便にできるという利点
を有する。さらに平坦度、清浄度等の薄膜化技術の向上
とあいまって、その実用化が注目されている。
2. Description of the Related Art Two mirror-polished silicon wafers, or at least one of the silicon wafers having a silicon oxide film formed on one of them is brought into contact with each other under clean conditions without using an adhesive agent. , The wafers are bonded to each other (hereinafter, this state is referred to as bonding). However, since this bonding state is not perfect, the wafers are strongly bonded to each other by heat treatment thereafter (this state is hereinafter referred to as bonding). In this latter case, two silicon wafers whose surfaces are oxidized to at least one of the wafers are bonded to each other through the oxide film.
I wafer. In such an SOI wafer, it is not necessary to interpose a different substance such as an adhesive between the wafers, so that subsequent high temperature treatment and various chemical treatments can be freely performed, and pn junction and dielectric filling can be easily performed. Have. Further, along with improvement of thinning technology such as flatness and cleanliness, its practical application is drawing attention.

【0003】特に近年の半導体デバイスの高集積度化、
高速度化により、SOIウェーハの活性層は薄膜化の傾
向にあり、例えば半導体素子を形成するための活性層を
0.1μmレベルとするSOIウェーハが要求されるよ
うになっている。このような極薄のSOIウェーハを製
造するには、従来の研削や研磨による機械的な加工によ
る方法では不可能で、その仕上げ研磨方法としては、例
えば不純物によるエッチストップ法(K.Imai,Jpn.J.App
l.Phys.,30(1991)1154) や、ドライエッチング法(特開
平5−335395号公報参照)等が挙げられる。
Particularly, in recent years, high integration of semiconductor devices,
With the increase in speed, the active layer of an SOI wafer tends to be thinned, and for example, an SOI wafer having an active layer of 0.1 μm level for forming a semiconductor element is required. It is impossible to manufacture such an ultra-thin SOI wafer by a conventional mechanical processing method such as grinding or polishing. As a finish polishing method, for example, an etch stop method by impurities (K.Imai, Jpn. .J.App
L. Phys., 30 (1991) 1154), dry etching method (see Japanese Patent Laid-Open No. 5-335395), and the like.

【0004】ところで不純物によるエッチストップ法を
図3で説明すると、まず、(A)通常の厚さ600〜1
000μmの支持体となる第一のシリコンウェーハ(以
下、これをベースウェーハとする)の鏡面側に、厚さが
1μm以下の酸化膜を形成せしめ、一方、半導体素子形
成の活性層となる厚さ600〜800μmの第二のシリ
コンウェーハ(以下これをボンドウェーハとする)の鏡
面側には、B(ホウ素)不純物を熱拡散法やイオン注入
法により導入し、厚さが約0.5μmで濃度が1020cm
-3前後の不純物の高濃度層を形成させる。次に、(B)
この前処理を施したそれぞれのウェーハの鏡面同士を室
温の清浄な雰囲気下で重ね合わせて接合し、酸素雰囲気
下において700〜1000℃で約1時間、結合のため
の熱処理を行う。この熱処理によって不純物はボンドウ
ェーハ中を拡散し、不純物高濃度層の厚さが増すと同時
に、その濃度はいくぶん低下する。(C)この結合熱処
理により得られた結合ウェーハ(SOIウェーハの先駆
体)の、ボンドウェーハ側について、その厚さが5〜1
0μmとなるまで、機械的な研削や研磨によって除去し
薄層化する。次に、(D)エッチング液としてエチレン
ジアミンピロカテコール水(エチレンジアミン 3400c
c、ピロカテコール 600g、水 1600cc)により100
〜110℃の温度で処理すると、ボンドウェーハにおけ
る不純物濃度の低い部分は速やかにエッチングが進行し
除去されるが、不純物濃度が高くなるにつれエッチング
速度は遅くなり、ある濃度以上になるとエッチングはス
トップする。この不純物によるエッチストップ法により
ボンドウェーハ側を約0.5μm厚さの不純物濃度層と
なるまで薄膜化させることができる。次に、(E)この
状態でボンドウェーハ側を熱酸化すると、不純物はその
表面で成長する酸化膜に取り込まれ、その条件を制御す
ることによって、不純物濃度が1/10〜1/20以下
に低下し、その厚さが0.1〜0.2μmのシリコン薄
層を、前記結合用の酸化膜と、前記表面に成長させた酸
化膜の間に形成させることができ、(F)この表面酸化
膜を希フッ酸で除去することにより極薄のSOIウェー
ハが製造される、という方法である。
An etch stop method using impurities will be described with reference to FIG. 3. First, (A) a normal thickness of 600 to 1
An oxide film having a thickness of 1 μm or less is formed on the mirror surface side of a first silicon wafer (hereinafter, referred to as a base wafer) serving as a support of 000 μm, while a thickness serving as an active layer for semiconductor device formation. B (boron) impurities are introduced into the mirror surface side of a second silicon wafer of 600 to 800 μm (hereinafter referred to as a bond wafer) by a thermal diffusion method or an ion implantation method, and the thickness is about 0.5 μm. Is 10 20 cm
-A high concentration layer of impurities around -3 is formed. Next, (B)
The mirror surfaces of the pretreated wafers are superposed and bonded in a clean atmosphere at room temperature, and a heat treatment for bonding is performed in an oxygen atmosphere at 700 to 1000 ° C. for about 1 hour. This heat treatment causes impurities to diffuse in the bond wafer, increasing the thickness of the high impurity concentration layer and at the same time decreasing its concentration to some extent. (C) The thickness of the bonded wafer (precursor of the SOI wafer) obtained by this bonding heat treatment is 5 to 1 on the bond wafer side.
The layer is removed by mechanical grinding or polishing until it becomes 0 μm, and a thin layer is formed. Next, (D) as an etching solution, ethylenediamine pyrocatechol water (ethylenediamine 3400c
c, 600 g of pyrocatechol, 1600 cc of water)
When the treatment is carried out at a temperature of up to 110 ° C., the portion of the bond wafer having a low impurity concentration is rapidly etched and removed, but the etching rate becomes slower as the impurity concentration becomes higher, and the etching stops when the concentration exceeds a certain level. . By this etch stop method using impurities, the bond wafer side can be thinned to an impurity concentration layer having a thickness of about 0.5 μm. Next, (E) when the bond wafer side is thermally oxidized in this state, the impurities are taken into the oxide film growing on the surface, and the impurity concentration is reduced to 1/10 to 1/20 or less by controlling the conditions. A thin silicon layer having a reduced thickness of 0.1 to 0.2 μm can be formed between the bonding oxide film and the oxide film grown on the surface, (F) this surface In this method, an ultrathin SOI wafer is manufactured by removing the oxide film with dilute hydrofluoric acid.

【0005】[0005]

【発明が解決しようとする課題】しかしこのような極薄
のSOIウェーハ製造方法においては、前記SOI層の
薄層化のための機械的な研削や研磨の工程で、また、こ
のSOIウェーハを使用して半導体デバイスを作製する
工程において、結合が不充分で剥離を起こすという問題
がある。例えば、2枚のウェーハを接合し、熱処理工程
を経て結合ウェーハとなった段階で、ボンドウェーハを
通常5〜10μm程度にまで研削研磨する際にウェーハ
間の剥離が生じるものである。特に、鏡面上に高濃度層
を形成したボンドウェーハと、鏡面を酸化したベースウ
ェーハとの結合によって得られた結合ウェーハの場合に
は、未結合部分(これをボイドという)が生じたり、結
合強度が低下し、結合部分が剥離したりするという問題
が往々にして起こった。
However, in such an ultra-thin SOI wafer manufacturing method, this SOI wafer is used in the mechanical grinding and polishing steps for thinning the SOI layer. Then, in the process of manufacturing a semiconductor device, there is a problem that the bond is insufficient and peeling occurs. For example, when two wafers are bonded and a bonded wafer is formed through a heat treatment process, separation between the wafers occurs when the bond wafer is usually ground and polished to about 5 to 10 μm. In particular, in the case of a bonded wafer obtained by bonding a bond wafer with a high-concentration layer formed on the mirror surface to a base wafer with the mirror surface oxidized, an unbonded part (this is called a void) is generated, or the bond strength is increased. Often occurs, and the problem of peeling of the bonded portion often occurs.

【0006】発明者がその原因を追跡した結果、通常の
鏡面ウェーハ同士の接合の場合は、両面の接合面とも鏡
面であり、その表面粗さは、例えばレーザー光散乱強度
を基にしたヘイズレベルで評価すると、検出電圧700
Vでほぼ10bit 程度以下である。この鏡面の一方、ま
たは双方を熱酸化させて互いに接合し、結合熱処理を施
し、SOIウェーハを製造する場合には、良好な結合体
が得られる。しかし、前記BやSb(アンチモン)不純
物の高濃度層を有するウェーハの表面は、熱拡散やイオ
ンインプランテーションを施す際に面荒れを生じてお
り、このような面荒れを持つウェーハを結合しても強固
な結合が得られず、SOI層の薄膜化における研磨工程
や、薄膜化後の半導体デバイス作製工程で、結合部分が
剥離してしまうことがわかった。本発明はこのような問
題点に鑑み、極薄のSOIウェーハの製造時において、
またこのSOIウェーハより半導体デバイスを作製する
過程において、剥離を発生しない、強固に結合したSO
Iウェーハを得ることを目的とする。
As a result of tracing the cause by the inventor, in the case of ordinary bonding of mirror-finished wafers, both bonding surfaces are mirror surfaces, and the surface roughness is, for example, the haze level based on the laser light scattering intensity. When evaluated with, the detection voltage is 700
V is about 10 bits or less. When one or both of these mirror surfaces are thermally oxidized to bond them to each other and a bonding heat treatment is performed to manufacture an SOI wafer, a good bonded body is obtained. However, the surface of the wafer having the high-concentration layer of B or Sb (antimony) impurities is roughened when thermal diffusion or ion implantation is performed. It was found that a strong bond was not obtained, and the bonded portion was peeled off in the polishing step in thinning the SOI layer and the semiconductor device manufacturing step after thinning. In view of these problems, the present invention provides a method for manufacturing an extremely thin SOI wafer,
Further, in the process of manufacturing a semiconductor device from this SOI wafer, a strongly bonded SO that does not cause peeling
The purpose is to obtain an I-wafer.

【0007】[0007]

【課題を解決するための手段】すなわち本発明は、2枚
のシリコン鏡面ウェーハのうち、第一のシリコン鏡面ウ
ェーハの表面に酸化膜を形成し、第二のシリコン鏡面ウ
ェーハに不純物の高濃度層を形成した後、互いに接触さ
せて接合し、これに加熱処理を施して強固に結合させて
なるSOIウェーハにおいて、不純物の高濃度層を形成
した前記第二のウェーハの接合すべき表面を研磨後に、
接合が行われていることを特徴とするSOIウェーハを
要旨とし、またその製造方法をも要旨とするものであ
る。
That is, according to the present invention, an oxide film is formed on the surface of a first silicon mirror surface wafer of two silicon mirror surface wafers, and a high concentration layer of impurities is formed on the second silicon mirror surface wafer. In the SOI wafer obtained by contacting with each other and bonding and subjecting to heat treatment to firmly bond the two, after the surfaces to be bonded of the second wafer having the high-concentration layer of impurities formed are polished, ,
The gist is an SOI wafer characterized by being bonded, and the gist is a manufacturing method thereof.

【0008】以下にこれをさらに詳述する。本発明にお
ける、不純物によるエッチストップ法を用いる極薄のS
OIウェーハの製造方法については、図3によって先に
説明した通りであるので、その詳細は省略する。すなわ
ち、本発明は図3における(A)及び(B)の工程、熱
拡散やイオンインプランテーションにより、鏡面の表面
に不純物の高濃度拡散層を形成したシリコンウェーハ
(ボンドウェーハ)と、鏡面に酸化膜をつけた支持基板
としてのシリコンウェーハ(ベースウェーハ)との鏡面
側同士を接合させるにあたり、前記の拡散処理を施した
ボンドウェーハの接合すべき表面を再度研磨し、然る後
に、この接合されたウェーハに熱処理を施して強固な結
合ウェーハ(SOIウェーハの先駆体)を得ることを特
徴とするものである。次いで、(C)〜(F)の工程順
に従って、この結合ウェーハのボンドウェーハ側を、5
〜10μm厚まで研削研磨した後、この研削研磨面を不
純物によるエッチストップ法によって前記拡散層を表出
させる。さらに熱酸化処理を施すことによって、拡散層
中の不純物濃度を薄めると同時に、SOI層の厚さを規
定し、この薄膜化されたシリコン層の上に生じた酸化膜
をHF処理により除去して、約0.2μm厚さか、それ
以下のシリコン薄膜を有するSOIウェーハを得、これ
によって本発明は完結する。
This will be described in more detail below. In the present invention, ultra-thin S using the impurity-based etch stop method is used.
The method of manufacturing the OI wafer is as described above with reference to FIG. That is, according to the present invention, the steps (A) and (B) in FIG. 3, a silicon wafer (bond wafer) in which a high-concentration diffusion layer of impurities is formed on the surface of the mirror surface by thermal diffusion or ion implantation, and oxidation on the mirror surface are performed. In bonding the mirror surface sides of the silicon wafer (base wafer) as the supporting substrate with the film, the surfaces to be bonded of the bond wafer that has been subjected to the above-mentioned diffusion treatment are polished again, and after that, this bonding is performed. The wafer is heat-treated to obtain a strong bonded wafer (a precursor of the SOI wafer). Then, according to the order of the steps (C) to (F), the bond wafer side of this bonded wafer is set to 5
After grinding and polishing to a thickness of 10 μm, the diffusion layer is exposed on the ground and polished surface by an etch stop method using impurities. By further performing thermal oxidation treatment, the impurity concentration in the diffusion layer is thinned, and at the same time, the thickness of the SOI layer is defined, and the oxide film formed on the thinned silicon layer is removed by HF treatment. An SOI wafer having a silicon thin film having a thickness of about 0.2 μm or less is obtained, which completes the present invention.

【0009】前記不純物拡散処理を施したボンドウェー
ハ表面の面荒れについてであるが、図4はその面荒れ
を、AFM(Atomic Force Microscope:原子間力顕微
鏡)によるRMS値(単位nm)で測定した値と、LS-6
000 (日立電子エンジニアリング社製測定器製品名)を
使用し、レーザー光散乱強度によるヘイズレベル(単位
bit )で測定した値とを比較したものである。その結
果、RMS値とbit 値は、大凡の相関関係を示し、例え
ばp型鏡面シリコンウェーハにB拡散をしたもののRM
S値=0.3nmに対し、そのヘイズレベルは検出電圧
700V(PV=700V)において約54bit の値で
ある。したがって本発明における面荒れの表示は、その
測定が簡便なヘイズレベルを示すbit 値を採用した。な
お、PW/p型は、導電型がp型の鏡面シリコンウェー
ハを、PW/n型は導電型がn型の鏡面シリコンウェー
ハを示し、PWのB拡散/p型、PWのB拡散/n型
は、その各々についてB拡散を行ったものを指してい
る。
Regarding the surface roughness of the bond wafer surface subjected to the impurity diffusion treatment, FIG. 4 shows the surface roughness measured by an RMS value (unit: nm) by an AFM (Atomic Force Microscope). Value and LS-6
000 (Hitachi Denshi Engineering Co., Ltd. measuring instrument product name) is used, and the haze level (unit:
It is a comparison with the value measured in bit). As a result, the RMS value and the bit value show a general correlation, for example, the RM of a p-type mirror-polished silicon wafer with B diffusion.
While the S value is 0.3 nm, the haze level is a value of about 54 bits at the detection voltage of 700V (PV = 700V). Therefore, for the display of the surface roughness in the present invention, the bit value indicating the haze level which is easy to measure is adopted. The PW / p type indicates a specular silicon wafer whose conductivity type is p type, and the PW / n type indicates a specular silicon wafer whose conductivity type is n type. PW B diffusion / p type, PW B diffusion / n The mold refers to the B diffusion for each of them.

【0010】また、前記拡散処理を施したボンドウェー
ハの接合表面の研磨は、公知の鏡面研磨方法によって行
われる。すなわち、その代表的な研磨方法はメカノケミ
カル研磨法で、シリコンウェーハを鏡面化する場合は通
常、1次、2次、仕上げの3段階の研磨を行い、ウェー
ハ表面層の20μm前後が取り代として除去されている
が、本発明の場合はその仕上げ研磨に相当する鏡面研磨
条件で、その取り代も1μm以下で0.1〜0.2μm
のレベルであれば良い。あるいはこの鏡面研磨の代わり
に、精密研削により同等の処理を行ってもよい。図5
は、上記鏡面研磨法による研磨時間とヘイズレベルとの
関係を見たもので、たまたまこの条件の場合は4分以上
の研磨により20bit 以下のヘイズレベルに到達してい
ることがわかる。なお、鏡面研磨後の表面粗さは、鏡面
シリコンウェーハと同様の20bit 以下(図4によれば
AFM測定で0.15nm以下)が好ましいが、これに
限定されるものではなく、また鏡面研磨の取り代の厚さ
は、拡散層が薄くなり過ぎシート抵抗に影響しない程度
に抑えることが必要である。
The polishing of the bonding surface of the bond wafer which has been subjected to the diffusion treatment is performed by a known mirror polishing method. That is, a typical polishing method is a mechanochemical polishing method, and when a silicon wafer is mirror-finished, usually, three-step polishing of primary, secondary, and finishing is performed, and about 20 μm of the wafer surface layer is used as a stock removal. Although removed, in the case of the present invention, the polishing allowance is 0.1 μm or less and 0.1 μm to 0.2 μm under mirror polishing conditions corresponding to the final polishing.
Any level is acceptable. Alternatively, instead of this mirror polishing, an equivalent process may be performed by precision grinding. FIG.
Shows the relationship between the polishing time and the haze level by the mirror polishing method, and it can be seen that, under these conditions, the haze level of 20 bits or less is reached by polishing for 4 minutes or longer. The surface roughness after mirror polishing is preferably 20 bits or less (0.15 nm or less in AFM measurement according to FIG. 4), which is the same as that of a mirror silicon wafer, but is not limited to this. It is necessary to control the thickness of the stock removal to such an extent that the diffusion layer becomes too thin and does not affect the sheet resistance.

【0011】本発明により、不純物高濃度層の形成時に
生じたシリコンウェーハの面荒れがあっても、拡散層の
シート抵抗に影響を与えないようにして、その面荒れ表
面を研磨することによって十分な結合強度を有するSO
Iウェーハを得ることができる。また、本発明は、ベー
スウェーハのみに酸化膜を有するものであるが、酸化膜
を形成させるに際して、ボンドウェーハの不純物拡散層
に影響しない範囲において、酸化膜がボンドウェーハに
あるか、または双方のウェーハにあってもよい。すなわ
ち、B不純物拡散ボンドウェーハにおいて、酸化膜形成
の温度が900℃以下であれば、本発明の適用が可能で
あることが確認されている。
According to the present invention, even if the surface of the silicon wafer is roughened when the high-concentration impurity layer is formed, it is sufficient to polish the roughened surface without affecting the sheet resistance of the diffusion layer. With strong bond strength
I wafer can be obtained. Further, the present invention has an oxide film only on the base wafer, but when forming the oxide film, the oxide film is present on the bond wafer or both of them within a range that does not affect the impurity diffusion layer of the bond wafer. It may be on the wafer. That is, it has been confirmed that the present invention can be applied to a B-impurity-diffused bond wafer as long as the oxide film formation temperature is 900 ° C. or lower.

【0012】[0012]

【発明の実施の形態】次に本発明の実施の形態につい
て、実施例、比較例を挙げて説明する。 (実施例、及び比較例1、比較例2)ボンドウェーハと
して直径125mm、厚さ625μmの鏡面研磨したn
型シリコンウェーハを用意した。この鏡面ウェーハの表
面粗さをLS-6000 (前出測定器)を用い、検出電圧70
0Vで評価したところ、そのヘイズレベルは10bitで
あった。このシリコンウェーハは図1(b)の●印で示
され、これを比較例1とした。同じくこのシリコンウェ
ーハについて、その鏡面へPBF(Poly Boron Film 6M-
10;東京応化工業社製製品名)を塗布し、1050℃、
40分間、N2 雰囲気の条件でこのBをウェーハに拡散
させた後、ウェーハをNH4OH :H2O2:H2O =1:1:8
0の洗浄液(以下SC−1と称す)で洗浄した。その後
HF5%液、1分間浸漬によりこのウェーハのBSG
(Boron SilicateGlass)を除去し、次いで800℃で
5分間、パイロ酸化によりボロンシリサイド除去酸化を
行った。さらにHF5%液、1分間浸漬で酸化膜を除去
した後、ウェーハをSC−1で洗浄し、B拡散ウェーハ
を作製した。このウェーハの接合面である拡散面の表面
粗さを、LS-6000 (前出測定器)を用い、検出電圧70
0Vで測定したところ、67bit で、非常に粗かった。
この状態のボンドウェーハは図1(b)の■印で示さ
れ、これを比較例2のボンドウェーハとした。このウェ
ーハの拡散面のシート抵抗の面内分布を測定した結果、
図2(a)に示すようになり、その平均シート抵抗ρS
は12.35Ω/□であった。
BEST MODE FOR CARRYING OUT THE INVENTION Next, embodiments of the present invention will be described with reference to Examples and Comparative Examples. (Examples and Comparative Examples 1 and 2) As a bond wafer, a mirror-polished n having a diameter of 125 mm and a thickness of 625 μm was used.
A type silicon wafer was prepared. The surface roughness of this mirror-finished wafer was measured with an LS-6000 (measurement instrument described above) using a detection voltage of 70.
When evaluated at 0 V, the haze level was 10 bits. This silicon wafer is indicated by a black circle in FIG. 1 (b), which was designated as Comparative Example 1. Similarly, for this silicon wafer, PBF (Poly Boron Film 6M-
10; product name manufactured by Tokyo Ohka Kogyo Co., Ltd., applied at 1050 ° C.,
After diffusing this B into the wafer for 40 minutes in the N 2 atmosphere, the wafer is NH 4 OH: H 2 O 2 : H 2 O = 1: 1: 8
It was washed with No. 0 washing liquid (hereinafter referred to as SC-1). After that, HF 5% liquid is soaked for 1 minute in BSG of this wafer.
(Boron SilicateGlass) was removed, and then boron silicide removal oxidation was performed by pyrooxidation at 800 ° C. for 5 minutes. Further, the oxide film was removed by immersion in a HF 5% solution for 1 minute, and then the wafer was washed with SC-1 to produce a B diffusion wafer. The surface roughness of the diffusion surface, which is the bonding surface of this wafer, was measured with an LS-6000 (measurement device described above) at a detection voltage of 70
When measured at 0 V, it was 67 bits and was very coarse.
The bond wafer in this state is shown by a black square mark in FIG. 1B, and this was used as a bond wafer of Comparative Example 2. As a result of measuring the in-plane distribution of the sheet resistance of the diffusion surface of this wafer,
The average sheet resistance ρ S is as shown in FIG.
Was 12.35Ω / □.

【0013】このウェーハの拡散面を、荷重150g/c
m2、研磨速度0.02μm/分で5分間、鏡面研磨を施
した(研磨の取り代は0.1μm)後、表面粗さを測定
したところ、20bit であった。このボンドウェーハは
図1(b)の×印で示され、これを実施例相当のボンド
ウェーハとした。また、このウェーハのシート抵抗の面
内分布を再度測定した結果を図2(b)に示す。鏡面研
磨前と比べてほぼ同程度の面内分布及び平均シート抵抗
ρS を有することから、上述の鏡面研磨がウェーハへ与
える影響は小さいことがわかる。なお、図2(a)、
(b)中の+、−で示した領域は、それぞれシート抵抗
が平均シート抵抗ρS より大きい領域、小さい領域であ
ることを示している。
A load of 150 g / c was applied to the diffusion surface of this wafer.
After performing mirror polishing for 5 minutes at m 2 and a polishing rate of 0.02 μm / min (the polishing allowance was 0.1 μm), the surface roughness was measured and found to be 20 bits. This bond wafer is shown by a cross mark in FIG. 1B, and this was used as a bond wafer corresponding to the example. Further, FIG. 2B shows the result of re-measurement of the in-plane distribution of the sheet resistance of this wafer. Since the in-plane distribution and the average sheet resistance ρ S are almost the same as those before the mirror polishing, it is understood that the above-mentioned mirror polishing has a small influence on the wafer. In addition, FIG.
Regions indicated by + and − in (b) indicate regions where the sheet resistance is larger than the average sheet resistance ρ S and smaller than the average sheet resistance ρ S , respectively.

【0014】(比較例3)ボンドウェーハのB拡散工程
において、B拡散とボロンシリサイド除去酸化を一回の
熱処理で行う以外は、比較例2と同一の条件でB拡散ウ
ェーハを作製し、その表面粗さを測定したところ、40
bit であった。これを比較例3のボンドウェーハとし、
図1(b)の□印で示した。
(Comparative Example 3) In the B diffusion step of a bond wafer, a B diffusion wafer was prepared under the same conditions as in Comparative Example 2 except that B diffusion and boron silicide removal oxidation were performed in a single heat treatment. When the roughness was measured, it was 40
It was a bit. This is a bond wafer of Comparative Example 3,
It is shown by a □ mark in FIG.

【0015】直径125mm、厚さ625μmのp型シ
リコンウェーハを用意し、1100℃、30分の条件で
パイロ酸化することによって0.5μm厚さの熱酸化膜
を形成したベースウェーハを作製した。このベースウェ
ーハと、前記の諸条件で作製した実施例、比較例1〜3
用のボンドウェーハについて結合熱処理の試験を行っ
た。 すなわち、このベースウェーハと上述の各種ボン
ドウェーハの鏡面側同士を室温にて重ね合わせて接合ウ
ェーハとし、この接合ウェーハを酸素雰囲気下で700
℃、800℃、900℃の温度により各60分の結合熱
処理を行った。各結合熱処理後の結合ウェーハの結合強
度を、ブレード法で測定した。ブレード法は、結合させ
た2枚のウェーハの間に刃を差し込み、2枚のウェーハ
が剥離した先端から刃の刃先までの距離により、結合強
度を求める方法である(W.P.Maszara,J.Appl.Phys.,64
(1988)4943 )。その結果を図1(a)に示す。
A p-type silicon wafer having a diameter of 125 mm and a thickness of 625 μm was prepared and pyrooxidized at 1100 ° C. for 30 minutes to prepare a base wafer on which a thermal oxide film having a thickness of 0.5 μm was formed. This base wafer, and Examples and Comparative Examples 1 to 3 produced under the above-mentioned conditions
A bond heat treatment test was performed on the bond wafers. That is, the mirror surface sides of the base wafer and the various bond wafers described above are superposed at room temperature to form a bonded wafer, and the bonded wafer is subjected to 700 ° C. in an oxygen atmosphere.
Bonding heat treatment was performed for 60 minutes at temperatures of 800 ° C., 800 ° C., and 900 ° C., respectively. The bond strength of the bonded wafer after each bonding heat treatment was measured by the blade method. The blade method is a method in which a blade is inserted between two bonded wafers and the bond strength is determined by the distance from the tip of the two wafers separated to the blade edge (WPMaszara, J.Appl.Phys ., 64
(1988) 4943). The result is shown in FIG.

【0016】図1(a)において、●は比較例1として
の、不純物未拡散の鏡面シリコンウェーハ、×は実施
例、■は比較例2、□は比較例3の値である。図1
(a)より、表面粗さが小さいほど、ウェーハの結合強
度は向上したことがわかる。
In FIG. 1 (a), ● is a specular silicon wafer with no impurity diffusion as Comparative Example 1, × is an Example, ■ is a Comparative Example 2, and □ is a Comparative Example 3. FIG.
From (a), it can be seen that the smaller the surface roughness, the higher the bonding strength of the wafer.

【0017】[0017]

【発明の効果】本発明のSOIウェーハ及びその製造方
法によれば、不純物拡散層を有するボンドウェーハと、
ベースウェーハとの強固な結合が達成でき、不純物高濃
度層のシート抵抗に影響を与えることがなく、SOI層
の薄膜化における研削・研磨工程や、薄膜化後の半導体
デバイス作製工程での、結合剥離を低減化することがで
きる。これにより、不純物高濃度層を有するボンドウェ
ーハと、酸化膜を有するベースウェーハとからなる結合
ウェーハに対し、不純物によるエッチストップ法を適用
して極薄のSOIウェーハの製造が可能となる。
According to the SOI wafer and the manufacturing method thereof of the present invention, a bond wafer having an impurity diffusion layer,
A strong bond with the base wafer can be achieved, without affecting the sheet resistance of the high-concentration impurity layer, and it can be bonded in the grinding / polishing process for thinning the SOI layer and the semiconductor device manufacturing process after thinning. Peeling can be reduced. As a result, it becomes possible to manufacture an extremely thin SOI wafer by applying the impurity etch stop method to a bonded wafer composed of a bond wafer having a high impurity concentration layer and a base wafer having an oxide film.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例のウェーハ結合強度の、表面粗
さ・結合熱処理温度依存性を示す図である。 (a)ウェーハ結合強度の、結合熱処理温度依存性を示
す。 × ‥‥‥ 実施例 ● ‥‥‥ 比較例1 ■ ‥‥‥ 比較例2 □ ‥‥‥ 比較例3 (b)(a)の各ボンドウェーハの表面粗さを示す。
FIG. 1 is a diagram showing surface roughness / bonding heat treatment temperature dependence of wafer bonding strength in an example of the present invention. (A) Shows the bond heat treatment temperature dependence of the wafer bond strength. × …………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………。

【図2】本発明の実施例の拡散面の、鏡面研磨前後での
平均シート抵抗ρS 、標準偏差σ及びその面内分布の変
化を示す図で、(a)は鏡面研磨前、(b)は鏡面研磨
後のものである。
FIG. 2 is a diagram showing changes in average sheet resistance ρ S , standard deviation σ, and its in-plane distribution of a diffusing surface before and after mirror-polishing according to an embodiment of the present invention. ) Is after mirror polishing.

【図3】(A)〜(F)は、高濃度層を有するボンドウ
ェーハと、酸化膜を有するベースウェーハとからなる結
合ウェーハについて、不純物によるエッチストップ法を
応用した極薄のSOIウェーハの製造工程を説明する図
である。
3 (A) to 3 (F) are bonded wafers having a high-concentration layer and a base wafer having an oxide film, which are ultra-thin SOI wafers to which an etch stop method by impurities is applied. It is a figure explaining a process.

【図4】LS-6000 とAFMとによる面粗さ測定値の比較
を示す図である。
FIG. 4 is a diagram showing a comparison of surface roughness measurement values by LS-6000 and AFM.

【図5】研磨時間によるヘイズレベルの変化を示す図で
ある。
FIG. 5 is a diagram showing changes in haze level depending on polishing time.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 2枚のシリコン鏡面ウェーハのうち、第
一のシリコン鏡面ウェーハの表面に酸化膜を形成し、第
二のシリコン鏡面ウェーハに不純物の高濃度層を形成し
た後、互いに接触させて接合し、これに加熱処理を施し
て強固に結合させてなるSOIウェーハにおいて、不純
物の高濃度層を形成した前記第二のウェーハの接合すべ
き表面を研磨後に、接合が行われていることを特徴とす
るSOIウェーハ。
1. An oxide film is formed on the surface of a first silicon mirror surface wafer of the two silicon mirror surface wafers, and a high concentration layer of impurities is formed on the second silicon mirror surface wafer, and then contacted with each other. In an SOI wafer obtained by bonding and subjecting it to a strong bonding by heat treatment, the bonding is performed after polishing the surfaces to be bonded of the second wafer on which the high-concentration layer of impurities is formed. Characteristic SOI wafer.
【請求項2】 2枚のシリコン鏡面ウェーハのうち、第
一のシリコン鏡面ウェーハの表面に酸化膜を形成し、第
二のシリコン鏡面ウェーハに不純物の高濃度層を形成し
た後、互いに接触させて接合し、これに加熱処理を施し
て強固に結合させてなるSOIウェーハを製造する方法
において、不純物の高濃度層を形成した前記第二のウェ
ーハの接合すべき表面の研磨後に、接合を行うことを特
徴とするSOIウェーハの製造方法。
2. Of two silicon mirror-finished wafers, an oxide film is formed on the surface of a first silicon mirror-finished wafer and a high-concentration layer of impurities is formed on the second silicon mirror-finished wafer, and then contacted with each other. In a method of manufacturing an SOI wafer in which the second wafer is bonded and then heat-treated to be strongly bonded, bonding is performed after polishing the surfaces to be bonded of the second wafer having a high-concentration layer of impurities. And a method for manufacturing an SOI wafer.
【請求項3】 2枚のシリコン鏡面ウェーハのうち、第
一のシリコン鏡面ウェーハの表面に酸化膜を形成し、第
二のシリコン鏡面ウェーハに不純物の高濃度層を形成し
た後、互いに接触させて接合し、これに加熱処理を施し
て強固に結合させた後、前記第二のシリコン鏡面ウェー
ハ側を薄膜化してSOIウェーハを製造するに際し、不
純物の高濃度層を形成した前記第二のシリコン鏡面ウェ
ーハの接合すべき表面の研磨後に接合を行い、これに加
熱処理を行うことによって強固に結合させた後、前記第
二のシリコン鏡面ウェーハ側を、不純物の高濃度層によ
るエッチストップ法により薄膜化させることを特徴とす
るSOIウェーハの製造方法。
3. Of two silicon mirror-finished wafers, an oxide film is formed on the surface of a first silicon mirror-finished wafer, a high-concentration layer of impurities is formed on a second silicon mirror-finished wafer, and then contacted with each other. The second silicon mirror surface on which a high-concentration layer of impurities has been formed is used in manufacturing an SOI wafer by thinning the second silicon mirror surface wafer side after bonding and strongly bonding them by heat treatment. Bonding is performed after polishing the surfaces of the wafers to be bonded, and a heat treatment is performed to firmly bond them, and then the second silicon mirror surface wafer side is thinned by an etch stop method using a high-concentration impurity layer. A method of manufacturing an SOI wafer, comprising:
JP20822896A 1995-08-17 1996-08-07 SOI wafer and method for manufacturing the same Expired - Fee Related JP2930194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20822896A JP2930194B2 (en) 1995-08-17 1996-08-07 SOI wafer and method for manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-209451 1995-08-17
JP20945195 1995-08-17
JP20822896A JP2930194B2 (en) 1995-08-17 1996-08-07 SOI wafer and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH09116125A true JPH09116125A (en) 1997-05-02
JP2930194B2 JP2930194B2 (en) 1999-08-03

Family

ID=26516714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20822896A Expired - Fee Related JP2930194B2 (en) 1995-08-17 1996-08-07 SOI wafer and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2930194B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6127244A (en) * 1997-12-27 2000-10-03 Hyundai Electronics Industries Co., Ltd. Method of manufacturing semiconductor device
JP2008258304A (en) * 2007-04-03 2008-10-23 Sumco Corp Method of manufacturing semiconductor substrate
US7867877B2 (en) 2004-01-30 2011-01-11 Sumco Corporation Method for manufacturing SOI wafer
US7927957B2 (en) 2008-09-12 2011-04-19 Sumco Corporation Method for producing bonded silicon wafer
US7955874B2 (en) 2008-12-25 2011-06-07 Sumco Corporation Method of producing bonded silicon wafer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6127244A (en) * 1997-12-27 2000-10-03 Hyundai Electronics Industries Co., Ltd. Method of manufacturing semiconductor device
US7867877B2 (en) 2004-01-30 2011-01-11 Sumco Corporation Method for manufacturing SOI wafer
JP2008258304A (en) * 2007-04-03 2008-10-23 Sumco Corp Method of manufacturing semiconductor substrate
US7855132B2 (en) 2007-04-03 2010-12-21 Sumco Corporation Method of manufacturing bonded wafer
US7927957B2 (en) 2008-09-12 2011-04-19 Sumco Corporation Method for producing bonded silicon wafer
US7955874B2 (en) 2008-12-25 2011-06-07 Sumco Corporation Method of producing bonded silicon wafer

Also Published As

Publication number Publication date
JP2930194B2 (en) 1999-08-03

Similar Documents

Publication Publication Date Title
JP4509488B2 (en) Manufacturing method of bonded substrate
US5344524A (en) SOI substrate fabrication
JP3395661B2 (en) Method for manufacturing SOI wafer
US6645831B1 (en) Thermally stable crystalline defect-free germanium bonded to silicon and silicon dioxide
TWI394204B (en) Method for producing bonded wafer
JPS61296709A (en) Manufacture of semiconductor
EP0856876A2 (en) Method of manufacturing a bonding substrate
JP3327180B2 (en) Method of forming oxide film on SOI layer, method of manufacturing bonded wafer, and bonded wafer manufactured by this method
EP0759634A1 (en) SOI wafer and method for the preparation thereof
JP2930194B2 (en) SOI wafer and method for manufacturing the same
JP3262470B2 (en) Semiconductor substrate and manufacturing method thereof
JPH09260620A (en) Manufacture of coupled wafer and coupled wafer manufactured by this method
EP0740849B1 (en) Method of forming a silicon-on-insulator (soi) material having a high degree of thickness uniformity
JP2004031715A (en) Soi wafer and manufacture thereof
JPH05129258A (en) Production of semiconductor wafer and semiconductor integrated circuit device
WO2022001780A1 (en) Method for manufacturing semiconductor-on-insulator structure
JPH05109678A (en) Manufacture of soi substrate
JP3864886B2 (en) SOI wafer
JP3604026B2 (en) Manufacturing method of bonded silicon substrate
JPH098258A (en) Manufacture of soi substrate
JPH08236735A (en) Soi substrate and method of its fabrication
WO2022001779A1 (en) Method for manufacturing semiconductor-on-insulator structure
JPH09213916A (en) Manufacture of soi substrate
JPH08191138A (en) Manufacture of soi substrate
JP3951814B2 (en) Manufacturing method of SOI substrate

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees