JPH09112069A - Damper mechanism of structure - Google Patents

Damper mechanism of structure

Info

Publication number
JPH09112069A
JPH09112069A JP29483295A JP29483295A JPH09112069A JP H09112069 A JPH09112069 A JP H09112069A JP 29483295 A JP29483295 A JP 29483295A JP 29483295 A JP29483295 A JP 29483295A JP H09112069 A JPH09112069 A JP H09112069A
Authority
JP
Japan
Prior art keywords
fluid
damper
upper structure
fluid tank
damper mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29483295A
Other languages
Japanese (ja)
Other versions
JP3104846B2 (en
Inventor
Mamoru Sawara
守 佐原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP07294832A priority Critical patent/JP3104846B2/en
Publication of JPH09112069A publication Critical patent/JPH09112069A/en
Application granted granted Critical
Publication of JP3104846B2 publication Critical patent/JP3104846B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)
  • Foundations (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PROBLEM TO BE SOLVED: To function an ordinary building facility as a damper while doubly using it as it is. SOLUTION: A plural number of fluid tanks 7 are arranged in such a way as to surround an upper part structure 2 and water which is fluid is filled in the inside of them and each of the fluid tanks 7 is reciprocally connected to each other by a communicating pipe 8 which is a communicating means in a damper mechanism 1 of a structure. The fluid tank 7 is structured in capacity variable structure which changes its capacity while keeping sealing performance, and for example, bellows structure used for a connected part of an air pump and a fluid hose can be adopted to a side wall part where the communicating pipe 8 is arranged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、上部構造物の振動
エネルギーを吸収する免震装置のダンパー機構に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a damper mechanism of a seismic isolation device that absorbs vibration energy of an upper structure.

【0002】[0002]

【従来の技術】構造物の免震装置は、大きく分けて支承
とダンパーとの2つからなり、ダンパーは、地震時の大
きな変位を抑制したり、地震終了時に速やかに揺れを止
める働きをする。
2. Description of the Related Art A seismic isolation device for a structure is roughly divided into two parts, a bearing and a damper. The damper serves to suppress large displacement at the time of an earthquake or to quickly stop shaking at the end of an earthquake. .

【0003】構造物の免震装置に用いるダンパーには、
弾塑性履歴エネルギーに期待する弾塑性ダンパー、地震
時の応答速度に依存した減衰エネルギーに期待する粘性
体ダンパーやオイルダンパー、摩擦エネルギーに期待す
る摩擦ダンパーなどが知られている。
The damper used in the seismic isolation system for structures includes
There are known elasto-plastic dampers that are expected for elasto-plastic hysteresis energy, viscous dampers and oil dampers that are expected for damping energy depending on the response speed during an earthquake, and friction dampers that are expected for friction energy.

【0004】[0004]

【発明が解決しようとする課題】これらのダンパーは、
専ら構造物の免震に寄与する設備であるため、かかる免
震装置を組み込んだ場合の建築物のコストは、非免震の
ものより割高になることが多い。
SUMMARY OF THE INVENTION These dampers are:
Since this is a facility that exclusively contributes to the seismic isolation of structures, the cost of a building incorporating such seismic isolation device is often higher than that of non-seismic isolation.

【0005】本発明は、上述した事情を考慮してなされ
たもので、通常の建築設備と一部兼用することが可能な
構造物のダンパー機構を提供することを目的とする。
The present invention has been made in consideration of the above-mentioned circumstances, and an object thereof is to provide a damper mechanism for a structure, which can be partially used also as ordinary building equipment.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係る構造物のダンパー機構は請求項1に記
載したように、容量可変型の流体槽を上部構造物の地下
外壁を取り囲むようにして側方地盤との間に複数配置
し、前記各流体槽を所定の連通手段で相互に連結したも
のである。
In order to achieve the above object, a damper mechanism for a structure according to the present invention, as described in claim 1, surrounds a variable capacity fluid tank with an outer underground wall of an upper structure. In this way, a plurality of fluid tanks are arranged between the lateral grounds and the respective fluid tanks are connected to each other by a predetermined communication means.

【0007】また、本発明に係る構造物のダンパー機構
は、前記連通手段を連結管で構成したものである。
Further, in the damper mechanism for a structure according to the present invention, the communication means is composed of a connecting pipe.

【0008】また、本発明に係る構造物のダンパー機構
は請求項3に記載したように、上部構造物の周囲に設置
された流体槽内にシリンダおよび所定のオリフィスを持
つピストンからなる流体ダンパーを配設し、該流体ダン
パーのピストンをピストンロッド等の連結機構を介して
前記上部構造物に連結したものである。
Further, as described in claim 3, the damper mechanism of the structure according to the present invention comprises a fluid damper comprising a cylinder and a piston having a predetermined orifice in a fluid tank installed around the upper structure. The piston of the fluid damper is connected to the upper structure through a connecting mechanism such as a piston rod.

【0009】本発明に係る構造物のダンパー機構におい
ては、容量可変型の流体槽が上部構造物の水平移動に応
答して伸縮し、該流体槽の容量が変化する。すなわち、
上部構造物の移動方向側では、上部構造物に押されて流
体槽が圧縮され、その容量が減少し、上部構造物が遠ざ
かる側では、逆に流体槽の容量が増大する。
In the damper mechanism for a structure according to the present invention, the variable capacity fluid tank expands and contracts in response to the horizontal movement of the upper structure, and the capacity of the fluid tank changes. That is,
On the moving direction side of the superstructure, the fluid tank is compressed by being pressed by the superstructure and its capacity decreases, and on the side away from the superstructure, the capacity of the fluid tank increases conversely.

【0010】したがって、容量が減少する側の流体槽内
の流体は、連通手段を介して容量が増加する側の流体槽
へと流れ込み、その際の乱流形成等によって上部構造物
の振動エネルギーが吸収され、揺れが抑制される。
Therefore, the fluid in the fluid tank on the side of decreasing capacity flows into the fluid tank on the side of increasing capacity via the communication means, and the vibration energy of the upper structure is generated due to the formation of turbulent flow at that time. It is absorbed and shake is suppressed.

【0011】また、本発明に係る構造物のダンパー機構
においては、上部構造物の水平移動が連結機構を介して
流体槽内に設置された流体ダンパーのピストンへと伝達
される。したがって、上部構造物の振動エネルギーは、
流体ダンパーによって吸収され、揺れが抑制される。
Further, in the structure damper mechanism according to the present invention, the horizontal movement of the upper structure is transmitted to the piston of the fluid damper installed in the fluid tank through the coupling mechanism. Therefore, the vibration energy of the superstructure is
It is absorbed by the fluid damper, and shaking is suppressed.

【0012】[0012]

【発明の実施の形態】以下、本発明に係る構造物のダン
パー機構の実施の形態について、添付図面を参照して説
明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a damper mechanism for a structure according to the present invention will be described below with reference to the accompanying drawings.

【0013】(第1実施形態)図1は、本実施形態に係
る構造物のダンパー機構を示した配置図である。同図で
わかるように、本実施形態に係る構造物のダンパー機構
1は、上部構造物2の地下外壁3を取り囲むようにして
側方地盤4との間に設置してある。ここで、上部構造物
2は、積層ゴム、滑り支承、ベアリング支承等の免震支
承5を介して杭6で支持してあり、上部構造物2に入力
する地震動のエネルギーが該免震支承5でカットされる
とともに、杭6の頭部に作用する曲げモーメントや水平
力も低減されるようになっている。
(First Embodiment) FIG. 1 is a layout view showing a damper mechanism of a structure according to the present embodiment. As can be seen in the figure, the structure damper mechanism 1 according to the present embodiment is installed between the side ground 4 so as to surround the underground outer wall 3 of the upper structure 2. Here, the upper structure 2 is supported by the piles 6 via seismic isolation bearings 5 such as laminated rubber, sliding bearings, bearing bearings, etc., and the energy of the seismic motion input to the upper structure 2 is applied to the seismic isolation bearings 5. While being cut by, the bending moment and horizontal force acting on the head of the pile 6 are also reduced.

【0014】ダンパー機構1は、流体槽7を上部構造物
2を取り囲むように複数配設してその内部に流体である
水を満たすとともに、各流体槽7を連通手段である連通
管8によって相互に連結してある。流体槽7は、密封性
を保持しつつその容量が変化する容量可変構造とし、例
えば、空気ポンプや流体ホースの接合部分に使われてい
るベローズ(蛇腹)構造を連通管8を配置した側壁部分
に採用すればよい。
In the damper mechanism 1, a plurality of fluid tanks 7 are arranged so as to surround the upper structure 2, and water as a fluid is filled therein, and each fluid tank 7 is connected to each other by a communication pipe 8 which is a communication means. Connected to. The fluid tank 7 has a variable capacity structure in which the capacity changes while maintaining hermeticity, and for example, a bellows structure used in a joint portion of an air pump or a fluid hose has a side wall portion in which a communication pipe 8 is arranged. Should be adopted for.

【0015】ここで、流体槽7と地下外壁3あるいは側
方地盤4との間には必要に応じて固化材等を充填し、隙
間が生じないようにするのがよい。なお、流体槽7は、
免震装置のダンパー機構のためだけに設置してもよい
が、消火槽、給水タンクなどと兼用するようにしてもよ
い。また、連通管8の内径や長さあるいは個数は、所望
の減衰性能が得られるように、上部構造物の重量、地震
速度などを考慮して適宜定めればよい。
Here, it is preferable to fill a solidifying material or the like between the fluid tank 7 and the subterranean outer wall 3 or the side ground 4 as necessary to prevent a gap. The fluid tank 7 is
Although it may be installed only for the damper mechanism of the seismic isolation device, it may also be used as a fire extinguisher tank, a water tank, etc. Further, the inner diameter, length, or number of the communication pipes 8 may be appropriately determined in consideration of the weight of the upper structure, seismic velocity, etc. so that desired damping performance can be obtained.

【0016】本実施形態に係る構造物のダンパー機構1
においては、地震によって上部構造物2が水平方向に振
動すると、該構造物2の地下外壁3が流体槽7を側方か
ら押し込むが、該流体槽7は、上部構造物2の水平振動
に応答して伸縮し、それらの容量が変化する。すなわ
ち、図2でよくわかるように、上部構造物2の移動方向
側では、上部構造物2に押されて流体槽7が縮み、その
容量が減少する。一方、上部構造物2が遠ざかる側で
は、流体槽7が膨らんでその容量が増大する。
Damper mechanism 1 for a structure according to the present embodiment
, When the upper structure 2 vibrates in the horizontal direction due to an earthquake, the underground outer wall 3 of the structure 2 pushes the fluid tank 7 from the side, but the fluid tank 7 responds to the horizontal vibration of the upper structure 2. Then, they expand and contract, and their capacity changes. That is, as can be seen clearly in FIG. 2, on the moving direction side of the upper structure 2, the fluid tank 7 is contracted by being pushed by the upper structure 2 and the capacity thereof is reduced. On the other hand, on the side away from the upper structure 2, the fluid tank 7 swells and its capacity increases.

【0017】したがって、容量が減少する側の流体槽7
内の水が、連通管8を介して容量が増加する側の流体槽
7へと流れ込み、その際の乱流形成等によって上部構造
物2の振動エネルギーが吸収され、揺れが抑制される。
Therefore, the fluid tank 7 on the side where the capacity decreases
The water inside flows into the fluid tank 7 on the side where the capacity increases through the communication pipe 8, and the vibration energy of the upper structure 2 is absorbed by the formation of turbulent flow at that time, and the shaking is suppressed.

【0018】なお、免震支承5として特にベアリングや
滑り支承を選択した場合には、上部構造物2に水平方向
の残留変形が生じることがあるが、かかる場合には、連
通管8内に設置した図示しないバルブを適宜開閉すると
ともに、同じく図示しないポンプを用いて容量の増加し
た流体槽7から容量の減少した流体槽7に水を戻すこと
によって、上部構造物2の側方に異なる大きさの圧力を
発生させ、該圧力差によって上部構造物2を元の位置に
戻すことができる。なお、かかる作業において必要に応
じて油圧ジャッキ等を併用することができる。
When a bearing or a sliding bearing is selected as the seismic isolation bearing 5, the upper structure 2 may undergo horizontal residual deformation. In such a case, the upper structure 2 is installed in the communication pipe 8. By appropriately opening and closing a valve (not shown), and returning water from the fluid tank 7 having a larger capacity to the fluid tank 7 having a smaller capacity by using a pump (not shown) as well, a different size is provided to the side of the upper structure 2. The pressure can be generated, and the upper structure 2 can be returned to the original position by the pressure difference. In addition, a hydraulic jack or the like can be used together in such work, if necessary.

【0019】以上説明したように、本実施形態に係る構
造物のダンパー機構によれば、容量可変型の流体槽が上
部構造物の水平振動に応答して伸縮する際、各流体槽内
に満たした水が連通管を介して移動し、そのときに生じ
る乱流等によって上部構造物の振動エネルギーが吸収さ
れて該構造物の揺れが速やかに抑制される。
As described above, according to the structure damper mechanism of the present embodiment, when the variable capacity fluid tank expands and contracts in response to the horizontal vibration of the upper structure, the fluid tanks are filled in the respective fluid tanks. The water moves through the communication pipe, and the turbulent flow generated at that time absorbs the vibration energy of the upper structure, so that the shaking of the structure is quickly suppressed.

【0020】また、かかる流体槽を消火用の水源、上水
道の受水タンク等と兼用することができるので、免震設
備を含んだ全体の建築コストを低減することが可能とな
る。
Further, since such a fluid tank can be used also as a water source for fire extinguishing, a water receiving tank for water supply, etc., it is possible to reduce the overall construction cost including seismic isolation equipment.

【0021】本実施形態では、杭基礎に適用した例を説
明したが、他の基礎形式にも適用できることは言うまで
もない。
In the present embodiment, the example applied to the pile foundation has been described, but it goes without saying that the present invention can also be applied to other foundation types.

【0022】(第2実施形態)次に、第2実施形態につ
いて説明する。なお、第1実施形態と実質的に同一の部
品等については同一の番号を付してその説明を省略す
る。
(Second Embodiment) Next, a second embodiment will be described. It should be noted that parts and the like that are substantially the same as those in the first embodiment are given the same numbers and their explanations are omitted.

【0023】図3は、本実施形態に係る構造物のダンパ
ー機構を示した配置図である。同図でわかるように、本
実施形態に係る構造物のダンパー機構11も上部構造物
2の地下外壁3を取り囲むようにして側方地盤4との間
に設置してある。
FIG. 3 is a layout showing the damper mechanism of the structure according to the present embodiment. As can be seen in the figure, the damper mechanism 11 of the structure according to this embodiment is also installed between the side ground 4 so as to surround the underground outer wall 3 of the upper structure 2.

【0024】ダンパー機構11は、図4の全体斜視図で
よくわかるように、角形筒体12を上部構造物2を取り
囲むように環状に形成してその内部に流体である水を満
たすとともに、上部構造物2のコーナーに対応する位置
にオリフィス13を有する例えばベローズ構造の伸縮性
隔壁14を配設してあり、隔壁14で挟まれた内部空間
には、オリフィス13で相互に連通された流体槽15が
形成されている。すなわち、本実施形態では、隔壁14
に形成されたオリフィス13が、第1実施形態の連通管
に代わる連通手段となる。
As can be seen from the overall perspective view of FIG. 4, the damper mechanism 11 has a rectangular cylindrical body 12 formed in an annular shape so as to surround the upper structure 2 and filled with water as a fluid therein. A stretchable partition wall 14 having, for example, a bellows structure having an orifice 13 at a position corresponding to a corner of the structure 2 is arranged, and an internal space sandwiched by the partition walls 14 is a fluid tank communicated with each other by the orifice 13. 15 is formed. That is, in this embodiment, the partition wall 14
The orifice 13 formed in 1) serves as a communication means in place of the communication pipe of the first embodiment.

【0025】ここで、角形筒体12は、伸縮性隔壁14
の動きに追従できるよう、適宜伸縮自在に構成し、地下
外壁3あるいは側方地盤4との間には必要に応じて固化
材等を充填して隙間が生じないようにする。また、オリ
フィス13の径や長さあるいは個数は、所望の減衰性能
が得られるように、上部構造物の重量、地震速度などを
考慮して適宜定める。なお、流体槽15は、免震装置の
ダンパー機構のためだけに設置してもよいが、消火槽、
給水タンクなどと兼用するようにしてもよい。
Here, the rectangular cylindrical body 12 is composed of a stretchable partition wall 14.
In order to be able to follow the movement of the above, it is configured to be expandable / contractible appropriately, and if necessary, a solidifying material or the like is filled between the underground outer wall 3 and the side ground 4 to prevent a gap from being formed. Further, the diameter, length, or number of the orifices 13 is appropriately determined in consideration of the weight of the upper structure, seismic velocity, etc. so that desired damping performance can be obtained. Although the fluid tank 15 may be installed only for the damper mechanism of the seismic isolation device,
You may make it double as a water tank.

【0026】本実施形態に係る構造物のダンパー機構1
1においても第1実施形態と同様、地震によって上部構
造物2が水平方向に振動すると、該構造物2の地下外壁
3がダンパー機構11を側方から押し込むが、伸縮性隔
壁14は、上部構造物2の水平振動に応答して伸縮し、
各流体槽15の容量が変化する。すなわち、図5でよく
わかるように、上部構造物2の移動方向側では、上部構
造物2に押されて伸縮性隔壁14が縮み、該伸縮性隔壁
14間の流体槽15の容量が減少する。一方、上部構造
物2が遠ざかる側では、伸縮性隔壁14が伸びて流体槽
15の容量が増大する。
Damper mechanism 1 for a structure according to this embodiment
Similarly to the first embodiment, when the upper structure 2 vibrates horizontally in the same manner as in the first embodiment, the underground outer wall 3 of the structure 2 pushes the damper mechanism 11 from the side, but the stretchable partition wall 14 does not work. It expands and contracts in response to the horizontal vibration of the object 2,
The capacity of each fluid tank 15 changes. That is, as well understood in FIG. 5, on the moving direction side of the upper structure 2, the elastic partition walls 14 are contracted by the upper structure 2 and the volume of the fluid tank 15 between the elastic partition walls 14 is reduced. . On the other hand, on the side away from the upper structure 2, the stretchable partition wall 14 extends and the capacity of the fluid tank 15 increases.

【0027】したがって、容量が減少する側の流体槽1
5内の水が、隔壁14に形成されたオリフィス13を介
して容量が増加する側の流体槽15へと流れ込み、その
際の乱流形成等によって上部構造物2の振動エネルギー
が吸収され、揺れが抑制される。
Therefore, the fluid tank 1 on the side where the capacity decreases
The water in 5 flows into the fluid tank 15 on the side where the capacity is increased through the orifice 13 formed in the partition wall 14, and the vibration energy of the upper structure 2 is absorbed due to the formation of turbulent flow at that time, which causes shaking. Is suppressed.

【0028】以上説明したように、本実施形態に係る構
造物のダンパー機構によれば、伸縮性の隔壁が上部構造
物の水平振動に応答して伸縮する際、各流体槽内に満た
した水がオリフィスを介して移動し、そのときに生じる
乱流等によって上部構造物の振動エネルギーを吸収して
該構造物の揺れを速やかに止めることができる。
As described above, according to the damper mechanism for a structure according to this embodiment, when the stretchable partition wall expands and contracts in response to the horizontal vibration of the upper structure, the water filled in each fluid tank is filled. Moves through the orifice, and the turbulent flow generated at that time absorbs the vibration energy of the upper structure to quickly stop the shaking of the upper structure.

【0029】また、かかる流体槽を消火用の水源、上水
道の受水タンク等と兼用することができるので、免震設
備を含んだ全体の建築コストを低減することが可能とな
る。
Further, since such a fluid tank can be used also as a water source for fire extinguishing, a water receiving tank for waterworks, etc., it is possible to reduce the overall construction cost including seismic isolation equipment.

【0030】(第3実施形態)次に、第3実施形態につ
いて説明する。なお、第1実施形態あるいは第2実施形
態と実質的に同一の部品等については同一の番号を付し
てその説明を省略する。
(Third Embodiment) Next, a third embodiment will be described. It should be noted that parts and the like that are substantially the same as those in the first embodiment or the second embodiment are given the same reference numerals and the description thereof will be omitted.

【0031】図6は、本実施形態に係る構造物のダンパ
ー機構を示した配置図である。同図でわかるように、本
実施形態に係る構造物のダンパー機構21は、上部構造
物2の地下外壁3を取り囲むようにして側方地盤4との
間に設置された流体槽22と、該流体槽22内の水面下
に配置された流体ダンパー23と、該流体ダンパー23
と地下外壁3とを連結する連結機構としてのピストンロ
ッド24とからなる。
FIG. 6 is a layout showing the damper mechanism of the structure according to this embodiment. As can be seen in the figure, the damper mechanism 21 of the structure according to the present embodiment includes a fluid tank 22 installed between the side ground 4 and the underground outer wall 3 of the upper structure 2, A fluid damper 23 disposed below the water surface in the fluid tank 22, and the fluid damper 23
And a piston rod 24 as a connecting mechanism that connects the underground outer wall 3 with each other.

【0032】流体槽22は、消火用の水源、上水道の受
水タンク等と兼用するのがよい。
The fluid tank 22 is preferably used as a water source for extinguishing a fire, a water receiving tank for waterworks, and the like.

【0033】流体ダンパー23は、図6(b) の拡大詳細
図でわかるように、シリンダ25およびその中を往復動
するピストン27とからなり、該ピストン27にはオリ
フィス26を形成してある。また、上述したピストンロ
ッド24は、かかるピストン27に連結され、流体槽2
2に設けた貫通孔28を貫通した上で地下外壁3に連結
してある。なお、貫通孔28の内面には、流体槽22内
の水が漏洩しないように所定のシール29を取り付けて
おくのがよい。
The fluid damper 23 comprises a cylinder 25 and a piston 27 that reciprocates therein, as shown in the enlarged detailed view of FIG. 6 (b). The piston 27 has an orifice 26 formed therein. Further, the piston rod 24 described above is connected to the piston 27, and the fluid tank 2
It is connected to the underground outer wall 3 after penetrating through the through hole 28 provided in 2. A predetermined seal 29 is preferably attached to the inner surface of the through hole 28 to prevent water in the fluid tank 22 from leaking.

【0034】本実施形態に係る構造物のダンパー機構2
1においては、上部構造物2の水平移動がピストンロッ
ド24を介して流体槽22内に設置された流体ダンパー
23のピストン27へと伝達され、上部構造物2の水平
運動は、ピストン27の往復動へと変換される。そし
て、ピストン27がシリンダ25内に押し込まれてその
中の水がオリフィス26を通って逃げ、その際の乱流形
成等によって上部構造物の振動エネルギーが吸収され
る。
Damper mechanism 2 for a structure according to this embodiment
1, the horizontal movement of the upper structure 2 is transmitted to the piston 27 of the fluid damper 23 installed in the fluid tank 22 via the piston rod 24, and the horizontal movement of the upper structure 2 causes the piston 27 to reciprocate. Is converted to motion. Then, the piston 27 is pushed into the cylinder 25, the water therein escapes through the orifice 26, and the turbulent flow formation at that time absorbs the vibration energy of the upper structure.

【0035】したがって、本実施形態に係る構造物のダ
ンパー機構によれば、上述した実施形態と同様、流体ダ
ンパー23において上部構造物2の振動エネルギーが吸
収され、該構造物の揺れを速やかに止めることができ
る。
Therefore, according to the structure damper mechanism of this embodiment, as in the above-described embodiments, the vibration energy of the upper structure 2 is absorbed by the fluid damper 23, and the shaking of the structure is quickly stopped. be able to.

【0036】また、本実施形態によれば、消火用の水
源、上水道の受水タンク等の建築設備と兼用することが
できるので、免震設備を含んだ全体の建築コストを低減
することが可能となる。
Further, according to this embodiment, since it can be used as a water source for extinguishing a fire, a water receiving tank for water supply, and the like, it is possible to reduce the total construction cost including seismic isolation equipment. Becomes

【0037】本実施形態では、ピストンロッド24を流
体槽22に貫通させた上で地下外壁3に連結したが、代
わりに図7に示すような連結機構31を用いて構成して
もよい。すなわち、本変形例では、連結機構31の揺動
アーム33の一端をピストンロッド24に連結するとと
もに、他端に連結されたロッド32を地下外壁3に連結
してある。
In this embodiment, the piston rod 24 is passed through the fluid tank 22 and is connected to the underground outer wall 3, but a connecting mechanism 31 as shown in FIG. 7 may be used instead. That is, in this modification, one end of the swing arm 33 of the connecting mechanism 31 is connected to the piston rod 24, and the rod 32 connected to the other end is connected to the underground outer wall 3.

【0038】かかる構成においても、上部構造物2の水
平運動が連結機構31を介して流体ダンパー23に往復
動として伝達され、該ダンパー23においてエネルギー
吸収が行われるので、上述したと同様の効果が得られる
他、流体槽22に孔開け等の加工を行う必要がなくなる
ので、通常の建築設備との兼用が行いやすくなるという
効果も得られる。
Also in such a structure, the horizontal motion of the upper structure 2 is transmitted as a reciprocating motion to the fluid damper 23 through the connecting mechanism 31, and the damper 23 absorbs energy, so that the same effect as described above is obtained. In addition to the above, it is not necessary to perform processing such as making holes in the fluid tank 22, so that it is easy to combine the use with ordinary building equipment.

【0039】[0039]

【発明の効果】以上述べたように、本発明に係る構造物
のダンパー機構は、容量可変型の流体槽を上部構造物の
地下外壁を取り囲むようにして側方地盤との間に複数配
置し、前記各流体槽を所定の連通手段で相互に連結した
ので、通常の建築設備を一部利用しながら、上部構造物
の振動を減衰させるダンパーとして機能させることがで
きる。
As described above, in the damper mechanism for a structure according to the present invention, a plurality of variable capacity fluid tanks are arranged between the lateral ground so as to surround the underground outer wall of the upper structure. Since the respective fluid tanks are connected to each other by a predetermined communication means, it is possible to function as a damper for damping the vibration of the upper structure while partially utilizing ordinary building equipment.

【0040】また、本発明に係る構造物のダンパー機構
は、上部構造物の周囲に設置された流体槽内にシリンダ
および所定のオリフィスを持つピストンからなる流体ダ
ンパーを配設し、該流体ダンパーのピストンをピストン
ロッド等の連結機構を介して前記上部構造物に連結した
ので、通常の建築設備を兼用する形で上部構造物の振動
を減衰させるダンパーを構成することができる。
Further, in the damper mechanism for a structure according to the present invention, a fluid damper composed of a cylinder and a piston having a predetermined orifice is arranged in a fluid tank installed around the upper structure, and the fluid damper of the fluid damper is provided. Since the piston is connected to the upper structure through a connecting mechanism such as a piston rod, it is possible to construct a damper that damps the vibration of the upper structure while also functioning as ordinary building equipment.

【0041】[0041]

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施形態に係る構造物のダンパー機構を示
した図であり、(a) は鉛直断面図、(b)はA―A線に沿
う水平断面図。
1A and 1B are views showing a damper mechanism of a structure according to a first embodiment, where FIG. 1A is a vertical sectional view and FIG. 1B is a horizontal sectional view taken along the line AA.

【図2】第1実施形態の作用を示す説明図。FIG. 2 is an explanatory diagram showing an operation of the first embodiment.

【図3】第2実施形態に係る構造物のダンパー機構を示
した図であり、(a) は鉛直断面図、(b)はB―B線に沿
う水平断面図。
3A and 3B are diagrams showing a damper mechanism of a structure according to a second embodiment, wherein FIG. 3A is a vertical sectional view and FIG. 3B is a horizontal sectional view taken along line BB.

【図4】同じく全体斜視図。FIG. 4 is an overall perspective view of the same.

【図5】第2実施形態の作用を示す説明図。FIG. 5 is an explanatory view showing the operation of the second embodiment.

【図6】第3実施形態に係る構造物のダンパー機構を示
した図であり、(a) は鉛直断面図、(b)は拡大詳細図。
6A and 6B are diagrams showing a damper mechanism of a structure according to a third embodiment, where FIG. 6A is a vertical sectional view and FIG. 6B is an enlarged detailed view.

【図7】第3実施形態の変形例に係る概念図。FIG. 7 is a conceptual diagram according to a modified example of the third embodiment.

【符号の説明】[Explanation of symbols]

1、11、21 ダンパー機構 2 上部構造物 3 上部構造物の地下外壁 4 側方地盤 7 流体槽 8 連通管(連通手段) 13 オリフィス(連通手段) 14 隔壁 15、22 流体槽 23 流体ダンパー 24 ピストンロッド(連結機構) 25 シリンダ 26 オリフィス 27 ピストン 31 連結機構 1, 11 and 21 Damper mechanism 2 Upper structure 3 Underground outer wall of upper structure 4 Side ground 7 Fluid tank 8 Communication pipe (communication means) 13 Orifice (communication means) 14 Partition wall 15, 22 Fluid tank 23 Fluid damper 24 Piston Rod (connection mechanism) 25 Cylinder 26 Orifice 27 Piston 31 Connection mechanism

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 容量可変型の流体槽を上部構造物の地下
外壁を取り囲むようにして側方地盤との間に複数配置
し、前記各流体槽を所定の連通手段で相互に連結したこ
とを特徴とする構造物のダンパー機構。
1. A plurality of variable-capacity fluid tanks are disposed between the upper ground and the lateral ground so as to surround the underground outer wall of the upper structure, and the fluid tanks are interconnected by a predetermined communication means. The damper mechanism of the characteristic structure.
【請求項2】 前記連通手段を連結管で構成した請求項
1記載の構造物のダンパー機構。
2. The damper mechanism for a structure according to claim 1, wherein the communication means is a connecting pipe.
【請求項3】 上部構造物の周囲に設置された流体槽内
にシリンダおよび所定のオリフィスを持つピストンから
なる流体ダンパーを配設し、該流体ダンパーのピストン
をピストンロッド等の連結機構を介して前記上部構造物
に連結したことを特徴とする構造物のダンパー機構。
3. A fluid damper comprising a cylinder and a piston having a predetermined orifice is disposed in a fluid tank installed around the upper structure, and the piston of the fluid damper is connected via a connecting mechanism such as a piston rod. A damper mechanism for a structure, which is connected to the upper structure.
JP07294832A 1995-10-17 1995-10-17 Structure damper mechanism Expired - Fee Related JP3104846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07294832A JP3104846B2 (en) 1995-10-17 1995-10-17 Structure damper mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07294832A JP3104846B2 (en) 1995-10-17 1995-10-17 Structure damper mechanism

Publications (2)

Publication Number Publication Date
JPH09112069A true JPH09112069A (en) 1997-04-28
JP3104846B2 JP3104846B2 (en) 2000-10-30

Family

ID=17812838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07294832A Expired - Fee Related JP3104846B2 (en) 1995-10-17 1995-10-17 Structure damper mechanism

Country Status (1)

Country Link
JP (1) JP3104846B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002276196A (en) * 2001-03-14 2002-09-25 Nishimatsu Constr Co Ltd Seismically isolated structure
JP2016098573A (en) * 2014-11-21 2016-05-30 清水建設株式会社 Residual displacement restoration mechanism
WO2017136415A1 (en) * 2016-02-01 2017-08-10 University Of Houston System Systems and methods for periodic material-based seismic isolation for underground structures
CN112761177A (en) * 2021-01-18 2021-05-07 明阳智慧能源集团股份公司 Multifunctional comprehensive fan single-pile foundation and damping dynamic adjustment method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002276196A (en) * 2001-03-14 2002-09-25 Nishimatsu Constr Co Ltd Seismically isolated structure
JP2016098573A (en) * 2014-11-21 2016-05-30 清水建設株式会社 Residual displacement restoration mechanism
WO2017136415A1 (en) * 2016-02-01 2017-08-10 University Of Houston System Systems and methods for periodic material-based seismic isolation for underground structures
CN112761177A (en) * 2021-01-18 2021-05-07 明阳智慧能源集团股份公司 Multifunctional comprehensive fan single-pile foundation and damping dynamic adjustment method thereof
CN112761177B (en) * 2021-01-18 2022-12-20 明阳智慧能源集团股份公司 Multifunctional comprehensive fan single-pile foundation and damping dynamic adjustment method thereof

Also Published As

Publication number Publication date
JP3104846B2 (en) 2000-10-30

Similar Documents

Publication Publication Date Title
US6226989B1 (en) Wave energy converter
JP5337320B1 (en) Vibration suppression device
JP2014043873A (en) Damper
JPH04102742A (en) Earthquakeproof supporting device
JP2011112216A (en) Base isolation system
US6826873B2 (en) Aseismic system
CN109356959A (en) A kind of self-adapted remote Active vibration-reducing system
JP3104846B2 (en) Structure damper mechanism
JP4432208B2 (en) Damper and building using it
JP6603113B2 (en) Vibration suppression device for structures
JP3843174B2 (en) Seismic isolation structure
JP6909465B2 (en) Seismic isolation device
JPH08100545A (en) Damping device of steel skeleton structure
JP2003148545A (en) Hydraulic damping device
JP6603111B2 (en) Vibration suppression device for structures
JP2002130370A (en) Seismic isolator
JP2013050174A (en) Oil damper, and building structure
JPH08333918A (en) Base isolation device
JP7504549B2 (en) Rotating Inertial Mass Damper
JP6605924B2 (en) Vibration suppression device for structures
JP3724541B2 (en) Vibration control device between multiple building structures
JPH0317315A (en) Earthquake control foundation
JPH1026173A (en) Damper for vibration damping
JPH02147739A (en) Swaying damper device for structure
JP2006342933A (en) Rocking preventing device for base-isolation system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000804

LAPS Cancellation because of no payment of annual fees