JPH0911376A - Concrete structure having flexible glass fiber reinforced resin molded sheet as coating layer - Google Patents

Concrete structure having flexible glass fiber reinforced resin molded sheet as coating layer

Info

Publication number
JPH0911376A
JPH0911376A JP18623095A JP18623095A JPH0911376A JP H0911376 A JPH0911376 A JP H0911376A JP 18623095 A JP18623095 A JP 18623095A JP 18623095 A JP18623095 A JP 18623095A JP H0911376 A JPH0911376 A JP H0911376A
Authority
JP
Japan
Prior art keywords
glass fiber
concrete
concrete structure
adhesive
fiber reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18623095A
Other languages
Japanese (ja)
Inventor
Yasuo Kadoi
康雄 角井
Hirobumi Ono
博文 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daitai Kako Kk
Nitto Boseki Co Ltd
Original Assignee
Daitai Kako Kk
Nitto Boseki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daitai Kako Kk, Nitto Boseki Co Ltd filed Critical Daitai Kako Kk
Priority to JP18623095A priority Critical patent/JPH0911376A/en
Publication of JPH0911376A publication Critical patent/JPH0911376A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE: To prevent a deterioration phenomenon by coating concrete with a flexible glass fiber reinforced resin molded sheet obtained from an unsaturated polyester resin syrup obtained by easterifying unsaturated polybasic acid and saturated polybasic acid along with glycol through a specific synthetic resin adhesive having high elasticity. CONSTITUTION: A flexible glass fiber reinforced resin molded sheet obtained by impregnating glass fibers with a spyrup prepared by dissolving an unsaturated polyester resin obtained by esterifying unsaturated polybasic acid and saturated polybasic acid along with glycol in a copolymerizable monomer and curing and molding the impregnated glass fibers is applied to the surface of concrete through a synthetic resin adhesive having high elasticity of 100-300%. As the glass fibers, a chopped strand mat of alkali free glass is most pref. As an adhesive a urethane or modified silicone adhesive is used to be applied in a thickness of 0.6-1.5mm. The flexible glass fiber reinforced resin molded sheet can be well adapted to a complicated surface shape because it is rich in flexibility.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はコンクリート構造体、
特にコンクリートの劣化現象を抑止したコンクリート構
造体に関する。
This invention relates to a concrete structure,
In particular, it relates to a concrete structure that suppresses the deterioration phenomenon of concrete.

【0002】[0002]

【従来の技術】ひび割れや塩害などを原因とするコンク
リート構造体の劣化現象は、コンクリートが使用される
環境,コンクリートの品質などにより大きく影響され、
然もコンクリートをミクロ的に見た場合、多孔質でかな
り不均一であることから、水,湿気などの侵入,塩害等
によるところが大きく、特にコンクリート構造体中に使
用された鉄筋,鉄骨の酸化による錆の発生、腐蝕に由来
することも多い。
2. Description of the Related Art Deterioration phenomena of concrete structures caused by cracks and salt damage are greatly affected by the environment in which concrete is used, the quality of concrete, etc.
However, when the concrete is viewed microscopically, it is porous and quite uneven, so it is largely due to the intrusion of water, moisture, etc., salt damage, etc., especially due to the oxidation of the reinforcing bars and steel frames used in the concrete structure. Often derived from rust and corrosion.

【0003】また、コンクリート構造体の含水状態は、
補強材としての鉄筋,鉄骨との接着強度に大きな影響を
及ぼすことが知られている。そのためコンクリート構造
体に大きな応力が与えられるとひび割れが生じ、遂には
コンクリートが欠落し、鉄筋,鉄骨の腐蝕,金属疲労な
ども加わって遂にはコンクリート構造体が崩壊するなど
の現象が認められた。
The water content of the concrete structure is
It is known that it has a great influence on the adhesive strength between reinforcing bars and steel frames as reinforcing materials. Therefore, when a large stress is applied to the concrete structure, cracking occurs, concrete is finally lost, and the concrete structure is finally collapsed due to corrosion of steel bars and steel frames, metal fatigue, etc.

【0004】このような問題点を回避するため、コンク
リート構造体表面を鉄板で被覆補強し、コンクリート内
部への水,湿気等の侵入,ひび割れの発生を防止するこ
ともなされているが、表面を被覆した鉄板自体錆の発
生,塩害等による腐蝕などを避けることができず、ペン
キ等による防錆塗装を繰返さねばならない。
In order to avoid such problems, the surface of the concrete structure is covered and reinforced with an iron plate to prevent water, moisture and the like from entering the concrete and to prevent cracking. The coated iron plate itself cannot avoid rusting and corrosion due to salt damage, etc., and the rust-preventive coating with paint etc. must be repeated.

【0005】又、コンクリート構造体が複雑な形状の場
合はその形状に合わせて鉄板を裁断し、各部に合致した
パーツを作り、現場で溶接しながら被覆するなど作業量
が増大し、然も溶接の状態によって充分な補強被覆を得
られないなどの問題点が残された。
Further, when the concrete structure has a complicated shape, an iron plate is cut according to the shape, parts corresponding to each part are formed, and the work amount is increased by coating while welding at the site. However, depending on the state, there was a problem that a sufficient reinforcing coating could not be obtained.

【0006】そのため、例えば特開平1−96079号
公報にみられるように、コンクリート構造体の表面をガ
ラス繊維強化樹脂ライニング層で被覆する方法も開発さ
れるに至っている。
Therefore, a method of coating the surface of a concrete structure with a glass fiber reinforced resin lining layer has been developed as shown in, for example, Japanese Patent Application Laid-Open No. 1-96079.

【0007】しかしこの種のライニング工法では、現場
施工によりコンクリート構造体とライニング層とを直接
強固に固着させるものであるために、コンクリートの膨
脹,収縮,コンクリート構造体に加わる大小さまざまな
応力などにより、ライニング層の剥離やひび割れ、コン
クリートのひび割れなどを避け難い。
However, in this type of lining method, the concrete structure and the lining layer are directly and firmly fixed to each other by on-site construction. Therefore, due to expansion and contraction of concrete, various stresses applied to the concrete structure, and the like. , It is difficult to avoid peeling and cracking of lining layer and cracking of concrete.

【0008】このような現象は施工現場における作業員
の熟練度を原因としたライニング層の不均一な形成など
の外、例えば寒冷地の場合樹脂がいつまでも硬化せず、
硬化迄の間に樹脂が流動してライニング層が不均一とな
ってしまったり、又高温地の場合、逆に樹脂の硬化が促
進され、迅速かつ確実な作業が要求されるなど種々の要
因によるところが大きい。
[0008] Such a phenomenon is caused by uneven formation of the lining layer due to the skill level of the worker at the construction site. For example, in cold regions, the resin does not cure forever,
Due to various factors such as resin flowing before curing and the lining layer becomes non-uniform, and in high temperature areas, on the contrary, curing of the resin is promoted and quick and reliable work is required. However, it is big.

【0009】[0009]

【発明が解決しようとする課題】この発明は鉄板による
被覆補強、又はライニング層の形成による補強を施され
たコンクリート構造体にみられる前記種々の問題点を解
決し、劣化現象の発生要因を排除したコンクリート構造
体を得ることを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned various problems found in a concrete structure reinforced by coating with an iron plate or by forming a lining layer, and eliminates the cause of deterioration phenomenon. The purpose is to obtain a concrete structure.

【0010】[0010]

【課題を解決するための手段】本発明は、不飽和多塩基
酸と飽和多塩基酸とをグリコールと共にエステル化し、
共重合可能なモノマーに溶解して得られる不飽和ポリエ
ステル樹脂シロップをガラス繊維に含浸硬化成形し、か
くて得られた柔軟性ガラス繊維強化樹脂成形シート(以
下柔軟性FRPシートと略す)を、100%〜300%
の高弾性を備えた合成樹脂接着剤を介して、コンクリー
ト表面に被覆した。
According to the present invention, an unsaturated polybasic acid and a saturated polybasic acid are esterified with glycol,
An unsaturated polyester resin syrup obtained by dissolving it in a copolymerizable monomer is impregnated into glass fiber and cured and molded, and a flexible glass fiber reinforced resin molded sheet (hereinafter abbreviated as flexible FRP sheet) thus obtained is % -300%
Was coated on the concrete surface through a synthetic resin adhesive having high elasticity.

【0011】本発明に使用される柔軟性FRPシートと
しては、例えば特公平4−39492号公報に開示され
たような、不飽和多塩基酸20〜40重量%と飽和多塩
基酸80〜60重量%とからなる多塩基酸混合物と、炭
素数が2個以上のグリコールのうち何れか一種、若しく
は前記グリコールのうち何れか一種とポリプロピレング
リコールとの混合物からなるグリコールとの混合組成物
を加熱エステル化し、得られた不飽和アルキッドを、該
不飽和アルキッド中の不飽和結合と共重合可能なモノマ
ーに溶解し、かくて得られた不飽和ポリエステル樹脂シ
ロップを、ガラス繊維に含浸し硬化成形した柔軟性FR
Pシートが用いられる。
The flexible FRP sheet used in the present invention is, for example, 20 to 40% by weight of unsaturated polybasic acid and 80 to 60% by weight of saturated polybasic acid as disclosed in JP-B-4-39492. %, And a mixed composition of a polybasic acid mixture of 1% and a glycol having a carbon number of 2 or more, or a glycol composed of a mixture of any one of the glycols and polypropylene glycol, is heat-esterified. The obtained unsaturated alkyd is dissolved in a monomer that is copolymerizable with the unsaturated bond in the unsaturated alkyd, and the unsaturated polyester resin syrup thus obtained is impregnated into glass fiber and cured to obtain flexibility. FR
P sheet is used.

【0012】本発明において使用される前記柔軟性FR
Pシートは、ロール巻きとすることが可能な柔軟性を有
し、その厚さは0.5〜3mmであるが、好ましくは1.
0〜2.0mmで、此の場合の引張り強度は3.3〜4.
5kg/mm2 、伸び率は2.3〜3.3%であった。そ
して該柔軟性FRPシートはそのまま用いても良いし、
より耐候性,耐摩耗性を向上させるため、表面にゲルコ
ート等適宜手段により紫外線吸収剤を添加した被膜を形
成したり、意匠性の面から不飽和ポリエステル樹脂中に
顔料のような着色剤を混入したり、硬化成形後の柔軟性
FRPシート上に着色した伸縮性耐候性に富む被膜を形
成しても良い。
The flexible FR used in the present invention
The P sheet has flexibility such that it can be wound into a roll and has a thickness of 0.5 to 3 mm, preferably 1.
0 to 2.0 mm, the tensile strength in this case is 3.3 to 4.
The elongation was 5 kg / mm 2 and the elongation rate was 2.3 to 3.3%. The flexible FRP sheet may be used as it is,
In order to further improve weather resistance and abrasion resistance, a film with an ultraviolet absorber added by a suitable means such as gel coating is formed on the surface, or a coloring agent such as a pigment is mixed into the unsaturated polyester resin from the aspect of design. Alternatively, a colored stretchable and weatherproof coating may be formed on the flexible FRP sheet after curing and molding.

【0013】又、使用されるガラス繊維としては、ガラ
ス繊維チョップドストランドマット,ガラス繊維ロービ
ングマット,ガラス繊維織物など任意のガラス繊維製品
が適宜選択使用されるが、アルカリ金属酸化物を含まな
い所謂無アルカリガラスのチョップドストランドマット
の使用が最も適当である。
Further, as the glass fiber to be used, any glass fiber product such as glass fiber chopped strand mat, glass fiber roving mat, glass fiber woven fabric, etc. is appropriately selected and used, but a so-called no glass fiber containing no alkali metal oxide is used. Most suitable is the use of alkali glass chopped strand mats.

【0014】このようにして得られる柔軟性FRPシー
トは、接着剤を介してコンクリート構造体表面を被覆す
る。接着剤としては柔軟性FRPシートとコンクリート
との膨脹収縮差を緩衝する100〜300%の高弾性を
備えたエポキシ系,ウレタン系,変性シリコン系の接着
剤、特にウレタン系,変性シリコン系の接着剤をコンク
リート表面に0.6〜1.5mmの厚さに塗布すると適当
である。
The flexible FRP sheet thus obtained covers the surface of the concrete structure with an adhesive. As the adhesive, an epoxy-based, urethane-based, or modified silicone-based adhesive having a high elasticity of 100 to 300% that buffers the expansion / shrinkage difference between the flexible FRP sheet and concrete, particularly urethane-based or modified silicone-based bonding It is suitable to apply the agent to the concrete surface in a thickness of 0.6 to 1.5 mm.

【0015】そして塗布厚みが0.6mm未満及び又は弾
性が100%未満の場合、コンクリートと柔軟性FRP
シートとの膨脹収縮の差を充分緩衝することが出来ず、
又塗布厚みが2.0mmを超え及び又は弾性が300%を
超えると余りにも高弾性に過ぎ、柔軟性FRPシートに
よるコンクリートの補強効果などに悪影響を及ぼしてコ
ンクリート構造体に求められる所望の効果を得ることが
できない。
When the coating thickness is less than 0.6 mm and / or the elasticity is less than 100%, concrete and flexible FRP are used.
The difference in expansion and contraction with the sheet cannot be sufficiently buffered,
Further, when the coating thickness exceeds 2.0 mm and / or the elasticity exceeds 300%, the elasticity is too high, which adversely affects the reinforcing effect of concrete by the flexible FRP sheet and the desired effect required for the concrete structure. Can't get

【0016】そして前記接着剤は、コンクリート表面全
面にわたって塗布するが、好ましくは適宜間隔を保って
筋状に或いは点状に塗布する。柔軟性FRPシートでコ
ンクリートを被覆するに当っては、隣り合う柔軟性FR
Pシートの側縁を僅かに重ね合わせながら被覆し、該重
ね合せ部分をエポキシ系,不飽和ポリエステル系等の樹
脂接着剤により固着するか、或いは目地を形成しながら
被覆し、別途50%以上の伸び率を有する不飽和ポリエ
ステル樹脂を含浸したガラス繊維を該目地に挿入し、或
いは該目地を被覆し硬化形成して目地を閉鎖する。
The adhesive is applied over the entire surface of the concrete, but is preferably applied in stripes or dots at appropriate intervals. When coating concrete with flexible FRP sheets, the adjacent flexible FR
The side edges of the P sheet are slightly overlapped and covered, and the overlapped portion is fixed with an epoxy-based or unsaturated polyester-based resin adhesive, or the joint is formed while forming joints. Glass fibers impregnated with an unsaturated polyester resin having elongation are inserted into the joints, or the joints are covered and cured to close the joints.

【0017】前記の通り柔軟性FRPシートは極めて柔
軟性に富むものであるから、コンクリート構造体の平面
部分は勿論、複雑な表面形状を持つコンクリート構造体
にも良く屈曲適応してその表面を被覆することができ、
その結果互いに隣り合う柔軟性FRPシートの重ね合せ
部、目地部の形成を最小に止めることが可能である。
As described above, the flexible FRP sheet is extremely flexible, so that the surface of the concrete structure can be flexibly adapted not only to the flat portion of the concrete structure but also to the concrete structure having a complicated surface shape to cover the surface. Can
As a result, it is possible to minimize the formation of overlapping portions and joint portions of the flexible FRP sheets adjacent to each other.

【0018】[0018]

【実施例】【Example】

(実施例1)今、不揮発分98.5%,伸び率200%
20℃における粘度4000cpsショアーA硬度28
の変性シリコン系接着剤につき、その塗布厚みを0.1
mm,1.0mm,2.0mm,5.0mmとし、引っ張りせん
断接着強さを測定したところ、夫々15.1kg-f/c
m2 ,10.0kg-f/cm2 ,7.5kg-f/cm2 ,5.4k
g-f/cm2 で破断時の伸びは0.8mm,6.1mm,1
0.3mm,18.2mmであった。
(Example 1) Now, the nonvolatile content is 98.5% and the elongation rate is 200%.
Viscosity at 20 ° C 4000cps Shore A hardness 28
For the modified silicone adhesive of, the coating thickness is 0.1
mm, 1.0 mm, 2.0 mm, 5.0 mm, tensile shear bond strength was measured to be 15.1 kg-f / c
m 2, 10.0kg-f / cm 2, 7.5kg-f / cm 2, 5.4k
gf / cm 2 at an elongation at break 0.8mm, 6.1mm, 1
It was 0.3 mm and 18.2 mm.

【0019】上記変性シリコン系接着剤を、幅部分を互
いに突き合せた長さ160mm,幅80mmの2枚の鉄板上
に、該突き合わせ部分を挾んで双方の鉄板の長さ方向に
夫々80mm,厚さ1.0mm塗布した後、その表面を厚さ
1.5mmの柔軟性FRPシートで被覆した。
The modified silicone adhesive is applied onto two iron plates having a width of 160 mm and a width of 80 mm butted against each other, and the butted parts are sandwiched between the two iron plates in a length direction of 80 mm and a thickness of 80 mm, respectively. After applying a thickness of 1.0 mm, the surface was covered with a flexible FRP sheet having a thickness of 1.5 mm.

【0020】両鉄板を互いに引離す方向に引張応力を加
えたところ、試料1においては、2枚の鉄板が5.2mm
離反したところで接着剤が凝集破壊したが、柔軟性FR
Pシートは破断しなかった。この時引張応力は300kg
-f/80mm幅であった。
When a tensile stress was applied in the direction in which the two iron plates were separated from each other, in the sample 1, the two iron plates were 5.2 mm apart.
The adhesive was cohesively broken when it was separated, but it had flexibility FR
The P sheet did not break. At this time, the tensile stress is 300 kg
It was -f / 80 mm width.

【0021】又試料2について同様の試験を行ったとこ
ろ、鉄板が4.5mm離反したとき接着剤が凝集破壊を起
したが、柔軟性FRPシートは破断せず、このときの引
張応力は300kg-f/80mm幅であった。
When a similar test was conducted on Sample 2, when the iron plate was separated by 4.5 mm, the adhesive caused cohesive failure, but the flexible FRP sheet did not break, and the tensile stress at this time was 300 kg- The width was f / 80 mm.

【0022】これに対し、例えば特開平1−96079
号に開示されたような従来公知のライニング法によると
きは、比較試料1において鉄板が0.7mm離反した時、
ライニング層が破断し、この時の引張応力は570kg-f
/80mm幅で、更に比較試料2においては、鉄板が1.
0mm離反したときライニング層が破断した、この時の引
張応力は1100kg-f/80mm幅であった。
On the other hand, for example, JP-A-1-96079.
In the case of the conventionally known lining method as disclosed in No. 6, when the iron plate is separated by 0.7 mm in Comparative Sample 1,
The lining layer breaks and the tensile stress at this time is 570kg-f
/ 80 mm width, and in the comparative sample 2, the iron plate was 1.
The lining layer broke when it was separated by 0 mm, and the tensile stress at this time was 1100 kg-f / 80 mm width.

【0023】前記実験結果を基に、直径50mm,長さ2
50mmの円柱状コンクリートの表面に、上記変性シリコ
ン系接着剤を1.2mmの厚さに塗布し、厚さ1.5mmの
柔軟性FRPシートを、隣り合う側縁を僅かに重ね合せ
ながら接着し、重ね合せ部分をエポキシ樹脂接着剤を用
いて接着し、本発明のコンクリート構造体を得た。
Based on the above experimental results, diameter 50 mm, length 2
The modified silicone adhesive is applied to the surface of 50 mm columnar concrete to a thickness of 1.2 mm, and a flexible FRP sheet having a thickness of 1.5 mm is adhered while slightly overlapping the adjacent side edges. Then, the overlapped portions were bonded using an epoxy resin adhesive to obtain a concrete structure of the present invention.

【0024】得られたコンクリート構造体について5m
の高さから落下衝撃試験を5回繰返したが、柔軟性FR
Pシートの剥離及びひび割れは認められなかった。これ
に対し、被覆を施さなかった同一形状のコンクリート構
造体においては、3回の落下試験でひび割れを生じ、5
回でコンクリートの一部が欠落した。
About the concrete structure obtained 5 m
The drop impact test was repeated 5 times from the height of
No peeling or cracking of the P sheet was observed. On the other hand, in a concrete structure of the same shape that was not covered, cracks were generated by three drop tests and 5
Part of the concrete was missing at the time.

【0025】(実施例2)直径50mm,長さ250mmの
円柱状コンクリートの表面に、ウレタン系湿気硬化型接
着剤(タイルメント(株)製 商品名フロアーボンド
U)を1.2mmの厚さに塗布し、厚さ1.5mmの柔軟性
FRPシートを、隣り合う側縁同志により目地を形成し
ながら接着し、50%以上の伸縮率を有する不飽和ポリ
エステル樹脂を含浸したガラス繊維チョップドストラン
ドマットにより該目地を閉鎖硬化成形しコンクリート構
造体を得た。
(Example 2) A urethane-based moisture-curing adhesive (trade name Floor Bond U manufactured by Tilement Co., Ltd.) having a thickness of 1.2 mm was formed on the surface of a cylindrical concrete having a diameter of 50 mm and a length of 250 mm. A flexible FRP sheet with a thickness of 1.5 mm is applied and adhered while forming joints between adjacent side edges, and a glass fiber chopped strand mat impregnated with an unsaturated polyester resin having a stretch ratio of 50% or more is used. The joint was closed and hardened to obtain a concrete structure.

【0026】得られたコンクリート構造体につき、実施
例1と同様の落下衝撃試験を行った結果、実施例1の場
合と同様の結果を得た。
The resulting concrete structure was subjected to the same drop impact test as in Example 1, and the same results as in Example 1 were obtained.

【0027】(実施例3)実施例1に示した変性シリコ
ン系弾性接着剤を用い、実施例1と全く同じ条件で本発
明円柱状コンクリート構造体を得た。このコンクリート
構造体を70℃の高温室内に24時間放置した。柔軟性
FRPシートと、コンクリートの熱膨脹率に差を有する
にもかかわらず、前記弾性接着剤が両者間の熱膨脹率の
差を緩衝し、柔軟性FRPシートの剥離、ひび割れは全
く認められなかった。
(Example 3) Using the modified silicone elastic adhesive shown in Example 1, a cylindrical concrete structure of the present invention was obtained under exactly the same conditions as in Example 1. This concrete structure was left in a high temperature room at 70 ° C. for 24 hours. Despite the difference in the coefficient of thermal expansion between the flexible FRP sheet and the concrete, the elastic adhesive buffered the difference in coefficient of thermal expansion between the two, and no peeling or cracking of the flexible FRP sheet was observed.

【0028】(実施例4)12%の水分を含むコンクリ
ートを用いた外は、実施例3と同様にして本発明のコン
クリート構造体を得、かつ同様の高温処理を行った。コ
ンクリート中の水分が水蒸気と化し膨脹するにもかかわ
らず、柔軟性FRPシートが押し上げられ、部分的又は
全体的に膨れたり剥離する現象は認められず、表面上の
変化は全く見られなかった
Example 4 A concrete structure of the present invention was obtained in the same manner as in Example 3 except that concrete containing 12% of water was used, and the same high temperature treatment was performed. Despite the fact that the water content in the concrete became water vapor and expanded, the flexible FRP sheet was pushed up and no phenomenon of partial or total expansion or peeling was observed, and no change was observed on the surface.

【0029】[0029]

【発明の効果】以上詳細に述べた通り本発明は、不飽和
多塩基酸と飽和多塩基酸とをグリコールと共にエステル
化し、共重合可能なモノマーに溶解して得られる不飽和
ポリエステル樹脂シロップをガラス繊維に含浸硬化成形
し、かくて得られた柔軟性FRPシートを、100〜3
00%の高弾性を備えた合成樹脂接着剤を介して、表面
に被覆したコンクリート構造体に関するものであって、
柔軟性FRPシートを被覆すべきコンクリート自体が平
面の場合は勿論、複雑な形状を有する場合にも柔軟性F
RPシートは良くその形状に対応して被覆を完成し、そ
の結果互いに隣り合う柔軟性FRPシートの重ね合せ
部,目地部の形成を最小に止めることができた。
INDUSTRIAL APPLICABILITY As described in detail above, according to the present invention, an unsaturated polyester resin syrup obtained by esterifying an unsaturated polybasic acid and a saturated polybasic acid with glycol and dissolving them in a copolymerizable monomer is used. The flexible FRP sheet thus obtained is impregnated and cured into a fiber, and the flexible FRP sheet thus obtained is
A concrete structure having a surface coated with a synthetic resin adhesive having a high elasticity of 00%,
Not only when the concrete itself that covers the flexible FRP sheet is flat, but also when the concrete has a complicated shape, the flexibility F
The RP sheet was well covered in conformity with its shape, and as a result, formation of overlapping portions and joint portions of the flexible FRP sheets adjacent to each other could be minimized.

【0030】又、コンクリートと柔軟性FRPシートと
の間には高弾性を備えた接着剤が介在しているために、
該接着剤がコンクリートと柔軟性FRPシートとの膨
脹,収縮差や加えられた応力等による両者の物性差、例
えば強度差,振動差,衝撃差などを緩衝し、その結果柔
軟性FRPシートにひび割れを生じたり、コンクリート
のひび割れ、コンクリートとコンクリート中に使用され
た鉄筋,鉄骨との分離などが防止された外、塩害,酸性
雨等の影響、該部からの水,湿気などの侵入、鉄筋,鉄
骨の錆の発生、腐蝕等を原因とするコンクリート構造体
の経年劣化現象を完全に抑止することができた。
Further, since the adhesive having high elasticity is interposed between the concrete and the flexible FRP sheet,
The adhesive buffers the difference in physical properties between concrete and the flexible FRP sheet due to the difference in expansion and contraction or the applied stress, such as the difference in strength, the difference in vibration, the difference in impact, etc., and as a result, the flexible FRP sheet is cracked. Or cracks in the concrete, separation of concrete from concrete and reinforcing bars used in concrete, separation of steel frames, etc., salt damage, effects of acid rain, etc., intrusion of water, moisture, etc. from the part, reinforcing bars, It was possible to completely suppress the aged deterioration phenomenon of the concrete structure caused by the generation of rust and corrosion of the steel frame.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 不飽和多塩基酸と飽和多塩基酸とをグリ
コールと共にエステル化し、共重合可能なモノマーに溶
解して得られる不飽和ポリエステル樹脂シロップをガラ
ス繊維に含浸硬化成形し、かくて得られた柔軟性ガラス
繊維強化樹脂成形シートを、100%〜300%の高弾
性を備えた合成樹脂接着剤を介して、表面に被覆したコ
ンクリート構造体。
1. An unsaturated polyester resin syrup obtained by esterifying an unsaturated polybasic acid and a saturated polybasic acid with glycol and dissolving them in a copolymerizable monomer is impregnated into a glass fiber, and then cured and molded to obtain the thus-obtained resin. A concrete structure in which the obtained flexible glass fiber reinforced resin molded sheet is coated on the surface via a synthetic resin adhesive having a high elasticity of 100% to 300%.
【請求項2】 合成樹脂接着剤の塗布厚は0.6〜2.
0mmである特許請求の範囲第1項記載のコンクリート構
造体。
2. The coating thickness of the synthetic resin adhesive is 0.6-2.
The concrete structure according to claim 1, which has a diameter of 0 mm.
JP18623095A 1995-06-29 1995-06-29 Concrete structure having flexible glass fiber reinforced resin molded sheet as coating layer Pending JPH0911376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18623095A JPH0911376A (en) 1995-06-29 1995-06-29 Concrete structure having flexible glass fiber reinforced resin molded sheet as coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18623095A JPH0911376A (en) 1995-06-29 1995-06-29 Concrete structure having flexible glass fiber reinforced resin molded sheet as coating layer

Publications (1)

Publication Number Publication Date
JPH0911376A true JPH0911376A (en) 1997-01-14

Family

ID=16184640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18623095A Pending JPH0911376A (en) 1995-06-29 1995-06-29 Concrete structure having flexible glass fiber reinforced resin molded sheet as coating layer

Country Status (1)

Country Link
JP (1) JPH0911376A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007162213A (en) * 2005-12-09 2007-06-28 Sekisui Fuller Kk Outer wall structural material
KR100796006B1 (en) * 2006-08-10 2008-01-21 송홍준 Electric apparatus protect matrial using glass fiber chop and method thereof
JP2011015395A (en) * 2009-06-03 2011-01-20 Nippon Information System:Kk Cloth with rfid tag, and system for managing cloth with rfid tag
JP2015006983A (en) * 2008-03-03 2015-01-15 ユナイテッド・ステイツ・ジプサム・カンパニー Fiber-reinforced cementitious armor panel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007162213A (en) * 2005-12-09 2007-06-28 Sekisui Fuller Kk Outer wall structural material
KR100796006B1 (en) * 2006-08-10 2008-01-21 송홍준 Electric apparatus protect matrial using glass fiber chop and method thereof
JP2015006983A (en) * 2008-03-03 2015-01-15 ユナイテッド・ステイツ・ジプサム・カンパニー Fiber-reinforced cementitious armor panel
JP2011015395A (en) * 2009-06-03 2011-01-20 Nippon Information System:Kk Cloth with rfid tag, and system for managing cloth with rfid tag

Similar Documents

Publication Publication Date Title
JP5247697B2 (en) Bonded roof structure
EP2612970A1 (en) Steel structure reinforcement method and reinforcement body, and material for forming elastic layer for steel structure reinforcement
US20010047844A1 (en) Composites of reinforcing fibers and thermoplastic resins as external structural supports
McKenna et al. Strengthening of reinforced concrete flexural members using externally applied steel plates and fibre composite sheets—A survey
US11773594B2 (en) Reinforcement for cement- and steel-based structures
EP2604756A1 (en) Method for achieving water-proofing practice for floor slab
JPH0911376A (en) Concrete structure having flexible glass fiber reinforced resin molded sheet as coating layer
JP3977719B2 (en) Cushioning material used for reinforcement of concrete structures
JP2007177462A (en) Fiber reinforced skeleton structure and its manufacturing method
TW201943561A (en) Reinforcing laminate material for structure, reinforcing method, and reinforcing structure
JP2005105697A (en) Reinforced fiber resin plate and reinforcing method of structure using the same
JPH09158493A (en) Earthquake resistance reinforcing method for existing reinforced concrete column
JPH09296615A (en) Repairing and reinforcing method for structure
KR100552452B1 (en) Roof waterproofing construction structure and its construction method by insulation-ventilation-shock-bsorbing sheet of the roof-exposure type and air-vents
JP3553865B2 (en) Method of reinforcing steel structure and buffer layer for reinforcing steel structure
JP2005105684A (en) Leaf spring-shaped fiber-reinforced resin plate, and structure reinforcing method using it
JPH08218646A (en) Method of reinforcing concrete structure
KR100310016B1 (en) Fiber-Reinforced Epoxy Panel And Process For Preparing Thereof
Rahman et al. Rehabilitation of existing Kanchpur bridge using carbon fiber reinforced polymer laminate
JPH1018551A (en) Ceramic tile setting method
Strobech Polyurethane adhesives
JP2008285972A (en) Exfoliation preventing structure of surface of structure
Preis et al. Fiberglass tendons for posttensioning concrete bridges
WO2023286561A1 (en) Structure protection sheet, and production method for reinforced structure
JP2842129B2 (en) Tendon structure for prestressed concrete