JPH09111254A - Device for gasifying and cracking organic substance - Google Patents

Device for gasifying and cracking organic substance

Info

Publication number
JPH09111254A
JPH09111254A JP27419395A JP27419395A JPH09111254A JP H09111254 A JPH09111254 A JP H09111254A JP 27419395 A JP27419395 A JP 27419395A JP 27419395 A JP27419395 A JP 27419395A JP H09111254 A JPH09111254 A JP H09111254A
Authority
JP
Japan
Prior art keywords
gas
raw material
supply means
steam
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27419395A
Other languages
Japanese (ja)
Inventor
Shinji Kono
眞司 河野
Masaki Hirano
正樹 平野
Morio Yamada
守雄 山田
Koichi Yonezawa
鴻一 米沢
Yutaka Shimada
裕 島田
Kenji Tokumasa
賢治 徳政
Masahito Kaneko
雅人 金子
Michio Haneda
道夫 羽田
Ritsuo Hashimoto
律男 橋本
Kenji Shinya
謙治 新屋
Yoshibumi Ito
義文 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Chugoku Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Chugoku Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Chugoku Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP27419395A priority Critical patent/JPH09111254A/en
Publication of JPH09111254A publication Critical patent/JPH09111254A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide the device for gasifying and cracking the organic substance, capable of partially gasifying the organic substance to produce a raw material gas which is high in the molar ratio of hydrogen gas and which is used for synthesizing clean methanol substantially not containing soot or tar. SOLUTION: This device is constituted so as to produce a raw material gas for synthesizing methanol from an organic raw material. The device is provided with a gasification oven having an organic raw material-supplying means, a steam-supplying means, a combustion-supporting gas-supplying means and a jet gas-supplying means, and with a gas-cracking oven installed on the rear flow side of the gasification oven, having a nickel-containing alloy catalyst or a nickel catalyst therein, and equipped with a steam-supplying means and a combustion-supporting gas-supplying means. If necessary, a cyclone may be installed between the gasification oven and the gas-cracking oven.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はプラスチック、重質
油、残渣油などの有機物を部分ガス化してメタノール合
成用の原料ガスを製造する装置に関する。
TECHNICAL FIELD The present invention relates to an apparatus for producing a raw material gas for methanol synthesis by partially gasifying organic substances such as plastics, heavy oil, and residual oil.

【0002】[0002]

【従来の技術】図7は従来の装置の一例である有機物の
部分ガス化装置及びメタノール合成装置の概念を示す説
明図である。図7の装置において、装置の始動時にはガ
ス化炉51を予熱装置52によって約700℃に予熱
し、このガス化炉51に水封タンク56によってシール
された噴流用ガス供給ライン55から、例えば窒素ガ
ス、炭酸ガスなどのイナートガスである噴流用ガスを常
温で供給するとともに、水蒸気・酸素供給ライン53及
び原料供給装置54から、水蒸気と支燃ガスである酸素
との混合ガス及び例えばプラスチック廃棄物をペレット
状に粉砕した有機物原料を供給し、ガス化炉51内の高
温及び噴流用ガスの噴流によって有機物原料と水蒸気及
び酸素とを反応させてガス化し、メタノール合成用原料
ガス(H2 +CO+CO2 )を生成する。定常運転中の
ガス化炉51内は、この反応熱によって700℃前後の
温度が維持される。
2. Description of the Related Art FIG. 7 is an explanatory view showing the concept of an organic partial gasifier and a methanol synthesizer as an example of a conventional apparatus. In the apparatus of FIG. 7, at the time of starting the apparatus, the gasification furnace 51 is preheated to about 700 ° C. by the preheating device 52, and the gasification furnace 51 is supplied with a jet gas supply line 55 sealed by a water sealing tank 56, for example, nitrogen gas. A jet gas, which is an inert gas such as gas or carbon dioxide, is supplied at room temperature, and a mixed gas of water vapor and oxygen, which is a combustion-supporting gas, and, for example, plastic waste are supplied from a steam / oxygen supply line 53 and a raw material supply device 54. A raw material gas for synthesizing methanol (H 2 + CO + CO 2 ) is supplied by supplying an organic material raw material crushed into pellets, and reacting the organic material raw material with steam and oxygen by the high temperature in the gasification furnace 51 and the jet flow of the jet gas to gasify them. To generate. The temperature of around 700 ° C. is maintained in the gasification furnace 51 during steady operation by this reaction heat.

【0003】このメタノール合成用原料ガス(H2 +C
O+CO2 )を熱回収装置57によって所要の温度に冷
却し、ガス化炉51で副生したすす、タール、フライア
ッシュ、未反応の固体有機物等をガス洗浄装置58によ
って除去し、COシフト装置59によって一酸化炭素と
水蒸気とを水素ガスと炭酸ガスとに転換してメタノール
合成用の原料ガス組成に最適なH2 /CO/CO2 比と
し、次いでCO2 除去装置60によって余分の炭酸ガス
を除去し、メタノール合成装置61において、触媒存在
下でCO+2H2 →CH3 OH及びCO2 +3H2 →C
3 OH+H2Oの化学反応によりメタノール(CH3
OH)を合成する。
This raw material gas for synthesizing methanol (H 2 + C
(O + CO 2 ) is cooled to a required temperature by the heat recovery device 57, soot, tar, fly ash, unreacted solid organic matter and the like by-produced in the gasification furnace 51 are removed by the gas cleaning device 58, and the CO shift device 59 is used. To convert the carbon monoxide and water vapor into hydrogen gas and carbon dioxide gas to obtain the optimum H 2 / CO / CO 2 ratio for the raw material gas composition for methanol synthesis, and then use the CO 2 removal device 60 to remove excess carbon dioxide gas. After removal, CO + 2H 2 → CH 3 OH and CO 2 + 3H 2 → C in the presence of a catalyst in the methanol synthesizer 61.
Due to the chemical reaction of H 3 OH + H 2 O, methanol (CH 3
OH) is synthesized.

【0004】[0004]

【発明が解決しようとする課題】前述した従来の装置で
は、原料又はガス化条件等によりガス化炉51において
すす、タールなどが副生したり、未反応の有機物が残存
することがあり、これらがガス化炉51、熱回収装置5
7、ガス洗浄装置58間の配管壁や熱回収装置57、ガ
ス洗浄装置58内に付着し、これらの配管や装置を閉塞
したり、熱回収装置57の性能を低下させたり、また、
ガス洗浄装置58の洗浄負荷が増大するばかりか、ガス
洗浄装置58で完全に除去することができない場合には
COシフト装置59、CO2 除去装置60、メタノール
合成装置61の触媒上に付着して触媒性能を低下させた
り、これら装置の間の配管に付着して、設備の操業を阻
害させる原因となる。本発明は上記技術水準に鑑み、従
来技術におけるすすやタールなどの副生物による後続装
置への悪影響を防止することができ、安定運転が可能な
有機物のガス化・分解装置を提供するものである。
In the above-mentioned conventional apparatus, soot, tar, etc. may be by-produced in the gasification furnace 51 or unreacted organic matter may remain in the gasification furnace 51 depending on the raw materials or gasification conditions. Is a gasification furnace 51, a heat recovery device 5
7. Attached to the pipe walls between the gas cleaning devices 58, the heat recovery device 57, and the gas cleaning device 58 to block these pipes and devices, reduce the performance of the heat recovery device 57, and
If not only the cleaning load of the gas cleaning device 58 is increased but also the gas cleaning device 58 cannot completely remove the gas, the carbon shift device 59, the CO 2 removal device 60, and the methanol synthesis device 61 adhere to the catalyst. The catalyst performance may be deteriorated, or the catalyst may adhere to the pipes between these devices to hinder the operation of the equipment. In view of the above-mentioned state of the art, the present invention provides a gasification / decomposition device for organic matter, which can prevent adverse effects on a subsequent device due to by-products such as soot and tar in the prior art and can be stably operated. .

【0005】[0005]

【課題を解決するための手段】本発明は、(1)有機物
原料を水蒸気及び支燃ガスによって部分ガス化反応及び
同時にもしくはシリーズに反応で生成したガス中の炭化
水素成分を分解させてメタノール合成用の原料ガスを生
成する装置であって、有機物原料供給手段と、水蒸気供
給手段と、支燃ガス供給手段と、噴流用ガス供給手段と
を備えたガス化炉と、このガス化炉の後流側に設けられ
たニッケル含有合金又はニッケルの触媒を内装し、水蒸
気供給手段及び支燃ガス供給手段を備えたガス分解炉と
を具備してなることを特徴とする有機物のガス化・分解
装置及び(2)有機物原料を水蒸気及び支燃ガスによっ
て部分ガス化反応及び同時にもしくはシリーズに反応で
生成したガス中の炭化水素成分を分解させてメタノール
合成用の原料ガスを生成する装置であって、有機物原料
供給手段と、水蒸気供給手段と、支燃ガス供給手段と、
噴流用ガス供給手段とを備えたガス化炉と、このガス化
炉の後流側に設けられたニッケル含有合金又はニッケル
の触媒を内装し、水蒸気供給手段及び支燃ガス供給手段
を備えたガス分解炉とを具備し、前記ガス化炉とガス分
解炉との間にサイクロンを設けてなることを特徴とする
有機物のガス化・分解装置である。
Means for Solving the Problems In the present invention, (1) a methanol synthesis is carried out by decomposing a hydrocarbon component in a gas produced by a partial gasification reaction and a simultaneous or series reaction of an organic raw material with steam and a combustion-supporting gas. Which is a device for generating a raw material gas for use in a gasification furnace, comprising: an organic material raw material supply means, a steam supply means, a combustion-supporting gas supply means, and a jet gas supply means; An apparatus for gasifying and decomposing organic matter, characterized in that it comprises a nickel-containing alloy or nickel catalyst provided on the flow side, and a gas decomposition furnace equipped with steam supply means and combustion-supporting gas supply means. And (2) a raw material gas for synthesizing methanol by decomposing the hydrocarbon component in the gas produced by the partial gasification reaction of the organic raw material by steam and the combustion supporting gas and the simultaneous or series reaction A resulting device, the organic raw material supply means, a steam supply means, and the combustion-supporting gas supply means,
Gas equipped with a gasification furnace equipped with gas supply means for jet flow and a nickel-containing alloy or nickel catalyst provided on the downstream side of the gasification furnace, and equipped with water vapor supply means and combustion-supporting gas supply means An apparatus for gasifying and decomposing organic matter, comprising a decomposition furnace, and a cyclone provided between the gasification furnace and the gas decomposition furnace.

【0006】[0006]

【発明の実施の形態】本発明では、第1段のガス化炉に
有機物原料供給手段、水蒸気供給手段、支燃ガス供給手
段及び噴流ガス供給手段によって有機物原料、水蒸気、
支燃ガス及び噴流用ガスを供給し、高温で反応させてガ
ス化し、原料用ガスを生成する。このガス化反応で副生
されたフライアッシュや残留する未反応の固体有機物等
の固体物をサイクロンによって除去し、未反応の有機物
ガスと前記反応で副生するすす及びタールを含むメタノ
ール合成用原料ガスを第2段のガス分解炉に供給すると
ともに新たに支燃ガス及び水蒸気をガス分解炉入口部に
供給し、この温度を少なくとも第1段のガス化炉の温度
よりも上昇させ、ニッケル含有合金又はニッケルの触媒
によって前記未反応の有機物ガス、すす及びタールを水
素ガスモル比の高いメタノール合成用原料ガスに反応及
び分解する。なお、第1段のガス化炉で生成した原料用
ガス中のフライアッシュや未反応の固体有機物等が少な
い場合にはサイクロンを設置する必要はない。以上の作
用によって、原料用ガス中に、フライアッシュ、未反応
の固体有機物及びタールなどの重質分の無いクリーンな
メタノール合成用原料ガスを生成でき、下流機器を安定
して運転することが可能になる。
BEST MODE FOR CARRYING OUT THE INVENTION According to the present invention, an organic material raw material, steam, and steam are supplied to a first stage gasification furnace by means of an organic material raw material supplying means, a steam supplying means, a combustion supporting gas supplying means and a jet gas supplying means.
A combustion-supporting gas and a jet gas are supplied and reacted at a high temperature to be gasified to generate a raw material gas. Solid materials such as fly ash by-produced in this gasification reaction and residual unreacted solid organic matter are removed by a cyclone, and a raw material for methanol synthesis containing unreacted organic gas and soot and tar by-produced in the reaction. The gas is supplied to the second-stage gas decomposition furnace, and the combustion-supporting gas and steam are newly supplied to the gas-decomposition furnace inlet to raise this temperature at least higher than the temperature of the first-stage gasification furnace to contain nickel. The unreacted organic matter gas, soot and tar are reacted and decomposed into a raw material gas for synthesizing methanol having a high hydrogen gas molar ratio by an alloy or nickel catalyst. If there is little fly ash or unreacted solid organic matter in the raw material gas produced in the first stage gasification furnace, it is not necessary to install a cyclone. With the above operation, it is possible to generate a clean raw material gas for methanol synthesis that does not contain heavy components such as fly ash, unreacted solid organic matter and tar in the raw material gas, and it is possible to stably operate downstream equipment. become.

【0007】[0007]

【実施例】以下実施例により本発明をさらに具体的に説
明する。図1は本発明の一実施例である有機物の部分ガ
ス化装置及びメタノール合成装置の概念を示す説明図で
ある。図1において、第2段のガス分解炉2には、例え
ばニッケル含有合金であるSUS310Sもしくはニッ
ケルの触媒3が水平方向に複数段内装され、その入り側
には水蒸気・酸素供給ライン4が設けられていて、第1
段のガス化炉1の後流にサイクロン5を介して配置され
ている。このサイクロン5の下部にはダスト排出ライン
6が設けられている。第1段のガス化炉1には、従来の
装置と同様に、予熱装置52、水蒸気・酸素供給ライン
53、原料供給装置54及び水封タンク56でシールさ
れた噴流用ガス供給ライン55が設けられている。ガス
分解炉2の後流には、熱回収装置57、ガス洗浄装置5
8、従来の装置よりも小容量のCOシフト装置59、C
2 除去装置60及びメタノール合成装置61が配置さ
れている。ガス洗浄装置58とメタノール合成装置61
との間には、バイパス管7が設けられている。
The present invention will be described more specifically with reference to the following examples. FIG. 1 is an explanatory diagram showing the concept of an organic partial gasifier and a methanol synthesizer according to one embodiment of the present invention. In FIG. 1, in the second-stage gas decomposition furnace 2, for example, a nickel-containing alloy SUS310S or a nickel catalyst 3 is horizontally installed in a plurality of stages, and a steam / oxygen supply line 4 is provided on the inlet side. And the first
It is arranged in the downstream of the gasification furnace 1 of the stage via a cyclone 5. A dust discharge line 6 is provided below the cyclone 5. The first-stage gasification furnace 1 is provided with a preheating device 52, a steam / oxygen supply line 53, a raw material supply device 54, and a jet gas supply line 55 sealed by a water sealing tank 56, as in the conventional device. Has been. A heat recovery device 57 and a gas cleaning device 5 are provided downstream of the gas decomposition furnace 2.
8. CO shift device 59, C having a smaller capacity than the conventional device
An O 2 removal device 60 and a methanol synthesis device 61 are arranged. Gas scrubber 58 and methanol synthesizer 61
A bypass pipe 7 is provided between and.

【0008】装置の始動時には、ガス化炉1を予熱装置
52によって約700℃に予熱し、このガス化炉1に、
噴流用ガス供給ライン55から、例えば窒素ガス、炭酸
ガスなどのイナートガスである常温の噴流用ガスを供給
するとともに、水蒸気・酸素供給ライン53及び原料供
給装置54から水蒸気と支燃ガスである酸素との混合ガ
ス及び例えばプラスチック廃棄物をペレット状に粉砕し
た有機物原料を供給し、予熱された熱によって有機物原
料と水蒸気及び支燃ガスである酸素ガスとを反応させて
ガス化し、メタノール合成用原料ガス(H2 +CO+C
2 )を生成する。定常反応時には第1段のガス化炉1
内は、この反応熱によって700℃前後の温度に維持さ
れる。第1段のガス化炉1内では、有機物原料がガス化
されてメタノール合成用原料ガスが生成し、フライアッ
シュ、すす、タールなどの重質分が副生され、未反応の
固体有機物が残留する。
At the time of starting the apparatus, the gasification furnace 1 is preheated to about 700 ° C. by the preheating device 52, and the gasification furnace 1 is
A jet gas at room temperature, which is an inert gas such as nitrogen gas or carbon dioxide gas, is supplied from the jet gas supply line 55, and steam and oxygen as a combustion supporting gas are supplied from the steam / oxygen supply line 53 and the raw material supply device 54. Is supplied as a mixed gas and an organic raw material obtained by crushing, for example, plastic waste into pellets, and the preheated heat causes the organic raw material to react with water vapor and oxygen gas which is a combustion-supporting gas to gasify the raw material gas for methanol synthesis. (H 2 + CO + C
Produces O 2 ). During steady state reaction, first stage gasifier 1
The inside is maintained at a temperature around 700 ° C. by the heat of reaction. In the first-stage gasification furnace 1, the organic raw material is gasified to generate a raw material gas for methanol synthesis, and heavy components such as fly ash, soot, and tar are by-produced, and unreacted solid organic matter remains. To do.

【0009】この副生物及び残留物を含有したメタノー
ル合成用原料ガス(H2 +CO+CO2 )をサイクロン
5に供給してフライアッシュ、固体有機物等の固体物を
除去し、ダスト排出ライン6から排出する。原料ガス中
のダスト成分が少ない場合にはサイクロン5の設置は省
略してもよいことはもちろんである。そして、有機物ガ
ス、すす、タールなどが残留したメタノール合成用原料
ガス(H2 +CO+CO2 )をガス分解炉2に供給する
と共に、水蒸気酸素混合ガスを水蒸気・酸素供給ライン
4から供給して、少なくともガス化炉1よりも温度を上
昇させ、例えばSUS310Sに約20%含有されるN
i又はNiを触媒3として有機物ガス、すす、タールな
どと反応させ、H2 /COモル比の高いメタノール合成
用原料ガス(H2 +CO+CO2 )に反応及び分解す
る。
A raw material gas (H 2 + CO + CO 2 ) for synthesizing methanol containing the by-products and residues is supplied to the cyclone 5 to remove solid matters such as fly ash and solid organic matter, and then discharged from the dust discharge line 6. . Needless to say, the cyclone 5 may be omitted if the source gas contains a small amount of dust components. Then, a raw material gas (H 2 + CO + CO 2 ) for synthesizing methanol in which organic gas, soot, tar, etc. remain is supplied to the gas decomposition furnace 2, and a steam / oxygen mixed gas is supplied from the steam / oxygen supply line 4, The temperature is raised above that of the gasification furnace 1 and, for example, N contained in about 20% in SUS310S.
i or Ni is used as a catalyst 3 to react with an organic gas, soot, tar or the like to react and decompose into a raw material gas (H 2 + CO + CO 2 ) for synthesizing methanol having a high H 2 / CO molar ratio.

【0010】ガス化炉及びガス分解炉からなる実験炉
(石英ガラス製、外熱式電気炉付)により、第1段のガ
ス化炉及び第2段のガス分解炉の温度をそれぞれ700
℃及び1000℃に設定し、原料としてポリエチレンペ
レットを使用し、原料供給量0.2g/minの条件で
ガス化・分解試験を行った。ガス分解炉に充填する触媒
としてSUS310S金網又はNi金網を使用し、触媒
なしの場合のデータと比較した結果を図2〜図6に示
す。
An experimental furnace consisting of a gasification furnace and a gas decomposition furnace (made of quartz glass and equipped with an externally heated electric furnace) was used to raise the temperature of the first-stage gasification furnace and the second-stage gas decomposition furnace to 700 ° C., respectively.
C. and 1000.degree. C. were set, polyethylene pellets were used as a raw material, and a gasification / decomposition test was performed under the condition of a raw material supply rate of 0.2 g / min. FIGS. 2 to 6 show the results of comparison with the data obtained when SUS310S wire mesh or Ni wire mesh was used as a catalyst to be charged in the gas decomposition furnace and no catalyst was used.

【0011】図2は触媒の種類と原料ガスの発生量(N
リットル/min)との関係を示すグラフであり、無触
媒あるいはSUS310S金網の場合に比較して、Ni
金網を使用した場合は原料ガス発生量が大幅に増加する
ことがわかる。
FIG. 2 shows the type of catalyst and the amount of raw material gas generated (N
Is a graph showing the relationship with the liter / min), and is compared with the case of no catalyst or SUS310S wire mesh.
It can be seen that the amount of raw material gas generated is significantly increased when a wire net is used.

【0012】図3は触媒の種類と生成した原料ガス中の
2 /COモル比との関係を示すグラフであり、H2
COモル比が、触媒としてSUS310S金網を用いた
場合は無触媒の場合に比較して幾分上昇し、Ni金網を
使用した場合は大幅に上昇することがわかる。
[0012] Figure 3 is a graph showing the relationship between the H 2 / CO mole ratio of the raw material gas and the generated type of the catalyst, H 2 /
It can be seen that the CO molar ratio rises somewhat when the SUS310S wire mesh is used as the catalyst as compared with the case where no catalyst is used, and it is significantly increased when the Ni wire mesh is used.

【0013】図4は触媒の種類と生成した原料ガスの組
成との関係を示すグラフであり、触媒としてSUS31
0S金網を用いた場合はH2 の含有量が無触媒の場合と
ほぼ同程度で、COの含有割合が減少し、Ni金網を使
用した場合はH2 の含有量が大幅に増大すると共に、C
Oの割合が減少し、同時にメタン及びエチレンの量はほ
ぼ零となった。
FIG. 4 is a graph showing the relationship between the type of catalyst and the composition of the generated raw material gas.
When the 0S wire netting is used, the H 2 content is almost the same as when there is no catalyst, the CO content ratio decreases, and when the Ni wire netting is used, the H 2 content greatly increases. C
The proportion of O decreased, and at the same time, the amounts of methane and ethylene became almost zero.

【0014】図5及び図6はそれぞれ触媒の種類と生成
したメタノール合成用原料ガス中のタール及びすすの濃
度(g/m3 ・N)との関係を示すグラフであり、触媒
としてSUS310S金網又はNi金網を使用した場合
は原料ガス中のタール濃度及びすす濃度はほとんど零に
なることを示している。
FIGS. 5 and 6 are graphs showing the relationship between the type of catalyst and the concentrations of tar and soot (g / m 3 · N) in the produced raw material gas for synthesizing methanol, wherein SUS310S wire mesh or It shows that the tar concentration and the soot concentration in the source gas become almost zero when the Ni wire net is used.

【0015】これらの結果から、触媒としてNiあるい
はNiを含有する合金を用いることにより、ガス組成の
改善と同時にすす、タールが完全に分解されることが明
らかである。
From these results, it is apparent that by using Ni or an alloy containing Ni as a catalyst, the soot and tar are completely decomposed while the gas composition is improved.

【0016】このようにして生成した、すす、タールそ
の他の副生物をほとんど含有せず、H2 /COモル比の
高いメタノール合成用原料ガス(H2 +CO+CO2
を熱回収装置57によって所要の温度に冷却し、ガス分
解炉2で僅かに発生するフライアッシュをガス洗浄装置
58によって除去し、この原料ガスをバイパス管7によ
って直接メタノール合成装置61に供給し、メタノール
合成装置61において2H2 +CO→CH3 OH及びC
2 +3H2 →CH3 OH+H2 Oの化学反応でメタノ
ールを合成することができる。
The raw material gas for synthesis of methanol (H 2 + CO + CO 2 ) which is produced in this manner and contains almost no soot, tar or other by-products and has a high H 2 / CO molar ratio
Is cooled to a required temperature by the heat recovery device 57, fly ash slightly generated in the gas decomposition furnace 2 is removed by the gas cleaning device 58, and this raw material gas is directly supplied to the methanol synthesis device 61 by the bypass pipe 7, 2H 2 + CO → CH 3 OH and C in the methanol synthesizer 61
Methanol can be synthesized by a chemical reaction of O 2 + 3H 2 → CH 3 OH + H 2 O.

【0017】なお、必要により原料ガスの一部又は全部
をCOシフト装置59及びCO2 除去装置60を経由さ
せて組成を調整した後、メタノール合成装置61に供給
する。また、原料ガスの組成によってはCOシフト装置
59及びCO2 除去装置60を省略することもできる。
If necessary, part or all of the raw material gas is passed through the CO shift device 59 and the CO 2 removal device 60 to adjust the composition, and then supplied to the methanol synthesis device 61. Further, depending on the composition of the source gas, the CO shift device 59 and the CO 2 removal device 60 can be omitted.

【0018】[0018]

【発明の効果】本発明の装置によれば、有機物の部分ガ
ス化による原料ガスからフライアッシュ、固体有機物を
除去するとともに、第2段のガス分解炉において未反応
の有機物ガス、すす、及びタールをNi又はNi含有合
金の触媒により反応及び分解することにより、水素ガス
モル比が高くてすす又はタールをほとんど含有しないク
リーンなメタノール合成用原料ガスを生成することがで
きる。したがって、原料ガス中に水素ガスが不足するこ
とはほとんどないので、原料ガス中の一酸化炭素から水
素ガスを得る装置の容量を小さくしたり、また、炭酸ガ
スを除去する装置の容量を小さく又は省略することがで
きる。
According to the apparatus of the present invention, fly ash and solid organic matter are removed from the raw material gas by partial gasification of organic matter, and unreacted organic matter gas, soot, and tar in the second-stage gas decomposition furnace are removed. By reacting and decomposing with a catalyst of Ni or a Ni-containing alloy, a clean raw material gas for methanol synthesis having a high hydrogen gas molar ratio and containing almost no soot or tar can be produced. Therefore, there is almost no shortage of hydrogen gas in the raw material gas, so the capacity of the device for obtaining hydrogen gas from carbon monoxide in the raw material gas is reduced, or the capacity of the device for removing carbon dioxide gas is reduced. It can be omitted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例である有機物の部分ガス化・
分解装置及びメタノール合成装置の概念を示す説明図。
FIG. 1 is a partial gasification of organic matter according to an embodiment of the present invention.
Explanatory drawing which shows the concept of a decomposition apparatus and a methanol synthesis apparatus.

【図2】実施例における触媒の種類と原料ガスの発生量
との関係を示すグラフ。
FIG. 2 is a graph showing the relationship between the type of catalyst and the amount of raw material gas generated in Examples.

【図3】実施例における触媒の種類と生成した原料ガス
中のH2 /COモル比との関係を示すグラフ。
FIG. 3 is a graph showing the relationship between the catalyst type and the H 2 / CO molar ratio in the generated raw material gas in the examples.

【図4】実施例における触媒の種類と生成した原料ガス
の組成との関係を示すグラフ。
FIG. 4 is a graph showing the relationship between the type of catalyst and the composition of the generated raw material gas in the examples.

【図5】実施例における触媒の種類と生成した原料ガス
中のタールの濃度との関係を示すグラフ
FIG. 5 is a graph showing the relationship between the type of catalyst and the concentration of tar in the generated raw material gas in the examples.

【図6】実施例における触媒の種類と生成した原料ガス
中のすすの濃度との関係を示すグラフ
FIG. 6 is a graph showing the relationship between the type of catalyst and the concentration of soot in the generated raw material gas in the example.

【図7】従来の装置の一例である有機物の部分ガス化装
置及びメタノール合成装置の概念を示す説明図。
FIG. 7 is an explanatory view showing the concept of an organic partial gasifier and a methanol synthesizer, which are examples of conventional apparatuses.

フロントページの続き (72)発明者 平野 正樹 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 (72)発明者 山田 守雄 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 (72)発明者 米沢 鴻一 広島県広島市中区小町4番33号 中国電力 株式会社内 (72)発明者 島田 裕 広島県広島市中区小町4番33号 中国電力 株式会社内 (72)発明者 徳政 賢治 広島県広島市中区小町4番33号 中国電力 株式会社内 (72)発明者 金子 雅人 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 羽田 道夫 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 橋本 律男 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 新屋 謙治 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 伊藤 義文 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島製作所内Front page continuation (72) Masaki Hirano 3-3-22 Nakanoshima, Kita-ku, Osaka City, Osaka Prefecture Kansai Electric Power Co., Inc. (72) Morio Yamada 3-32-22 Nakanoshima, Kita-ku, Osaka City, Osaka Kansai Kansai Electric Power Company (72) Inventor Koichi Yonezawa 4-33 Komachi, Naka-ku, Hiroshima City, Hiroshima Prefecture China Electric Power Company (72) Inventor Yu Shimada 4-33 Komachi, Naka-ku, Hiroshima City, Hiroshima Prefecture (72) Inventor Kenji Tokumasa 4-33 Komachi, Naka-ku, Hiroshima City, Hiroshima Prefecture Chugoku Electric Power Co., Inc. (72) In-house Masato Kaneko 4-6-22 Kannon-shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Mitsubishi Heavy Industries Ltd. Hiroshima Research In-house (72) Michio Haneda 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Mitsubishi Heavy Industries, Ltd.Hiroshima Laboratory (72) Inventor Ritsuo Hashimoto 4--22 Kannon Shinmachi, Nishi-ku, Hiroshima Prefecture Mitsubishi Heavy Industries Inside the Hiroshima Laboratory (72) Inventor Kenji Shinya Kannon Shin, Nishi-ku, Hiroshima City, Hiroshima Prefecture 4-6-22 Machi, Hiroshima Research Laboratory, Mitsubishi Heavy Industries, Ltd. (72) Inventor Yoshifumi Ito 4-6-22, Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Mitsubishi Heavy Industries, Ltd. Hiroshima Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 有機物原料を水蒸気及び支燃ガスによっ
て部分ガス化反応及び同時にもしくはシリーズに反応で
生成したガス中の炭化水素成分を分解させてメタノール
合成用の原料ガスを生成する装置であって、有機物原料
供給手段と、水蒸気供給手段と、支燃ガス供給手段と、
噴流用ガス供給手段とを備えたガス化炉と、このガス化
炉の後流側に設けられたニッケル含有合金又はニッケル
の触媒を内装し、水蒸気供給手段及び支燃ガス供給手段
を備えたガス分解炉とを具備してなることを特徴とする
有機物のガス化・分解装置。
1. An apparatus for producing a raw material gas for methanol synthesis by decomposing a hydrocarbon component in a gas produced by partial gasification reaction and simultaneous or series reaction of an organic raw material with steam and supporting gas. An organic raw material supply means, a steam supply means, a combustion-supporting gas supply means,
Gas equipped with a gasification furnace equipped with gas supply means for jet flow and a nickel-containing alloy or nickel catalyst provided on the downstream side of the gasification furnace, and equipped with water vapor supply means and combustion-supporting gas supply means An apparatus for gasifying and decomposing organic matter, comprising a decomposition furnace.
【請求項2】 有機物原料を水蒸気及び支燃ガスによっ
て部分ガス化反応及び同時にもしくはシリーズに反応で
生成したガス中の炭化水素成分を分解させてメタノール
合成用の原料ガスを生成する装置であって、有機物原料
供給手段と、水蒸気供給手段と、支燃ガス供給手段と、
噴流用ガス供給手段とを備えたガス化炉と、このガス化
炉の後流側に設けられたニッケル含有合金又はニッケル
の触媒を内装し、水蒸気供給手段及び支燃ガス供給手段
を備えたガス分解炉とを具備し、前記ガス化炉とガス分
解炉との間にサイクロンを設けてなることを特徴とする
有機物のガス化・分解装置。
2. An apparatus for producing a raw material gas for methanol synthesis by decomposing a hydrocarbon component in a gas produced by partial gasification reaction and simultaneous or series reaction of an organic raw material with steam and supporting gas. An organic raw material supply means, a steam supply means, a combustion-supporting gas supply means,
Gas equipped with a gasification furnace equipped with gas supply means for jet flow and a nickel-containing alloy or nickel catalyst provided on the downstream side of the gasification furnace, and equipped with water vapor supply means and combustion-supporting gas supply means An apparatus for gasifying and decomposing organic matter, comprising a decomposition furnace, and a cyclone provided between the gasification furnace and the gas decomposition furnace.
JP27419395A 1995-10-23 1995-10-23 Device for gasifying and cracking organic substance Pending JPH09111254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27419395A JPH09111254A (en) 1995-10-23 1995-10-23 Device for gasifying and cracking organic substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27419395A JPH09111254A (en) 1995-10-23 1995-10-23 Device for gasifying and cracking organic substance

Publications (1)

Publication Number Publication Date
JPH09111254A true JPH09111254A (en) 1997-04-28

Family

ID=17538336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27419395A Pending JPH09111254A (en) 1995-10-23 1995-10-23 Device for gasifying and cracking organic substance

Country Status (1)

Country Link
JP (1) JPH09111254A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003012012A1 (en) * 2001-07-31 2003-02-13 Hitoshi Inoue Method of biomass gasification
WO2003029390A1 (en) * 2001-09-28 2003-04-10 Ebara Corporation Process for reforming inflammable gas, apparatus for reforming inflammable gas and gasification apparatus
WO2004087839A1 (en) * 2003-03-28 2004-10-14 Hachinohe Institute Of Technology Fluidized bed gasifier, gas fuel producing method, and gas power generation system
WO2005093014A1 (en) * 2004-03-26 2005-10-06 Idemitsu Kosan Co., Ltd. Method for removing tar in fluidized layer furnace
JP2007099927A (en) * 2005-10-05 2007-04-19 Takuma Co Ltd Tar cracking system and cracking method
JP2010111779A (en) * 2008-11-06 2010-05-20 Takuma Co Ltd Tar cracking method and tar cracking facility
WO2011065046A1 (en) 2009-11-27 2011-06-03 三菱重工業株式会社 Methanol manufacturing system and method
CN111056680A (en) * 2019-12-13 2020-04-24 江苏中圣高科技产业有限公司 System and method for on-site purification and cyclic utilization of industrial flare water-sealed tank sewage

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003012012A1 (en) * 2001-07-31 2003-02-13 Hitoshi Inoue Method of biomass gasification
US9187704B2 (en) 2001-07-31 2015-11-17 Hitoshi Inoue Method of biomass gasification
WO2003029390A1 (en) * 2001-09-28 2003-04-10 Ebara Corporation Process for reforming inflammable gas, apparatus for reforming inflammable gas and gasification apparatus
WO2004087839A1 (en) * 2003-03-28 2004-10-14 Hachinohe Institute Of Technology Fluidized bed gasifier, gas fuel producing method, and gas power generation system
WO2005093014A1 (en) * 2004-03-26 2005-10-06 Idemitsu Kosan Co., Ltd. Method for removing tar in fluidized layer furnace
JP2007099927A (en) * 2005-10-05 2007-04-19 Takuma Co Ltd Tar cracking system and cracking method
JP4667192B2 (en) * 2005-10-05 2011-04-06 株式会社タクマ Tar decomposition system and tar decomposition method
JP2010111779A (en) * 2008-11-06 2010-05-20 Takuma Co Ltd Tar cracking method and tar cracking facility
WO2011065046A1 (en) 2009-11-27 2011-06-03 三菱重工業株式会社 Methanol manufacturing system and method
CN111056680A (en) * 2019-12-13 2020-04-24 江苏中圣高科技产业有限公司 System and method for on-site purification and cyclic utilization of industrial flare water-sealed tank sewage

Similar Documents

Publication Publication Date Title
US7932298B2 (en) Method and apparatus for reducing CO2 in a stream by conversion to a syngas for production of energy
US7897649B2 (en) Operation of a steam methane reformer by direct feeding of steam rich producer gas from steam hydro-gasification
US8178588B2 (en) Method and apparatus for reducing CO2 in a stream by conversion to a syngas for production of energy
US20080031809A1 (en) Controlling the synthesis gas composition of a steam methane reformer
EP2812276A1 (en) Method for reducing co2 in a gaseous stream by conversion to a syngas for production energy
JPH09111254A (en) Device for gasifying and cracking organic substance
JP2005289856A (en) Preparation method of dimethyl ether using biomass
JP3881712B2 (en) Operation method of organic gasification and decomposition equipment
JP3377546B2 (en) Gasification method of organic matter
JP3009541B2 (en) Waste gasification method
JPH05523B2 (en)
JP2002285171A (en) Biomass gasifier and method for gasifying biomass
CN111321011A (en) Organic garbage decomposition and gasification system and method
WO2004087839A1 (en) Fluidized bed gasifier, gas fuel producing method, and gas power generation system
JPH09111255A (en) Device for gasifying and cracking organic substance
JP3860850B2 (en) Organic matter spouted bed gasifier
JP2001026788A (en) Method and device for producing synthetic gas
WO2023286730A1 (en) Synthetic fuel production method
JP4863889B2 (en) Coal hydrocracking process
JP3912245B2 (en) Hydrogen production equipment
JPH08296975A (en) Organic matter gasifying apparatus
Kupfer et al. Reactor for gasifying solid fuels
CN117642486A (en) Method for producing synthetic fuel
CN111621336A (en) Coal catalytic gasification system
Hausberger et al. Methanation process for the production of an alternate fuel for natural gas.[11 claims]

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A02 Decision of refusal

Effective date: 20050517

Free format text: JAPANESE INTERMEDIATE CODE: A02