JPH09108557A - Agitation treatment method - Google Patents

Agitation treatment method

Info

Publication number
JPH09108557A
JPH09108557A JP29364795A JP29364795A JPH09108557A JP H09108557 A JPH09108557 A JP H09108557A JP 29364795 A JP29364795 A JP 29364795A JP 29364795 A JP29364795 A JP 29364795A JP H09108557 A JPH09108557 A JP H09108557A
Authority
JP
Japan
Prior art keywords
tank
blade
stirring
liquid
paddle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29364795A
Other languages
Japanese (ja)
Inventor
Ryuichi Yatomi
隆一 彌富
Hitomi Sato
仁美 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP29364795A priority Critical patent/JPH09108557A/en
Publication of JPH09108557A publication Critical patent/JPH09108557A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the properties, stability, and by-product reduction, etc. of a product by setting a bottom paddle in the lower part of a rotary shaft which is arranged at the center of a vertical cylindrical agitation tank, and carrying out the treatment of the mixing, dissolution, crystallization, polycondensation reaction, etc. of fluid to be agitated with the use of an agitator in which a lattice blade is set on its upper side. SOLUTION: One end of an agitation shaft 2 which is installed in the middle of a cylindrical agitation tank 1 is supported in the tank bottom part through bearings 3, and the other end is connected with a driving device 4 on the top of the tank through a coupling 5. Two bottom paddles 7 are set in the lower end part of the agitation shaft 2, and the lower end parts of the paddles 7 are contacted slidingly with the bottom wall surface of the agitation tank 1. A lattice blade 6 consisting of an arm part 8 and a strip 9 is set in a part upper than the bottom paddle 7 of the agitation shaft 2, liquid is sheared and fractionized during rotation by the lattice blade 6, the liquid which is fractionized by minute swirls generated on the rear side of each component member is mixed. Moreover, several plane baffle plates 10 are installed on the side wall surface of the agitation tank 1 at intervals.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種の被処理流体,半
流体,粉体等の撹拌処理方法に関し、特に槽内の各種流
体、半流体をボトムパドルと格子翼から成る組合せ翼に
よって撹拌しつつ溶解、重合、縮合等の反応処理を行う
流体処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for stirring various kinds of fluids to be processed, semi-fluids, powders, etc., and in particular, stirring various fluids and semi-fluids in a tank with a combination blade consisting of bottom paddles and lattice blades. The present invention also relates to a fluid treatment method in which a reaction treatment such as dissolution, polymerization and condensation is performed.

【0002】[0002]

【従来の技術】各種流体、半流体等の撹拌処理は一般
に、撹拌槽に処理物を投入し、該撹拌槽内の中心に設け
た撹拌翼の回転に伴なって槽内の処理物(被撹拌物質)
に旋回流と上下循環流を生じさせて撹拌を行う。撹拌効
果を高めるため撹拌翼の形状に種々の工夫が凝らされ、
例えばパドル翼,タービン翼,プロペラ翼等があり、ま
た翼下部を平板状のボトムパドルとし、中央〜上部を縦
材と横材から成る格子翼としたものも開示されている
(例えば特公平1−37173号)。
2. Description of the Related Art In general, stirring treatment of various fluids, semi-fluids, etc., is performed by charging a treated material into a stirring tank and rotating the stirring blade provided at the center of the stirring tank (the treated material in the tank). Stirring material)
A swirling flow and an up-and-down circulation flow are generated to stir. In order to enhance the stirring effect, various innovations were made in the shape of the stirring blade,
For example, there are paddle blades, turbine blades, propeller blades, etc., and a bottom paddle having a flat plate lower portion and a lattice blade composed of a vertical member and a horizontal member at the center to the upper portion are also disclosed (for example, Japanese Patent Publication No. 1). -37173).

【0003】撹拌処理の形態としては、例えば低粘度域
および中粘度域での処理物の混合、固体粒子の処理物中
への懸濁,分散、処理物中への気体の分散、処理物の除
熱等があり、また単に槽内処理物の均一化のみでなく、
これによって各種の化学反応、濃縮、抽出、溶解、析
出、熱交換等多種のプロセス上の目的を有している。
The form of the stirring treatment includes, for example, mixing of the processed products in a low viscosity range and a medium viscosity range, suspension and dispersion of solid particles in the processed product, gas dispersion in the processed product, and the processed product. There is heat removal, etc.
As a result, it has various process objectives such as various chemical reactions, concentration, extraction, dissolution, precipitation and heat exchange.

【0004】従来の撹拌処理は一般にはパドル翼、特に
多段パドル翼による撹拌装置で行うことが多。パドル翼
は槽中心の回転軸の下部に平板状の羽根板を固着した構
造のものであり、翼回転数を高くしてパドル翼の外端か
ら半径方向に吐出される流体の流量を多くすることによ
り、流体が槽壁に衝突して上方および下方に回り、再び
翼の箇所へ戻る循環流を生じさせて流体の混合を行う。
The conventional stirring process is generally performed by a stirring device having a paddle blade, especially a multistage paddle blade. The paddle blade has a structure in which a flat blade plate is fixed to the lower part of the rotation axis in the center of the tank, and the blade rotation speed is increased to increase the flow rate of the fluid discharged in the radial direction from the outer end of the paddle blade. As a result, the fluid collides with the tank wall and travels upward and downward, and a circulating flow returning to the location of the blade is generated again to mix the fluid.

【0005】[0005]

【発明が解決しようとする課題】従来最もよく使われて
いる多段パドル翼による撹拌は、槽内の上下に不連続に
位置する翼が引き起こす流れの相互干渉が原因となり、
槽底部から液面までを1つの液流で循環させることが困
難である。このような撹拌装置で晶析操作(冷却晶析、
反応晶析、濃縮晶析)あるいは懸濁重合、乳化重合、塩
析・酸析操作等を行う場合、粒子径、液滴径の制御が困
難である。結晶等の固体粒子の浮遊、均一分散のために
は比較的高速で翼を回転させる必要があり、撹拌翼によ
る結晶粒子等の物理的破砕が生じ、微細な結晶(微粉)
が多く生成される。また、翼近傍が高剪断場となるた
め、粒子または液滴の形成過程において微細な粒径のも
のが多くなる。これらの微粉は後工程における脱水時の
フィルタの目詰りおよび乾燥時の粉舞い等のトラブルの
原因となる。また撹拌回転数を変化させて粒子径の制御
を行う場合、翼近傍と槽壁付近での剪断力の差により粒
子径分布が拡大する。さらに、大粒径の粒子を得るには
低速回転での運転が必要となるが、従来のパドル翼で
は、固体粒子の分散不良、槽底部への沈降等により、粒
子径の揃った大粒径粒子の液が得られにくいといった問
題があった。
The stirring by the multi-stage paddle blades, which has been most often used in the past, is caused by mutual interference of flows caused by blades located discontinuously in the upper and lower parts of the tank,
It is difficult to circulate from the tank bottom to the liquid surface with one liquid flow. Crystallization operation (cooling crystallization,
When performing reaction crystallization, concentrated crystallization) or suspension polymerization, emulsion polymerization, salting-out / aciding-out operation, etc., it is difficult to control the particle diameter and the droplet diameter. In order to suspend and evenly disperse solid particles such as crystals, it is necessary to rotate the blades at a relatively high speed, and the stirring blades cause physical crushing of the crystal particles, resulting in fine crystals (fine powder).
Is generated a lot. Further, since a high shear field is generated in the vicinity of the blade, many particles having a fine particle size are formed in the process of forming particles or droplets. These fine powders cause troubles such as filter clogging during dehydration in the subsequent process and dusting during drying. Further, when the particle diameter is controlled by changing the stirring rotation speed, the particle diameter distribution is expanded due to the difference in shearing force between the blade and the tank wall. Furthermore, in order to obtain large-sized particles, it is necessary to operate at low speed, but with conventional paddle blades, due to poor dispersion of solid particles, sedimentation at the bottom of the tank, etc. There is a problem that it is difficult to obtain a liquid of particles.

【0006】また、従来の撹拌機による晶析操作、懸濁
重合、モノマー脱揮槽、ポリマービーズの洗浄槽におい
ては、払い出しスラリー液の濃度の変動が大きい。スラ
リー液を払い出して後工程の脱水工程へ送る場合、この
スラリー濃度の変動は、脱水機の負荷に大きく影響を及
ぼすため、均一な濃度での払い出しが必要である。従来
のパドル翼では、払い出し時の液レベル変化でフローパ
ターンが変わり、スラリーの分散状況が変化するので、
均一な濃度での払い出しが困難である。脱水機の能力
も、濃度変化時のピーク濃度に支配されるため、過剰な
能力、設備が必要となる。
Further, in the conventional crystallization operation using a stirrer, suspension polymerization, monomer devolatilization tank, and polymer beads washing tank, the concentration of the discharged slurry liquid varies greatly. When the slurry liquid is discharged and sent to the subsequent dehydration step, the fluctuation of the slurry concentration greatly affects the load of the dehydrator, and therefore it is necessary to discharge the slurry at a uniform concentration. In the conventional paddle blade, the flow pattern changes with the liquid level change at the time of payout, and the dispersion state of the slurry changes, so
It is difficult to dispense with a uniform concentration. The capacity of the dehydrator is also governed by the peak concentration when the concentration changes, so excess capacity and equipment are required.

【0007】晶析操作、懸濁重合、乳化重合、溶液重合
の反応において、槽内壁面および撹拌軸や撹拌翼への付
着物が発生する。従来のパドル翼では、翼近傍と槽壁付
近の液流動状況が大きく異なるため、槽壁部の流動が悪
化し、槽内壁への付着が助長される。特に、冷却晶析に
おいては、槽外側のジャケットからの冷却により槽壁金
属温度が低下するため、壁面部の流動低下により、金属
面上での結晶核の発生、成長による結晶固着が見られ
る。このような付着が形成されると、ジャケットからの
伝熱能力が著しく低下し、冷却時間の増大等プロセス面
での悪影響が大となる。また、強剪断を嫌うABS樹脂
等の乳化重合では、パドル翼近傍での剪断凝集による撹
拌軸および翼への付着が見られる。さらに、酢ビ系の乳
化重合に見られるような比較的高粘度系へのモノマー
(低粘度)のフィードにおいては、液界面の巻き込み不
良により、液面の軸部にモノマー滞りが生じ、異常重合
物(ゲル化物)が生成され、これが撹拌軸に付着する。
In the crystallization operation, suspension polymerization, emulsion polymerization, and solution polymerization reactions, deposits are generated on the inner wall surface of the tank, the stirring shaft, and the stirring blade. In the conventional paddle blade, since the liquid flow conditions near the blade and the tank wall are significantly different, the flow in the tank wall portion is deteriorated and adhesion to the inner wall of the tank is promoted. Particularly, in the cooling crystallization, the temperature of the metal on the tank wall decreases due to the cooling from the jacket on the outside of the tank, so that the flow of the wall surface decreases and the crystal nucleation on the metal surface and the crystal fixation due to the growth are observed. When such adhesion is formed, the heat transfer capability from the jacket is significantly reduced, and the adverse effect on the process such as the increase of cooling time becomes great. Further, in emulsion polymerization of an ABS resin or the like that dislikes strong shearing, adhesion to the stirring shaft and the blade due to shear aggregation near the paddle blade is observed. Furthermore, in the case of feeding a monomer (low viscosity) to a relatively high-viscosity system as seen in vinyl acetate-based emulsion polymerization, monomer stagnation occurs at the shaft part of the liquid surface due to poor entrainment of the liquid interface, and abnormal polymerization occurs. A substance (gelled substance) is generated and adheres to the stirring shaft.

【0008】懸濁重合、乳化重合において、液中での凝
集物が発生する。パドル翼では槽内剪断強さの分布が大
きいため、強剪断場(翼付近)では剪断凝集によるフロ
ックが、また翼から大きく離れた槽壁付近では混合不良
による分子凝集が発生する。このフロックは反応終了後
の払い出し時にストレーナ等で回収、除去する必要があ
り、運転操業上のデメリットは大きい。また懸濁重合で
の大粒径化においても、或る程度以下の回転数になる
と、固体粒子の分散不良により槽底部に凝集物が発生
し、大粒径の粒子が得られない。
In suspension polymerization and emulsion polymerization, agglomerates are generated in the liquid. Since the paddle blade has a large distribution of shear strength in the tank, flocs due to shear aggregation occur in the strong shear field (near the blade), and molecular aggregation due to poor mixing occurs near the tank wall greatly separated from the blade. This floc needs to be collected and removed by a strainer or the like at the time of paying out after the reaction is completed, which is a great disadvantage in operation and operation. Even when the particle size is increased by suspension polymerization, when the number of rotations is below a certain level, the solid particles do not disperse well and agglomerates are generated at the bottom of the tank, so that particles with a large particle size cannot be obtained.

【0009】溶液重合、クラムフォーマー、モノマー脱
揮槽、塊状重合において、エントレ(飛沫同伴)および
フォーミング(発泡)が発生する。一般に槽内液の溶剤
を真空条件下で蒸発させる系では、脱揮速度を上げるた
め、極力高真空下で運転をする。しかし、パドル翼では
気液界面の流動が悪く、蒸発量の増大につれてエントレ
およびフォーミングが発生し、それ以上は蒸発量を上げ
られない。特に、溶液重合、塊状重合等の高粘度系では
突沸現象が生じやすい。
In solution polymerization, crumb former, monomer devolatilization tank, and bulk polymerization, entrainment (entrainment of droplets) and forming (foaming) occur. Generally, in a system in which the solvent of the liquid in the tank is evaporated under vacuum conditions, the system is operated under a high vacuum as much as possible in order to increase the devolatilization rate. However, in the paddle blade, the flow at the gas-liquid interface is poor, and entrainment and forming occur as the evaporation amount increases, and the evaporation amount cannot be increased further. In particular, the bumping phenomenon is likely to occur in a high viscosity system such as solution polymerization or bulk polymerization.

【0010】塊状重合、溶液重合において高粘度系での
脱揮速度が低下する。高粘度系では、パドル翼の場合、
液面の更新速度が小さいため、気液界面からの脱揮速度
が粘度の増大につれ、極端に低下する。特に、非ニュー
トン流体の場合(ポリマー系ではほとんどが非ニュート
ン性を示す)、翼取付け高さから液面が大きく離れる
と、翼からの循環流が液界面まで伝播せず、脱揮性能が
低下する。
In bulk polymerization and solution polymerization, the devolatilization rate in a high-viscosity system decreases. In high viscosity systems, paddle blades
Since the renewal speed of the liquid surface is small, the devolatilization speed from the gas-liquid interface decreases extremely as the viscosity increases. Especially in the case of non-Newtonian fluids (most of them are non-Newtonian in polymer system), when the liquid surface is far from the blade mounting height, the circulation flow from the blades does not propagate to the liquid interface and the devolatilization performance deteriorates. To do.

【0011】少量多品種によるバッチ処理操作およびモ
ノマーの分流等、運転時に液量の増大が起こる操作にお
いて、液レベル変化に対応できない。従来の多段パドル
翼の場合、液高さと翼の取付け高さの位置関係により、
フローパターンが変化し、槽内の混合状況が液深により
異なってしまう。また、コイル、ジャケットでの伝熱性
能が液高さ方向で変化しているため、液面の変化に応じ
て伝熱能力が変化する。したがって安定した運転ができ
ない。EO、POの付加反応等、初期仕込み量を極力少
なくしたい系では、通常のパドル翼を用いては翼高さ以
下の液量で運転できない。
It is not possible to cope with a change in liquid level in an operation that causes an increase in the amount of liquid during operation, such as a batch processing operation with a small amount of many kinds of products and a diversion of a monomer. In the case of the conventional multi-stage paddle blade, due to the positional relationship between the liquid height and the blade mounting height,
The flow pattern changes, and the mixing status in the tank changes depending on the liquid depth. Further, since the heat transfer performance of the coil and the jacket changes in the liquid height direction, the heat transfer performance changes according to the change of the liquid surface. Therefore, stable operation cannot be performed. In a system where it is desired to reduce the initial charging amount as much as possible such as an addition reaction of EO and PO, it is impossible to operate with a normal paddle blade at a liquid amount equal to or lower than the blade height.

【0012】モノマー滴下の酸化重合あるいは重合末期
での各種添加剤の均一混合操作の場合、異粘度系での混
合不良が生じる。従来の多段パドル翼では、上・下段で
各々独立したフローパターンとなるため、槽内液高さ方
向の液の入れ替えが悪くなる。特に、酢ビ系の乳化重合
に見られるような高粘度流体への低粘度モノマーの連続
フィードでは、低粘度液の高粘度液中への食い込みが弱
く、フィード速度を落とさざるを得ない。また、重合末
期での反応停止剤等の低粘度液(少量)の均一分散不良
により、重合度のコントロール性が悪い。
In the case of oxidative polymerization of dropping monomer or uniform mixing operation of various additives at the final stage of polymerization, poor mixing occurs in a hetero-viscosity system. In the conventional multi-stage paddle blade, since the upper and lower stages have independent flow patterns, it is difficult to exchange the liquid in the liquid height direction in the tank. In particular, in continuous feeding of low-viscosity monomer into a high-viscosity fluid such as that found in vinyl acetate-based emulsion polymerization, the low-viscosity fluid is less likely to bite into the high-viscosity fluid, and the feed rate must be reduced. In addition, the controllability of the degree of polymerization is poor due to poor uniform dispersion of a low viscosity liquid (small amount) such as a reaction terminator at the end of polymerization.

【0013】水添反応あるいは塩素化反応の場合、気・
液界面からのガス巻き込み性能の低下が見られる。密閉
系でのガス吸収反応(水添反応等)では、反応後期は、
気・液界面からのガス巻き込みが反応進行のポイントと
なる。気相部の圧力が低下しない限り、ガスをフィード
できないので、パドル翼のような界面からの巻き込み量
の小さい翼ではほとんど反応が進行しなくなる。気・液
界面付近に翼を取り付けても、上下の液循環が少ないた
め、液面付近のみのガス巻き込みとなり、効果は小さ
い。
In the case of hydrogenation reaction or chlorination reaction,
A decrease in gas entrainment performance from the liquid interface is seen. In the gas absorption reaction (hydrogenation reaction, etc.) in a closed system,
The entrainment of gas from the gas-liquid interface is the key to the progress of the reaction. Since gas cannot be fed unless the pressure in the gas phase portion drops, the reaction hardly progresses with a blade such as a paddle blade with a small amount of entrainment from the interface. Even if a blade is attached near the gas / liquid interface, the liquid circulation up and down is small, so gas entrainment occurs only near the liquid surface, and the effect is small.

【0014】生分解性ポリマー、バイオセルロース、熱
可塑性エラストマー等、高粘度系の生成処理でのガス吸
収性能が低下する。低粘度系のガス吸収で一般に使用さ
れるパドル翼、タービン型翼は、高粘度では翼部に大き
な気泡滞りができ、翼が気泡の中で空回りするため、極
端に動力が低下し、液の吐出性能が大幅に低下する。ま
た、吐出性能低下による全体循環流の現象は、槽内上下
のPH、濃度、温度のムラを発生させることになる。
The gas absorption performance in the production treatment of high viscosity type such as biodegradable polymer, biocellulose and thermoplastic elastomer is lowered. With high viscosity, paddle blades and turbine type blades that are generally used for low viscosity gas absorption have large air bubbles in the blades, and the air bubbles spin in the air bubbles. Discharge performance is significantly reduced. Further, the phenomenon of the whole circulation flow due to the deterioration of the ejection performance causes unevenness of PH, concentration and temperature in the upper and lower parts of the tank.

【0015】PVA、酢酸セルロース、リグニン等の粉
体溶解操作において、粉体溶解時のダマ(未溶解物)が
発生する。粉体の溶媒中への直接投入において、母液の
粘度が増大した場合、パドル翼では液界面の巻き込み流
が弱いため、液面に投下された粉体が液中へ巻き込まれ
ず高粘度流体面に積層してしまい、大きなダマを形成し
てしまう。形成されたダマは、流れの弱い槽壁内面に付
着し、いつまでも溶解せずに残ってしまう。
In the powder dissolution operation of PVA, cellulose acetate, lignin, etc., lumps (undissolved matter) are generated during powder dissolution. When the viscosity of the mother liquor increases when the powder is directly poured into the solvent, the entrained flow at the liquid interface is weak in the paddle blade, so the powder dropped on the liquid surface does not get caught in the liquid and becomes a highly viscous fluid surface. It will be stacked and a big lump will be formed. The formed lumps adhere to the inner wall of the tank wall where the flow is weak, and remain unmelted forever.

【0016】固体(金属触媒)を用いたガス吸収反応に
おいて、固体触媒が破砕される。槽内に固体触媒を用い
た場合、パドル翼の如き高速回転翼では、触媒が破砕さ
れ、活性を失ってしまう。比較的高価な金属触媒では、
その再利用も重要視されており、破砕の少ない撹拌翼が
要望されている。酵素等の担持体は寒天状の非常にやわ
らかい物が多く、パドル翼での高剪断撹拌では破砕され
てしまう例が多い。
In the gas absorption reaction using a solid (metal catalyst), the solid catalyst is crushed. When a solid catalyst is used in the tank, the catalyst is crushed and loses activity in a high speed rotating blade such as a paddle blade. With relatively expensive metal catalysts,
The recycling is also considered important, and a stirring blade with less crushing is desired. Most of the supports such as enzymes are agar-like and very soft, and are often crushed by high shear stirring with a paddle blade.

【0017】PS、PP等の懸濁、析出重合、高濃度晶
析等の操作において、高濃度スラリーでの分散不良が発
生する。例えばスラリー濃度が40〜50wt%程度以
上となると、液性状がシャーベット状となり、小形のパ
ドル翼では翼部分のみが流動するのみで槽壁部が動かな
くなる。液流動が翼付近のみで起こり、回転数を上げて
も空回りを起こし、動力増大、循環流の形成につながら
ない。
In operations such as suspension of PS, PP, etc., precipitation polymerization, high-concentration crystallization, etc., poor dispersion occurs in a high-concentration slurry. For example, when the slurry concentration is about 40 to 50 wt% or more, the liquid property becomes sherbet-like, and in a small paddle blade, only the blade portion flows and the tank wall portion does not move. Liquid flow occurs only near the blades, and even if the rotation speed is increased, idle rotation occurs, which does not lead to increased power or formation of circulating flow.

【0018】本発明は、撹拌槽の均一混合特性に優れた
結合特殊翼が、単に均一混合性のみでなく、実際の撹拌
運転において製品の性状、安定性および副生成物の低減
等プロセス上の改善効果があることを見い出し、この結
合特殊翼を採用した撹拌装置によって従来のパドル翼で
は得られない性状の各種製品を得るのを可能とし、か
つ、槽内付着物等の操業上の問題点をなくした撹拌処理
方法を提供することにある。
According to the present invention, the combined special blade excellent in the uniform mixing characteristics of the stirring tank is used not only for uniform mixing but also for the actual stirring operation in terms of product properties, stability and reduction of by-products. It was found that there is an improvement effect, and it is possible to obtain various products with properties that cannot be obtained with conventional paddle blades by the stirring device that employs this combined special blade, and there is a problem in operation such as deposits in the tank. Another object of the present invention is to provide a stirring treatment method that eliminates the problem.

【0019】[0019]

【課題を解決するための手段】本発明に係る撹拌処理方
法は、竪形円筒撹拌槽の中心に槽外から回転可能な回転
軸が配置され、該軸の下部に、該撹拌槽の底壁面と僅か
な間隙をもって平板状のボトムパドルが装着され、該ボ
トムパドルの上側に、縦材と横材から成る格子翼が装着
された撹拌機を用いて、被撹拌流体の混合、溶解、晶
析、重縮合反応等の処理を行い、これらの処理に応じて
前記被撹拌流体の粒子径、液滴径その他濃度等の制御を
行うことを特徴とするものである。
In the stirring treatment method according to the present invention, a rotary shaft rotatable from the outside of the tank is arranged at the center of a vertical cylindrical stirring tank, and a bottom wall surface of the stirring tank is provided under the shaft. Using a stirrer equipped with a flat bottom paddle with a slight gap between the bottom paddle and a lattice blade consisting of vertical and horizontal members above the bottom paddle, mixing, melting, and crystallization of the fluid to be stirred , A polycondensation reaction and the like, and the particle diameter, droplet diameter and other concentration of the fluid to be stirred are controlled according to these treatments.

【0020】[0020]

【実施例】次に、本発明を実施例について図面を参照し
つつ説明する。本実施例による撹拌装置は、撹拌槽内中
心部に槽外から回転可能な撹拌軸を配設し、該軸に、槽
底壁面に下端部を摺接させて槽底部に配置されるボトム
パドルを装着し、前記撹拌軸のボトムパドルより上位部
分に、アーム部分と該アーム部分に対して直角方向にの
びるストリップから構成される格子翼を結合するととも
に、前記撹拌槽の側壁面に下部から上部まで軸方向に沿
う複数本の邪魔板を間隔をおき配設した構造を有してい
る。この撹拌翼をここでは結合撹拌翼と称する。図1を
参照してその具体的構造を説明すれば、図中1は円筒形
撹拌槽で、該槽1内中心部には撹拌軸2が配設されてい
る。撹拌軸2は、一端を槽底部に軸受3を介して支持さ
れ、かつ、他端を槽頂部上の駆動装置4にカップリング
5を介して接続されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings with reference to the drawings. In the stirring device according to the present embodiment, a stirring shaft rotatable from the outside of the tank is arranged at the center of the stirring tank, and the bottom paddle is arranged at the bottom of the tank by sliding the lower end of the stirring shaft to the wall surface of the tank bottom. And a lattice blade composed of an arm portion and a strip extending in a direction perpendicular to the arm portion is coupled to the upper portion of the stirring shaft above the bottom paddle, and the side wall surface of the stirring tank from the lower portion to the upper portion. It has a structure in which a plurality of baffles along the axial direction are arranged at intervals. This stirring blade is referred to as a combined stirring blade here. The specific structure will be described with reference to FIG. 1. In the figure, reference numeral 1 denotes a cylindrical stirring tank, and a stirring shaft 2 is arranged at the center of the tank 1. The stirring shaft 2 has one end supported by a bearing 3 at the bottom of the tank and the other end connected to a drive unit 4 on the top of the tank via a coupling 5.

【0021】7は2枚パドルのボトムパドルで、撹拌軸
2の下端部に装着されており、その下端部は撹拌槽1の
底壁面に摺接している。なおボトム下端と槽底のクリア
ランスは槽内径の1〜10%以内が好ましい。このた
め、このボトムパドル7は、従来公知のパドル翼と馬蹄
型翼、アンカー型翼の両特性(吐出、剪断掻取り)、つ
まりパドル翼の液を半径方向に吐出する特性と、馬蹄型
翼、アンカー型翼の壁面付着物を掻き取り、飛散、浮遊
させる特性とを併せ備えている。
Reference numeral 7 denotes a bottom paddle having a two-piece paddle, which is mounted on the lower end of the stirring shaft 2, and the lower end thereof is in sliding contact with the bottom wall surface of the stirring tank 1. The clearance between the bottom end of the bottom and the bottom of the tank is preferably within 1 to 10% of the inner diameter of the tank. For this reason, the bottom paddle 7 has characteristics of both conventionally known paddle blades, horseshoe-shaped blades, and anchor-type blades (discharging and shear scraping), that is, the characteristics of discharging the liquid of the paddle blades in the radial direction, and the horseshoe-shaped blades. , It also has the property of scraping off, adhering to, and floating adherents on the wall surface of the anchor type wing.

【0022】6は格子翼で、撹拌軸2のボトムパドル7
より上位部分に装着されている。この格子翼6は、アー
ム部分8とストリップ9とから構成され、アーム部分8
は槽径方向にのびる板棒状の2枚パドルであり、ストリ
ップ9はアーム部分8と直角方向にのびる板棒状のもの
である。このため、格子翼6は、回転時、各構成部材端
で液を剪断し細分化するととも、各構成部材の後側で発
生する微小の渦により前記細分化された液を混合する特
性を備えている。
Reference numeral 6 denotes a lattice blade, which is a bottom paddle 7 of the stirring shaft 2.
It is attached to a higher part. The lattice wing 6 is composed of an arm portion 8 and a strip 9, and the arm portion 8
Is a plate rod-shaped two-piece paddle extending in the tank radial direction, and the strip 9 is a plate rod-shaped extending in the direction perpendicular to the arm portion 8. For this reason, the lattice blade 6 has a characteristic that, at the time of rotation, the liquid is sheared and subdivided at the end of each constituent member, and the subdivided liquid is mixed by a minute vortex generated on the rear side of each constituent member. ing.

【0023】10は平板形の邪魔板で、撹拌槽1の側壁
面に間隔をおき複数本配設されている。この邪魔板10
は、撹拌槽1の側壁面下部から上部まで撹拌軸2方向に
連続しており、ボトムパドル7から吐出された液を円運
動させずに撹拌槽1上部まで上昇させる特性を備えてい
る。なお、ここでは撹拌軸2を槽外から駆動するための
駆動装置4を槽頂部側に設けた例につき説明したが、該
装置4を槽底部側に設けてもよい。また、槽底部の軸受
3は、製品の混入、付着等で問題がある場合は、外して
軸受なしで運転することもできる。
Reference numeral 10 is a flat baffle plate, and a plurality of baffle plates are arranged on the side wall surface of the stirring tank 1 at intervals. This baffle plate 10
Is continuous from the lower part of the side wall surface of the stirring tank 1 to the upper part in the stirring shaft 2 direction, and has the property of raising the liquid discharged from the bottom paddle 7 to the upper part of the stirring tank 1 without making a circular motion. Here, an example in which the driving device 4 for driving the stirring shaft 2 from the outside of the tank is provided on the tank top side has been described, but the device 4 may be provided on the tank bottom side. In addition, the bearing 3 at the bottom of the tank can be removed and operated without a bearing if there is a problem due to mixing or adhesion of products.

【0024】この撹拌装置では、撹拌操作の中で注目操
作(例えば混合、溶解、各種反応等)により、また所要
容量により、その構成部材比が設定されるが、その主な
作用は次に述べるとおりである。
In this agitator, the ratio of its constituent members is set by the operation of interest (eg, mixing, dissolution, various reactions, etc.) in the agitating operation and the required volume. The main action will be described below. It is as follows.

【0025】格子翼6とボトムパドル7を回転させる
と、撹拌槽1内に満たされた液は、ボトムパドル7によ
り槽底壁面への付着を阻止されつつ半径方向に吐出され
て槽側壁面に衝突するとともに、邪魔板10により円運
動を抑制されて槽上部へと上昇させられ、槽上部の側壁
側から中心側へ移動して撹拌軸2および格子翼6の最上
段アーム部分8の近傍から下方へと移動し、ボトムパド
ル7の所へ戻る。かかる大きな循環流の中で、ボトムパ
ドル7より上位に配置された格子翼6のアーム部分8と
ストリップ9により下降中の液が剪断細分化され、この
細分化された液は、アーム部分8とストリップ9の後側
に発生する微細渦に巻き込まれて混合される。また図示
のごとく、ボトムパドル7は、撹拌槽1の底部に摺接配
置されることにより、パドル翼と馬蹄型翼、アンカー型
翼としての両作用を併有する。邪魔板10は、ボトムパ
ドル7により槽側壁側に吐出された液が円運動しないで
上昇流となるようその発生を促進する作用を有してい
る。また、格子翼6のアーム部分8およびストリップ9
は、ボトムパドル7および邪魔板10の働きで槽内を循
環する液をその下降過程で細分化、混合する作用を有す
る。
When the lattice vanes 6 and the bottom paddle 7 are rotated, the liquid filled in the stirring tank 1 is discharged in the radial direction while being prevented from adhering to the bottom wall surface of the tank by the bottom paddle 7 and is discharged to the side wall surface of the tank. While colliding, the circular movement is suppressed by the baffle plate 10 to be lifted to the upper part of the tank, and is moved from the side wall side to the center side of the upper part of the tank from the vicinity of the stirring shaft 2 and the uppermost arm portion 8 of the lattice blade 6. Move down and return to the bottom paddle 7. In such a large circulation flow, the descending liquid is sheared and fragmented by the arm portion 8 and the strip 9 of the lattice vane 6 arranged above the bottom paddle 7, and the fragmented liquid is divided into the arm portion 8 and The strips 9 are mixed by being entrained in a fine vortex generated on the rear side. Further, as shown in the figure, the bottom paddle 7 has both functions as a paddle blade, a horseshoe-shaped blade, and an anchor-shaped blade by being arranged in sliding contact with the bottom portion of the stirring tank 1. The baffle plate 10 has an action of promoting the generation of the liquid discharged by the bottom paddle 7 toward the side wall of the tank so that the liquid does not move circularly and becomes an upward flow. Also, the arm portion 8 and the strip 9 of the lattice blade 6
Has a function of subdividing and mixing the liquid circulating in the tank by the action of the bottom paddle 7 and the baffle plate 10 in the descending process.

【0026】次に、上述したボトムパドルと格子翼との
結合撹拌翼を有する撹拌装置で各種の反応操作を行う場
合の具体例を説明する。まず、晶析操作(冷却晶析、反
応晶析、濃縮晶析)、懸濁重合、乳化重合、塩析・酸析
操作を行う場合、粒子径、液滴径の制御が容易になされ
る。主な改善点として、(イ)低回転、低動力で固体粒
子の浮遊が達成でき、前記結合撹拌翼による固体粒子へ
の物理的破砕が少なく、高剪断場の解消により、微細粒
子が減少する。これによって、後工程の脱水、乾燥時間
が大幅に効率化された。(ロ)前記結合撹拌翼の回転変
化が液全体の循環に直接影響するため、回転数の制御で
粒子径の制御を容易に行い得る。また槽内剪断力の分布
が小さいため、粒子径分布がピーク性をもつ。(ハ)低
速回転運転が可能となり、大粒子の固体粒子が容易に得
られる。
Next, a specific example of the case where various reaction operations are carried out with the stirring device having the above-mentioned stirring pad for connecting the bottom paddle and the lattice blade will be described. First, when the crystallization operation (cooling crystallization, reaction crystallization, concentrated crystallization), suspension polymerization, emulsion polymerization, salting-out / aciding-out operation is performed, the particle diameter and the droplet diameter can be easily controlled. The major improvements are (a) low speed rotation and low power of solid particles can be achieved, physical crushing into solid particles by the combined stirring blade is small, and the elimination of high shear fields reduces fine particles. . As a result, the post-process dehydration and drying time was significantly improved. (B) Since the rotation change of the combined stirring blade directly affects the circulation of the entire liquid, the particle size can be easily controlled by controlling the rotation speed. Moreover, since the distribution of shearing force in the tank is small, the particle size distribution has a peak property. (C) Low speed rotation operation is possible, and large solid particles can be easily obtained.

【0027】具体的な事例について説明する。固体粒子
の浮遊については、晶析処理操作においても他の固・液
撹拌処理と同様に析出終了時にはスラリー液となるた
め、析出した結晶粒子が均一分散となる操作条件を選定
することが最低限必要である。ここでは、槽底に沈降さ
せたイオン交換樹脂を用い、撹拌回転数を徐々に増大さ
せて各動力値を測定することにより、浮遊開始速度の確
認を行って分散特性を分析した。図2にスラリー液にお
ける従来翼B(傾斜パドル2段)と本発明に係る前記結
合撹拌翼Aの回転数Nと単位消費動力Pvの関係を示
す。図中の動力曲線が一度下降するポイントa,bが分
散開始点である。動力下降の理由は、静止状態から撹拌
を開始すると低回転では未だ粒子が槽底に沈降している
ため、翼に固体粒子の摩擦抵抗がかかり、通常の均一液
相の場合よりかなり高い動力値を示すものの回転数が更
に上昇し、沈降粒子の浮遊が開始すると摩擦抵抗が急激
に低下し、これによって動力が下降するためである。こ
のポイントがマクロ的に見た浮遊開始点である。或る程
度浮遊が安定した後は、通常の均一液相の場合と同様に
回転数の3乗に比例して動力は増大する。
A specific case will be described. Regarding the suspension of solid particles, even in the crystallization treatment operation, as with other solid / liquid stirring treatment, it becomes a slurry liquid at the end of precipitation, so it is at least a minimum to select the operating conditions that allow the precipitated crystal particles to be uniformly dispersed. is necessary. Here, the ion-exchange resin settled to the bottom of the tank was used, the agitation rotation speed was gradually increased, and each power value was measured to confirm the floating start speed and analyze the dispersion characteristics. FIG. 2 shows the relationship between the rotational speed N and the unit power consumption Pv of the conventional impeller B (two stages of inclined paddles) in the slurry liquid and the combined stirring impeller A according to the present invention. The points a and b at which the power curve in the figure once descends are the dispersion start points. The reason for the power decrease is that when stirring is started from a stationary state, the particles still settle at the bottom of the tank at low rotation, so the frictional resistance of the solid particles is applied to the blades, and the power value is considerably higher than in the case of a normal homogeneous liquid phase. However, when the number of revolutions further increases and the floating of the sedimented particles starts, the frictional resistance sharply decreases, which causes the power to decrease. This point is the macroscopic floating start point. After the suspension is stabilized to some extent, the power increases in proportion to the cube of the rotation speed as in the case of a normal homogeneous liquid phase.

【0028】図2からも明らかに、本発明に係る結合撹
拌翼Aの場合、従来翼B(傾斜パドル型翼)の約1/2
の動力・回転数(50rpm)で分散が開始することが
分かる。この結合撹拌翼の低回転での分散性能の高さ
が、晶析操作における優位性の大きな要因となる。
As is clear from FIG. 2, in the case of the combined stirring blade A according to the present invention, about 1/2 of the conventional blade B (tilted paddle type blade) is used.
It can be seen that the dispersion starts at the power and rotation speed (50 rpm) of. The high dispersion performance of the combined stirring impeller at low speeds is a major factor in its superiority in the crystallization operation.

【0029】次に、翼による固体粒子への物理的破砕、
即ち生成結晶の破砕特性について検討した結果を述べ
る。実験に使用したバッチ式撹拌槽型晶析装置の例を図
3に示す。槽本体11は、内径130mm,深さ15
1.2mmのアクリル製の水槽であり、この中に図1に
例示した本発明に係る結合撹拌翼Aの撹拌槽1と平パド
ル2段の従来翼Bを持つ従来型撹拌槽12を配置し、各
撹拌槽1,12内に平板バッフル13およびそれに近接
させて温度計14を装着した。各撹拌翼A,Bの回転軸
にそれぞれトルクメータ15およびモータ16を連結し
て回転させ、水槽内に冷却水管17から冷却水を導入す
るようにした。
Next, physical crushing with a blade into solid particles,
That is, the results of examining the crushing characteristics of the generated crystals will be described. An example of the batch type stirred tank crystallizer used in the experiment is shown in FIG. The tank body 11 has an inner diameter of 130 mm and a depth of 15
A 1.2 mm acrylic water tank, in which a stirring tank 1 of the combined stirring blade A according to the present invention illustrated in FIG. 1 and a conventional stirring tank 12 having a conventional blade B having two flat paddles are arranged. In each of the stirring tanks 1 and 12, a flat plate baffle 13 and a thermometer 14 adjacent to it were attached. A torque meter 15 and a motor 16 were connected to the rotating shafts of the stirring blades A and B, respectively, and rotated, and cooling water was introduced from a cooling water pipe 17 into the water tank.

【0030】実験に際し、水槽にて80°Cに昇温した
温水にホウ酸を溶解し、15%水溶液とした。これを水
槽に予め設置した撹拌槽1,12内に移し、設定回転数
にて撹拌を行い、冷却水を通して撹拌槽壁より溶液の冷
却を行った。撹拌槽内が27°Cとなった所で一定時間
保持し、その後撹拌を停止し、スラリー全量を吸引濾過
した。得られた結晶を乾燥器で70°C,2時間乾燥し
た後、自動篩機にて得られた結晶の重量を測定した。条
件により撹拌槽壁および付着したスラリーとして取り出
せない結晶は掻き取り、乾燥後重量を測定した。
In the experiment, boric acid was dissolved in warm water heated to 80 ° C. in a water tank to prepare a 15% aqueous solution. This was moved into the stirring tanks 1 and 12 installed in advance in the water tank, stirring was performed at a set number of rotations, and the solution was cooled from the stirring tank wall by passing cooling water. The inside of the stirring tank was maintained at 27 ° C. for a certain period of time, then stirring was stopped, and the whole amount of the slurry was suction filtered. The obtained crystals were dried with a dryer at 70 ° C. for 2 hours, and the weight of the obtained crystals was measured with an automatic sieving machine. Depending on the conditions, the walls of the stirring tank and the crystals that could not be taken out as the attached slurry were scraped off, and the weight was measured after drying.

【0031】このような装置で従来翼Bと本発明の結合
撹拌翼Aに対し、ホウ酸結晶のふるい分けしたものを用
いて両翼の破砕特性の確認を行った。確認の条件を表1
(使用物の諸元)に示し、その結果を表2および図4,
図5に示す。均一分散撹拌条件として回転数Nは本発明
の結合撹拌翼の場合230rpm、従来翼の場合400
rpm(両者の比は1:1.74)であり、単位消費動
力Pvは本発明の撹拌翼で0.3kw/m3 、従来の平
パドル型2段翼で0.9kw/m3 (両者の比1:3)
とした。表2は18時間撹拌後の粒子径測定結果であ
り、図4は18時間後の本発明の結合撹拌翼の粒子径分
布を、図5は同様に18時間後の従来翼の粒子径分布を
示している。
The crushing characteristics of both blades were confirmed by using a device in which boric acid crystals were screened with respect to the conventional blade B and the combined stirring blade A of the present invention. Table 1 shows the confirmation conditions
(Specifications of materials used) and the results are shown in Table 2 and FIG.
As shown in FIG. As a uniform dispersion stirring condition, the rotation speed N is 230 rpm in the case of the combined stirring blade of the present invention, and 400 in the case of the conventional blade.
rpm (ratio of both 1: 1.74), and the unit power consumption Pv is 0.3 kW / m 3 with a stirring blade of the present invention, 0.9 kW / m 3 in the conventional flat paddle 2-stage blades (both Ratio of 1: 3)
And Table 2 shows the particle diameter measurement results after stirring for 18 hours, FIG. 4 shows the particle diameter distribution of the combined stirring blade of the present invention after 18 hours, and FIG. 5 shows the particle diameter distribution of the conventional blade after 18 hours. Shows.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】撹拌条件は両翼ともホウ酸結晶が槽液中に
均一分散し得るもので、室温にて18時間連続で保持し
た。得られた結晶は晶析と同様の手順で重量測定した。
図4,図5で分かるように破線で囲まれた部分E,Fが
翼により破砕された結晶であり、平パドルの結晶破砕は
68%と非常に大きな値ではあるが、100μ以下の結
晶がないので、晶析操作中に翼により破砕された結晶は
ほぼ無視してよい。
The stirring conditions were such that boric acid crystals could be uniformly dispersed in the bath liquid on both blades, and they were kept at room temperature for 18 hours continuously. The obtained crystals were weighed in the same procedure as the crystallization.
As can be seen in FIGS. 4 and 5, the portions E and F surrounded by broken lines are crystals crushed by the blades, and the crystal crushing of the flat paddle is 68%, which is a very large value, but crystals of 100 μ or less are As such, crystals crushed by the blade during the crystallization operation can be almost ignored.

【0035】上述の実験条件で得られた種々の翼回転数
におけるホウ酸の粒子径分布の例を図6(本発明翼の場
合)、図7(従来翼の場合)に示し、またその実験結果
を表3および表4に示す。これらの図から分かるよう
に、回転数により粒子径の分布が変化し、回転数を低下
させるにしたがって代表径が次第に大きくなり、分布幅
が広くなることが分かる。しかし、本発明の結合撹拌翼
と従来翼との間にはピーク性に大きな差が出ているのが
見られる。これは撹拌特性に起因する槽内均一性の差が
出ている結果と判断される。
Examples of the particle size distribution of boric acid at various blade rotation speeds obtained under the above-mentioned experimental conditions are shown in FIG. 6 (for the blade of the present invention) and FIG. 7 (for the conventional blade), and the experiment was carried out. The results are shown in Tables 3 and 4. As can be seen from these figures, the distribution of particle diameters changes depending on the rotation speed, and as the rotation speed decreases, the representative diameter gradually increases and the distribution width widens. However, it can be seen that there is a large difference in peak property between the combined stirring blade of the present invention and the conventional blade. This is considered to be the result of the difference in the uniformity of the tank due to the stirring characteristics.

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【表4】 [Table 4]

【0038】晶析操作、懸濁重合、モノマー脱揮槽、ポ
リマービーズの洗浄槽において、払い出しスラリー液の
濃度が均一化される。具体的な改善点は、(イ)槽底部
からの吐出流が上下流形成の源となるため、液レベル変
化に対してフローパターンが一定であり、スラリーの分
散状況も変化しない。これによって払い出し開始から終
了まで均一濃度での払い出しが可能となった。(ロ)後
工程(脱水、乾燥)の機器コストのコンパクト化、小形
化が図られる。
In the crystallization operation, suspension polymerization, monomer devolatilization tank, and polymer beads washing tank, the concentration of the discharged slurry liquid is made uniform. Specifically, (a) the discharge flow from the bottom of the tank serves as the source of upstream and downstream formation, so the flow pattern is constant with changes in the liquid level, and the dispersion status of the slurry does not change. As a result, it became possible to pay out with a uniform concentration from the start to the end of payout. (B) The equipment cost of the subsequent processes (dehydration, drying) can be made compact and compact.

【0039】晶析操作、懸濁重合、乳化重合、溶液重合
の反応において、槽内壁面および撹拌軸、撹拌翼への付
着物の発生が低減する。具体的には、(イ)槽壁面に充
分な上昇流が形成されるため、晶析および高粘度系での
壁面付着物が減少する。(ロ)強剪断場の解消により、
乳化重合での剪断凝集が減少した。(ハ)高粘度液への
モノマー(低粘度液)の連続フィードにおいても、液面
からの強力な吸い込み流の形成により、モノマー滞りが
なく、ゲル化物が撹拌軸に付着することがなくなった。
In the reactions of crystallization operation, suspension polymerization, emulsion polymerization and solution polymerization, the generation of deposits on the inner wall surface of the tank, the stirring shaft and the stirring blade is reduced. Specifically, (a) a sufficient upward flow is formed on the wall surface of the tank, so that crystallization and wall surface deposits in a high viscosity system are reduced. (B) By eliminating the strong shear field,
Shear aggregation in emulsion polymerization was reduced. (C) Even in the continuous feed of the monomer (low viscosity liquid) to the high viscosity liquid, the strong suction flow was formed from the liquid surface, and there was no monomer stagnation, and the gelled substance did not adhere to the stirring shaft.

【0040】一般に乳化重合槽の運転に際してはフロッ
クの発生が問題となるが、本発明による場合、懸濁重
合、乳化重合において、液中での凝集物が生じない。具
体的には、(イ)槽内剪断力の分布が均一となり、剪断
凝集および分子凝集のフロック発生量が減少し、ストレ
ーナの洗浄回数が極端に減少した。また(ロ)懸濁重合
時、大粒径化を図るため、回転数を下げても分散不良に
よる凝集物の発生が見られなくなった。
Generally, the generation of flocs becomes a problem during the operation of the emulsion polymerization tank, but in the case of the present invention, the flocculation in the liquid does not occur in suspension polymerization and emulsion polymerization. Specifically, (a) the distribution of the shear force in the tank became uniform, the amount of flocs generated due to shear aggregation and molecular aggregation was reduced, and the number of times the strainer was washed was extremely reduced. (B) Since the particle size is increased during suspension polymerization, generation of aggregates due to poor dispersion is not seen even when the rotation speed is reduced.

【0041】図8は、高粘度系乳化重合でのフロック発
生量を本発明の結合翼と従来翼の場合について比較して
示した図である。図中、イは本発明翼による全フロック
量、ロは従来翼(パドル型翼)による全フロック量、ハ
は本発明翼の場合の翼付着分のフロック量、ニは従来翼
への付着分のフロック量を示している。例えば単位消費
動力Pv=0.5kw/m3 の条件で翼比較した場合、
翼面積の小さなパドル型翼の方が、本発明の結合撹拌翼
よりも翼への付着量が多く、剪断凝集によるフロックの
発生を裏付ける結果となっている。また、最終的なフロ
ックの発生量を比較した場合、本発明の翼による発生最
小値はパドル型翼の最小値と比べて1/2以下に減少し
ている。
FIG. 8 is a diagram showing a comparison of the amount of flocs generated in high-viscosity emulsion polymerization in the case of the combined blade of the present invention and the conventional blade. In the figure, (a) is the total amount of flock by the blade of the present invention, (b) is the total amount of flock by the conventional blade (paddle type blade), (c) is the amount of flock attached to the blade of the present invention, and (d) is the amount attached to the conventional blade. Shows the amount of flock. For example, when comparing blades under the condition of unit power consumption Pv = 0.5 kw / m 3 ,
The paddle type blade having a smaller blade area has a larger amount of adhesion to the blade than the combined stirring blade of the present invention, which proves the occurrence of flocs due to shear aggregation. Further, when comparing the final generation amount of flock, the minimum value generated by the blade of the present invention is reduced to 1/2 or less as compared with the minimum value of the paddle type blade.

【0042】溶液重合、クラムフォーマー、モノマー脱
揮槽、塊状重合において、エントレ(飛沫同伴)および
フォーミング(発泡)が減少する。具体的には(イ)ボ
トムパドルからの強力な吐出流と上部格子部分で液上面
付近まで撹拌効果を発揮できるため、液界面の流動性が
向上し、エントレおよびフォーミングが減少する。また
(ロ)高粘度系でも、速い流れを保有できるため、突沸
等が抑制される。
In solution polymerization, crumb former, monomer devolatilization tank, and bulk polymerization, entrainment (entrainment of droplets) and forming (foaming) are reduced. Specifically, (a) since the strong discharge flow from the bottom paddle and the stirring effect can be exhibited up to near the liquid upper surface in the upper lattice portion, the fluidity of the liquid interface is improved, and the entrainment and forming are reduced. (B) Even in a high-viscosity system, a rapid flow can be retained, so bumping and the like can be suppressed.

【0043】塊状重合、溶液重合において高粘度系での
脱揮速度の増大が図られる。具体的には(イ)液表面の
軸部に強い吸い込み流が形成されるため、液界面の更新
速度が増大し、高粘度系でも良好な脱揮性能を示す。ま
た(ロ)槽全体に広がった大形結合翼を用いるため、非
ニュートン流体に対しても、均一な剪断を与えて液面部
の見かけ粘度の増大を防止できる。
In bulk polymerization and solution polymerization, the devolatilization rate can be increased in a high viscosity system. Specifically, (a) since a strong suction flow is formed in the shaft portion of the liquid surface, the renewal speed of the liquid interface is increased, and good devolatilization performance is exhibited even in a high viscosity system. (B) Since the large-sized connecting blades are spread over the entire tank, uniform shearing can be applied to a non-Newtonian fluid to prevent an increase in the apparent viscosity of the liquid surface.

【0044】少量多品種によるバッチ処理操作およびモ
ノマーの分流等、運転時に液量の増大が起こる操作にお
いて、液レベル変化に対し安定した運転が可能である。
即ち (イ)液深が変化しても、単位液量に与える消費動力P
v値(kw/m3 )が一定であり、フローパターンの変
化も起らない。安定した混合状況を確保できる。 (ロ)槽壁部の液流速が一定であり、高さ方向での伝熱
係数が安定していることにより、レベル変化でも安定し
た伝熱性能を示す。また(ハ)ボトムパドルが槽底部に
近接しているため、少量からの運転開始が可能である。
In an operation in which the liquid amount increases during the operation such as a batch processing operation with a small amount of many kinds of products and a diversion of a monomer, a stable operation can be performed against a liquid level change.
That is, (b) even if the liquid depth changes, the power consumption P given to the unit liquid amount
The v value (kw / m 3 ) is constant, and the flow pattern does not change. A stable mixing situation can be secured. (B) Since the liquid flow velocity in the tank wall is constant and the heat transfer coefficient in the height direction is stable, stable heat transfer performance is exhibited even when the level changes. (C) Since the bottom paddle is close to the bottom of the tank, it is possible to start operation from a small amount.

【0045】図9は本発明の結合撹拌翼と従来のパドル
翼の伝熱性能を比較した図である。Aは本発明に係る結
合撹拌翼の場合、Bは平パドル2段の従来のパドル型
翼、Cは平パドル1段の従来型翼の場合である。同じ単
位消費動力Pvで本発明の撹拌翼の方が高い伝熱性能を
示しているのが分かる。なお、水または水+固体のスラ
リー液でも本発明の撹拌翼の方が優れた伝熱性能を示
す。図10はスラリー液の伝熱性能を本発明の結合撹拌
翼Aと従来の傾斜パドル型3段翼Dとで比較したもので
ある。パドル型翼はスラリー濃度が高くなる(レイノズ
ル数Reが小となる)と、極端に伝熱性能が悪化する。
これは高濃度スラリーでの分散不良が原因と考えられ
る。これに対し、本発明の結合撹拌翼では伝熱性能の低
下は小さい。
FIG. 9 is a diagram comparing the heat transfer performances of the combined stirring blade of the present invention and the conventional paddle blade. A is the case of the combined stirring blade according to the present invention, B is the case of a conventional paddle type blade with two flat paddles, and C is the case of a conventional blade with one flat paddle. It can be seen that the stirring blade of the present invention exhibits higher heat transfer performance at the same unit consumption power Pv. It should be noted that the stirring blade of the present invention exhibits superior heat transfer performance even with water or a water + solid slurry liquid. FIG. 10 compares the heat transfer performance of the slurry liquid between the combined stirring blade A of the present invention and the conventional inclined paddle type three-stage blade D. The heat transfer performance of the paddle type blade is extremely deteriorated as the slurry concentration increases (the Reynolds number Re decreases).
It is considered that this is due to poor dispersion in the high-concentration slurry. In contrast, the combined stirring blade of the present invention causes a small decrease in heat transfer performance.

【0046】モノマー滴下の酸化重合あるいは重合末期
での各種添加剤の均一混合操作の場合、異粘系物質でも
良好な混合が得られる。具体的には、(イ)液界面に強
力な吸い込み流が生じるため、モノマーの連続フィード
においてもフィード量を上げた運転が可能である。
(ロ)重合末期の分添液の均一化が速く、重合度のコン
トロールが容易である。
In the case of the oxidative polymerization of dropping monomers or the uniform mixing operation of various additives at the final stage of the polymerization, good mixing can be obtained even with different viscosity type substances. Specifically, (a) since a strong suction flow is generated at the liquid interface, it is possible to operate with a high feed amount even in the continuous feeding of the monomer.
(B) The homogenization of the added solution at the final stage of the polymerization is fast, and the degree of polymerization can be easily controlled.

【0047】水添反応あるいは塩素化反応の場合、気・
液界面からのガス巻き込み能力が高い。(イ)水添反応
では気相部のH2 滞りからの液中への巻き込み能力が高
いため、気相部圧力が上昇することなく反応が短時間で
完結する。また(ロ)単なる液界面の乱れのみでなく、
槽内上下の液全体の循環が良好であり、この点からもガ
ス巻き込みが良好となる。
In the case of hydrogenation reaction or chlorination reaction,
High ability to entrain gas from the liquid interface. (A) In the hydrogenation reaction, since the ability to be entrained in the liquid from the H 2 stagnation in the gas phase portion is high, the reaction is completed in a short time without the pressure in the gas phase portion rising. (B) Not only the turbulence of the liquid interface,
Circulation of the entire liquid above and below the tank is good, and gas entrainment is also good from this point.

【0048】特に水添反応槽の場合、撹拌による供給ガ
スの細分化および反応熱の除去が必要反応時間への重要
因子とされ、従来よりその対策として撹拌強度のアップ
(単位消費動力約3〜4kw/m3 )、および多重コイ
ル使用による伝熱面積増大等がなされてきた。しかし、
運転現場での実情としては、下部からフィードしたガス
は回転翼により細分化され、液中へ吸収されるものの大
部分は液界面から気相部へ抜け、気相部圧の上昇をもた
らす。その結果、液界面からのガス再巻き込みによる気
相部圧の低下を待たなければガスの追添ができなくな
る。このような状況下においては、ガス吸収速度は液界
面からの再巻き込みに大きく影響されることになる。各
翼の気液界面からのガス巻き込みによる液側物質移動容
量係数Hrの比較を図11に示す。ここでAは本発明の
結合翼、Bは従来の平パドル2段翼、Tはタービン2段
翼、Pは傾斜パドル型2段翼の場合である。液は水と
し、消費動力Pvは1kw/m3 とした。ガス分散に適
するといわれる多段タービン翼の場合、翼近傍でのガス
微細化能力は充分あるものの、液面からの気相部ガス巻
き込みに関しては、ほとんど期待できないことが分か
る。
Particularly in the case of a hydrogenation reaction tank, subdivision of the supply gas by stirring and removal of reaction heat are considered to be important factors for the required reaction time, and as a countermeasure against this, the stirring strength is increased (unit consumption power: about 3 to 4 kw / m 3 ), and the heat transfer area has been increased by using multiple coils. But,
In the actual situation at the operation site, the gas fed from the lower part is subdivided by the rotor blades, and most of the gas absorbed into the liquid is discharged from the liquid interface to the gas phase part, causing an increase in the gas phase part pressure. As a result, the additional gas cannot be added unless the gas phase pressure is reduced due to gas re-engagement from the liquid interface. Under such circumstances, the gas absorption rate is greatly affected by re-engagement from the liquid interface. FIG. 11 shows a comparison of the liquid-side mass transfer capacity coefficient Hr due to gas entrainment from the gas-liquid interface of each blade. Here, A is the connecting blade of the present invention, B is the conventional flat paddle two-stage blade, T is the turbine two-stage blade, and P is the inclined paddle type two-stage blade. The liquid was water, and the power consumption Pv was 1 kw / m 3 . In the case of a multi-stage turbine blade, which is said to be suitable for gas dispersion, it is found that gas entrainment near the blade is sufficient, but gas entrainment from the liquid surface can hardly be expected.

【0049】このような場合、ガス吸収速度の向上に関
しては、いかに液面からのガス再巻き込み量を増大させ
るかにポイントが移行する。本事例では、翼形状を従来
の多段タービン翼から本発明の結合撹拌翼へ替え、ガス
再巻き込み量および伝熱効率を増大させることにより、
反応時間および収率が著しく向上できた。図12に実機
での従来翼の撹拌槽と本発明の結合撹拌翼の槽での運転
時間の比較を示した。図12中イは本発明の結合撹拌翼
の撹拌槽(3m3 槽)、ロは従来の2段ディスクタービ
ン翼の撹拌槽(1m3 槽)の場合である。
In such a case, with respect to the improvement of the gas absorption rate, the point shifts to how to increase the amount of gas re-engagement from the liquid surface. In this example, by changing the blade shape from the conventional multi-stage turbine blade to the combined stirring blade of the present invention, and increasing the gas re-engagement amount and heat transfer efficiency,
The reaction time and yield were significantly improved. FIG. 12 shows a comparison of the operating time between the conventional mixing blade of the conventional blade and the combined mixing blade of the present invention. In FIG. 12, a is a stirring tank (3 m 3 tank) of the combined stirring blade of the present invention, and b is a stirring tank (1 m 3 tank) of a conventional two-stage disk turbine blade.

【0050】生分解性ポリマー、バイオセルロース、熱
可塑性エラストマー等、高粘度系の生成処理においても
ガス吸収性能が向上する。即ち(イ)高粘度系において
も、良好な全体循環流を形成できるので、翼部の気泡ダ
マリが解消され、高いガス吸収性を発揮する。(ロ)通
気時でも、単位消費動力の低下が少なく、濃度の均一化
が図れる。
The gas absorption performance is improved even in the production treatment of high viscosity type such as biodegradable polymer, biocellulose, thermoplastic elastomer and the like. That is, (a) even in a high-viscosity system, a good overall circulation flow can be formed, so that bubble damage in the blade portion is eliminated and high gas absorption is exhibited. (B) Even during aeration, the unit consumption power does not decrease so much that the concentration can be made uniform.

【0051】PVA、酢酸セルロース、リグニン等の粉
体溶解操作において、粉体溶解時のダマの防止が図られ
る。具体的には、(イ)液面部の強力な吸い込み流によ
り、液面部に投下された粉体は瞬時に液中に巻き込ま
れ、翼格子部にて剪断を受ける。これによってダマの形
成が最小限に抑えられる。(ロ)したがって流れの比較
的弱い槽壁面部分にダマが溶解せずに残るということが
なくなる。
In the operation of dissolving powder of PVA, cellulose acetate, lignin, etc., it is possible to prevent lumps at the time of dissolving the powder. Specifically, due to (a) the strong suction flow of the liquid surface portion, the powder dropped on the liquid surface portion is instantaneously caught in the liquid and sheared at the blade lattice portion. This minimizes lump formation. (B) Therefore, the lump does not remain unmelted on the wall surface of the tank where the flow is relatively weak.

【0052】固体(金属触媒)を用いたガス吸収反応に
おいて、固体触媒の破砕の危険が低減される。(イ)低
回転での分散性能により、マイルドな撹拌が可能とな
り、金属触媒の寿命を延長できた。また(ロ)例えば寒
天状の担持体および動物細胞においても、傷つけること
なく分散、反応が可能になった。
In the gas absorption reaction using a solid (metal catalyst), the risk of crushing the solid catalyst is reduced. (A) Dispersion performance at low rotation speed enables mild agitation and extends the life of the metal catalyst. Further, (b) For example, even in an agar-shaped carrier and animal cells, dispersion and reaction were possible without damage.

【0053】固定化酵素を用いた加水分解反応にて、そ
の担体の撹拌による物理的破砕状況を本発明と従来とで
比較した例を挙げる。槽は平板2枚のバッフルを持つ平
底フラスコ槽、翼は3枚タービン1段の翼径50mmの
従来翼と本発明の翼径42mmの結合撹拌翼で、回転数
はいずれも60rpmとした。タービン翼の場合、翼近
傍付近に強剪断場ができることにより担体の破砕が多く
見られたが、本発明の翼では全体循環流の中を担体が移
動するため、破砕は少ない。
In the hydrolysis reaction using the immobilized enzyme, an example is shown in which the physical crushing state of the carrier by stirring is compared between the present invention and the conventional one. The tank was a flat-bottomed flask tank having baffles with two flat plates, and the blades were a conventional blade having a blade diameter of 50 mm with three blades of one stage and a combined stirring blade having a blade diameter of 42 mm according to the present invention, and the number of rotations was 60 rpm. In the case of turbine blades, crushing of the carrier was often seen due to the strong shear field near the blades, but crushing is small in the blade of the present invention because the carrier moves in the entire circulation flow.

【0054】PS、PP等の懸濁、析出重合、高濃度晶
析等の操作において、高濃度スラリーへの対応が容易
で、良好な分散が確保される。(イ)ボトムパドルから
の吐出流により、槽壁の堆積スラリーを崩すため、高濃
度スラリーの使用濃度限界を向上させることができた。
また(ロ)従来のパドル型翼に比べ、より高濃度まで空
回り現象が発生しない。
In operations such as suspension of PS, PP, etc., precipitation polymerization, high-concentration crystallization, etc., it is easy to deal with high-concentration slurry and good dispersion is secured. (A) The discharge flow from the bottom paddle destroys the accumulated slurry on the tank wall, so that the use concentration limit of the high-concentration slurry could be improved.
(B) Compared with the conventional paddle type blade, the idling phenomenon does not occur up to a higher concentration.

【0055】次に、本発明による撹拌処理方法の適用プ
ロセスの例を列記する。 1.重縮合(縮合重合)プロセス (a)6.6ナイロン、PET、PCの重合および予備
重合反応。 (b)PET、PCのエステル化反応。 (c)芳香族ポリアミド、芳香族ポリイミド、ポリスル
ホン、PPO等。 2.重付加プロセス (a)ポリウレタン(軟質、硬質)、エポキシ樹脂。 (b)ポリウレタン(熱可塑性、弾性繊維)。 3.付加縮合プロセス (a)フェノール樹脂、ユリア樹脂、メラミン樹脂等。 4.付加重合 (4−1)塊状重合 (a)LDPE、PP、PS、PMMA、ABS、AS
等。 (4−2)懸濁重合 (a)PVC、PS、EPS、HIPS、メタクリル樹
脂、AS、フッ素樹脂(PTFE)。 (b)吸水性ポリマー(デンプン−アクリロニトリルグ
ラフト共重合体加水分解物、デンプン−アクリル酸グラ
フト共重合体中和物、ポリアクリル酸部分中和物架橋
体、酢酸ビニル−アクリル酸エステル共重合体けん化
物、アクリル酸−アクリルアミド共重合体、イソブチレ
ン−マレイン酸共重合体)。 (4−3)乳化重合 (a)ABS、PVCペースト。 (b)SBR、NBR、CR。 (c)ラテックスの酸析、塩析槽。 (d)酢ビ系エマルジョン(ポリ酢酸ビニルエマルジョ
ン、酢酸ビニル−アクリル酸共重合エマルジョン、エチ
レン−酢酸ビニル共重合エマルジョン。 (e).アクリル系エマルジョン。 (4−4)溶液重合 (a)HDPE、L−LDPE、PP、EPDM。 (b)合成ゴム(BR、IR、EPR、EPDM、SB
R)、IIR。 (c)ポリ酢酸ビニル。 5.開環重合 (a)6−ナイロン、ポリアセタール、シリコーン。 6.晶析操作 (a)ホウ酸、NaCl、NaClO3 、NaCO3
2 O、Na2 SO4、NH4 Cl、(NH4 2
4 、ADP、アジピン酸、尿素、ナフタレン等。 7.熱可塑性エラストマー (a)塩ビ系エラストマー(TPVC)。 (b)オレフィン系エラストマー(TPO,EPD
M)。 (c)スチレン系エラストマー(TPS、SBS、SI
S、SEBS、SEPS)。 (d)ポリエステル系エラストマー(TPEE)。 (e)ウレタン系エラストマー(TPU)。 (f)ポリアミド系エラストマー(TPAE)。 8.EO、POの付加反応、界面活性剤 9.溶解操作 (a)酢酸セルロース粉体、リグニン粉体、PVA粉
体、シリコーンゴム、BR、CMC。 10.培養操作 (a)バイオセルロース、生分解性ポリマー(ヒアルロ
ン酸、ポリグルタミン酸ソーダ、キサンタンガム)。 11.脱水重縮合による生分解性ポリマー (a)ポリヒドロキシカルボン酸。
Next, examples of application processes of the stirring treatment method according to the present invention will be listed. 1. Polycondensation (condensation polymerization) process (a) Polymerization and prepolymerization reaction of 6.6 nylon, PET, and PC. (B) Esterification reaction of PET and PC. (C) Aromatic polyamide, aromatic polyimide, polysulfone, PPO and the like. 2. Polyaddition process (a) Polyurethane (soft, hard), epoxy resin. (B) Polyurethane (thermoplastic, elastic fiber). 3. Addition condensation process (a) Phenolic resin, urea resin, melamine resin, etc. 4. Addition polymerization (4-1) Bulk polymerization (a) LDPE, PP, PS, PMMA, ABS, AS
etc. (4-2) Suspension polymerization (a) PVC, PS, EPS, HIPS, methacrylic resin, AS, fluororesin (PTFE). (B) Water-absorbing polymer (starch-acrylonitrile graft copolymer hydrolyzate, starch-acrylic acid graft copolymer neutralized product, polyacrylic acid partially neutralized product crosslinked product, vinyl acetate-acrylic acid ester copolymer soap) Compound, acrylic acid-acrylamide copolymer, isobutylene-maleic acid copolymer). (4-3) Emulsion polymerization (a) ABS, PVC paste. (B) SBR, NBR, CR. (C) Acid precipitation and salting out tank of latex. (D) Vinyl acetate emulsion (polyvinyl acetate emulsion, vinyl acetate-acrylic acid copolymer emulsion, ethylene-vinyl acetate copolymer emulsion. (E) Acrylic emulsion. (4-4) Solution polymerization (a) HDPE, L-LDPE, PP, EPDM (b) Synthetic rubber (BR, IR, EPR, EPDM, SB
R), IIR. (C) Polyvinyl acetate. 5. Ring-opening polymerization (a) 6-nylon, polyacetal, silicone. 6. Crystallization operation (a) Boric acid, NaCl, NaClO 3 , NaCO 3 H
2 O, Na 2 SO 4 , NH 4 Cl, (NH 4 ) 2 S
O 4 , ADP, adipic acid, urea, naphthalene, etc. 7. Thermoplastic elastomer (a) Polyvinyl chloride elastomer (TPVC). (B) Olefin-based elastomer (TPO, EPD
M). (C) Styrene-based elastomer (TPS, SBS, SI
S, SEBS, SEPS). (D) Polyester elastomer (TPEE). (E) Urethane elastomer (TPU). (F) Polyamide elastomer (TPAE). 8. Addition reaction of EO and PO, surfactant 9. Dissolution operation (a) Cellulose acetate powder, lignin powder, PVA powder, silicone rubber, BR, CMC. 10. Culture operation (a) Biocellulose, biodegradable polymer (hyaluronic acid, sodium polyglutamate, xanthan gum). 11. Biodegradable polymer by dehydration polycondensation (a) Polyhydroxycarboxylic acid.

【0056】本発明による結合撹拌翼を用いての撹拌処
理により得られる製品例を以下に列挙する。 1.基礎原料 (1)エチレン (2)プロピレン (3)ブタジエン
(4)芳香族(BTX)。 2.中間原料 (1)アセトアルデヒド (2)酢酸 (3)酢酸エチ
ル (4)酢酸ビニル(5)PVA(ポバール)
(6)EO(エチレンオキサイド),EG(エチレング
リコール) (7)トリクロロエチレン (8)1・1
・1−トリクロロエタン (9)パークロロエチレン
(10)合成エタノール (11)オクタノール (1
2)ブタノール (13)IPA(イソプロピルアルコ
ール) (14)PO(プロピレンオキサイド) (1
5)PG(プロピレングリコール)(16)PPG(ポ
リプロピレングリコール) (17)AN(アクリロニ
トリル) (18)エピクロルヒドリン (19)フェ
ノール (20)アセトン(21)ビスフェノールA
(22)アクリル酸エステル (23)MIBK(メチ
ルイソブチルケトル) (24)MEK(メチルエチル
ケトン) (25)無水マレイン酸 (26)無水フタ
ル酸 (27)スチレンモノマー(SM)(28)MM
Aモノマー (29)パラキシレン(PX) (30)
PTA/DMT (31)シクロヘキサン (32)カ
プロラクタム(CPL) (33)TDI(トルイレン
ジイソシアネート) (34)MDI(ジフェニルメタ
ンジイソシアネート) (35)メタノール (36)
ビスフェノールS。 3.合成洗剤原料 (1)ノルマルパラフィン (2)合成高級アルコール
(3)アルキルベンゼン。 4.合成繊維 (1)ポリエステル繊維 (2)アクリル繊維 (3)
ナイロン繊維 (4)ポリプロピレン繊維 (5)ビニ
ロン繊維 (6)ポリウレタン弾性繊維 (7)炭素繊
維。 5.合成ゴム (1)SBR,NBR (2)BR (3)IR
(4)CR (5)IIR。(6)EPM,EPDM
(7)ラテックス。 6.合成樹脂 (1)塩化ビニル樹脂(PVC/VCM) (2)塩化
ビニリデン樹脂 (3)低密度ポリエチレン (4)高
密度ポリエチレン (5)ポリプロピレン (6)ポリ
スチレン (7)ABS樹脂 (8)AS樹脂 (9)
MBS樹脂 (10)MMA樹脂(PMMA) (1
1)ナイロン樹脂 (12)ポリ−4−メチルペンテン
−1 (13)アイオノマー (14)石油樹脂 (1
5)ポリウレタン (16)エポキシ樹脂 (17)不
飽和ポリエステル樹脂 (18)フェノール樹脂 (1
9)けい素樹脂 (20)ユリア樹脂 (21)メラミ
ン樹脂。 7.エンジニアリングプラスチックス (1)ポリアミド樹脂 (2)ポリアセタール (3)
ポリカーボネート (4)変性ポリフェニレンエーテル
(5)ポリブチレンテレフタレート (6)ポリテト
ラフルオロエチレン (7)ポリフェニレンスルフィド
(8)ポリスルホン (9)ポリエーテルイミド
(10)ポリエーテルスルホン (11)ポリエーテル
エーテルケトン (12)ポリイミド (13)フッ素
樹脂。 8.ポリマーアロイ (1)PA/PPE (2)PA/エラストマー
(3)PA/PO (4)PA/ABS (5)POM
/エラストマー (6)PC/ABS (7)PC/P
BT (8)PC/PET (9)PC/PMMA
(10)PBT/ABS (11)PBT/PET
(12)PBT/PPE (13)PPE/HIPS。 9.熱可塑性エラストマー (1)スチレン系 (2)1.2−PB系 (3)オレ
フィン系 (4)ウレタン系 (5)エステル系
(6)アミド系 (7)塩素化PE系 (8)PVC系
(9)ポリフルオロカーボン系 (10)その他のT
PE。 10.無機化合物 (1)亜ヒ酸 (2)アンモニウムミョウバン (3)
亜硫酸ナトリウム (4)塩化アンモニウム (5)塩
化カリウム (6)塩化カルシウム (7)塩化銀
(8)塩化コバルト (9)塩化ストロンチウム (1
0)塩化セシウム(11)塩化第二水銀 (12)塩化
第一水銀 (13)塩化第二鉄 (14)塩化第一鉄
(15)塩化タリウム (16)塩化ナトリウム (1
7)塩化ニッケル (18)塩化バリウム (19)塩
化マグネシウム (20)塩化ルビジウム (21)塩
素酸カリウム (22)過塩素酸ナトリウム (23)
黄血塩 (24)過マンガン酸カリウム (25)クロ
ム酸カリウム (26)クロムミョウバン (27)臭
化カリウム (28)臭化鉛 (29)臭化ナトリウム
(30)重クロム酸カリウム (31)重炭酸カリウ
ム (32)重炭酸ナトリウム (33)硝酸アンモニ
ウム (34)硝酸亜鉛 (35)硝酸カリウム (3
6)硝酸銀 (37)硝酸ストロンチウム (38)硝
酸タリウム(39)硝酸第二銅 (40)硝酸ナトリウ
ム (41)硝酸鉛 (42)硝酸バリウム (43)
水酸化カリウム (44)水酸化カルシウム (45)
水酸化ナトリウム (46)水酸化バリウム (47)
赤血塩 (48)炭酸カリウム (49)炭酸ナトリウ
ム (50)チオ硫酸ナトリウム (51)ホウ酸(5
2)ホウ砂 (53)ミョウバン (54)ヨウ化カリ
ウム (55)ヨウ化ナトリウム (56)硫酸アルミ
ニウム (57)硫酸アンモニウム (58)硫酸亜鉛
(59)硫酸カリウム (60)硫酸カドミウム
(61)硫酸カルシウム (62)硫酸第一鉄 (6
3)硫酸銅 (64)硫酸ナトリウム (65)硫酸ニ
ッケル (66)硫酸マグネシウム (67)リン酸ナ
トリウム(NaH2 PO4 ) (68)リン酸ナトリウ
ム(Na2 HPO4 ) (69)リン酸ナトリウム(N
3 PO4 )。 11.有機化合物 (1)安息香酸 (2)コハク酸 (3)シュウ酸
(4)酒石酸 (5)ブドウ酸 (6)ピクリン酸
(7)フェノール (8)ショ糖 (9)酢酸ナトリウ
ム (10)酢酸カルシウム。
Examples of products obtained by stirring treatment using the combined stirring blade according to the present invention are listed below. 1. Basic materials (1) Ethylene (2) Propylene (3) Butadiene (4) Aromatic (BTX). 2. Intermediate materials (1) Acetaldehyde (2) Acetic acid (3) Ethyl acetate (4) Vinyl acetate (5) PVA (Poval)
(6) EO (ethylene oxide), EG (ethylene glycol) (7) trichlorethylene (8) 1.1
・ 1-Trichloroethane (9) Perchlorethylene
(10) Synthetic ethanol (11) Octanol (1
2) Butanol (13) IPA (isopropyl alcohol) (14) PO (propylene oxide) (1
5) PG (propylene glycol) (16) PPG (polypropylene glycol) (17) AN (acrylonitrile) (18) epichlorohydrin (19) phenol (20) acetone (21) bisphenol A
(22) Acrylic ester (23) MIBK (methyl isobutyl kettle) (24) MEK (methyl ethyl ketone) (25) Maleic anhydride (26) Phthalic anhydride (27) Styrene monomer (SM) (28) MM
A monomer (29) Paraxylene (PX) (30)
PTA / DMT (31) Cyclohexane (32) Caprolactam (CPL) (33) TDI (Toluylene diisocyanate) (34) MDI (Diphenylmethane diisocyanate) (35) Methanol (36)
Bisphenol S. 3. Synthetic detergent raw material (1) Normal paraffin (2) Synthetic higher alcohol (3) Alkylbenzene. 4. Synthetic fiber (1) Polyester fiber (2) Acrylic fiber (3)
Nylon fiber (4) Polypropylene fiber (5) Vinylon fiber (6) Polyurethane elastic fiber (7) Carbon fiber. 5. Synthetic rubber (1) SBR, NBR (2) BR (3) IR
(4) CR (5) IIR. (6) EPM, EPDM
(7) Latex. 6. Synthetic resin (1) Vinyl chloride resin (PVC / VCM) (2) Vinylidene chloride resin (3) Low density polyethylene (4) High density polyethylene (5) Polypropylene (6) Polystyrene (7) ABS resin (8) AS resin ( 9)
MBS resin (10) MMA resin (PMMA) (1
1) Nylon resin (12) Poly-4-methylpentene-1 (13) Ionomer (14) Petroleum resin (1
5) Polyurethane (16) Epoxy resin (17) Unsaturated polyester resin (18) Phenolic resin (1
9) Silicon resin (20) Urea resin (21) Melamine resin. 7. Engineering plastics (1) Polyamide resin (2) Polyacetal (3)
Polycarbonate (4) Modified polyphenylene ether (5) Polybutylene terephthalate (6) Polytetrafluoroethylene (7) Polyphenylene sulfide (8) Polysulfone (9) Polyetherimide
(10) Polyether sulfone (11) Polyether ether ketone (12) Polyimide (13) Fluorine resin. 8. Polymer alloy (1) PA / PPE (2) PA / elastomer
(3) PA / PO (4) PA / ABS (5) POM
/ Elastomer (6) PC / ABS (7) PC / P
BT (8) PC / PET (9) PC / PMMA
(10) PBT / ABS (11) PBT / PET
(12) PBT / PPE (13) PPE / HIPS. 9. Thermoplastic elastomer (1) Styrene type (2) 1.2-PB type (3) Olefin type (4) Urethane type (5) Ester type
(6) Amide type (7) Chlorinated PE type (8) PVC type (9) Polyfluorocarbon type (10) Other T
PE. 10. Inorganic compounds (1) Arsenous acid (2) Ammonium alum (3)
Sodium sulfite (4) Ammonium chloride (5) Potassium chloride (6) Calcium chloride (7) Silver chloride
(8) Cobalt chloride (9) Strontium chloride (1
0) Cesium chloride (11) Mercury chloride (12) Mercury chloride (13) Ferric chloride (14) Ferrous chloride
(15) Thallium chloride (16) Sodium chloride (1
7) Nickel chloride (18) Barium chloride (19) Magnesium chloride (20) Rubidium chloride (21) Potassium chlorate (22) Sodium perchlorate (23)
Yellow blood salt (24) Potassium permanganate (25) Potassium chromate (26) Chromium alum (27) Potassium bromide (28) Lead bromide (29) Sodium bromide (30) Potassium dichromate (31) Potassium carbonate (32) Sodium bicarbonate (33) Ammonium nitrate (34) Zinc nitrate (35) Potassium nitrate (3
6) Silver nitrate (37) Strontium nitrate (38) Thallium nitrate (39) Cupric nitrate (40) Sodium nitrate (41) Lead nitrate (42) Barium nitrate (43)
Potassium hydroxide (44) Calcium hydroxide (45)
Sodium hydroxide (46) Barium hydroxide (47)
Red blood salt (48) Potassium carbonate (49) Sodium carbonate (50) Sodium thiosulfate (51) Boric acid (5
2) Borax (53) Alum (54) Potassium iodide (55) Sodium iodide (56) Aluminum sulfate (57) Ammonium sulfate (58) Zinc sulfate (59) Potassium sulfate (60) Cadmium sulfate
(61) Calcium sulfate (62) Ferrous sulfate (6
3) Copper sulfate (64) Sodium sulfate (65) Nickel sulfate (66) Magnesium sulfate (67) Sodium phosphate (NaH 2 PO 4 ) (68) Sodium phosphate (Na 2 HPO 4 ) (69) Sodium phosphate ( N
a 3 PO 4 ). 11. Organic compound (1) Benzoic acid (2) Succinic acid (3) Oxalic acid
(4) Tartaric acid (5) Grape acid (6) Picric acid
(7) Phenol (8) Sucrose (9) Sodium acetate (10) Calcium acetate.

【0057】[0057]

【発明の効果】以上説明したように本発明によれば、竪
形円筒撹拌槽の中心に槽外から回転可能な回転軸が配置
され、該軸の下部に、該撹拌槽の底壁面と僅かな間隙を
もって平板状のボトムパドルが装着され、該ボトムパド
ルの上側に、縦材と横材から成る格子翼が装着された撹
拌機を用いて、被撹拌流体の混合、溶解、晶析、重縮合
反応等のプロセス処理を行うことにより、以下の効果が
発揮される。
As described above, according to the present invention, the rotary shaft rotatable from outside the vertical cylindrical stirring tank is arranged at the center of the vertical cylindrical stirring tank, and the bottom wall surface of the stirring tank is slightly below the shaft. Using a stirrer equipped with a flat bottom paddle with a large gap, and equipped with a lattice blade consisting of vertical and horizontal members above the bottom paddle, mixing, melting, crystallization, The following effects are exhibited by performing a process treatment such as a condensation reaction.

【0058】(1)低消費動力で、かつ、短時間で均一
混合を達成できる。 (2)広範囲な粘度の流体に対応可能である。 (3)粒子径、液粘径の制御が容易となり、粒子径分布
のピーク化および大粒子径化が可能となる。 (4)スラリー払い出し時の濃度の安定化がもたらされ
る。 (5)槽内壁面、撹拌軸および撹拌翼への槽内処理物の
付着が低減する。 (6)液中凝集物の発生が低減する。 (7)エントレ(飛沫同伴)およびフォーミング(発
泡)の発生が防止される。 (8)高粘液の脱揮速度が向上する。 (9)液レベル変化への対応が容易である。 (10)異粘系での均一混合化が達成される。 (11)気・液界面のガス吸収能および高粘度流体のガ
ス吸収能が向上する。 (12)粉体溶解時のダマ防止を図ることができる。 (13)撹拌翼による固体触媒の破砕防止が可能であ
る。 (14)高濃度スラリーの分散性が向上する。
(1) Low power consumption and uniform mixing can be achieved in a short time. (2) Applicable to a wide range of viscosities. (3) The particle diameter and liquid viscosity can be easily controlled, and the particle diameter distribution can be peaked and the particle diameter can be increased. (4) The concentration is stabilized when the slurry is dispensed. (5) Adhesion of the in-tank treated material to the inner wall surface of the tank, the stirring shaft, and the stirring blade is reduced. (6) Generation of aggregates in the liquid is reduced. (7) Entrainment (entrainment of droplets) and forming (foaming) are prevented. (8) The devolatilization rate of high mucus is improved. (9) It is easy to deal with changes in liquid level. (10) Uniform mixing in a heterogeneous system is achieved. (11) The gas absorption capacity of the gas-liquid interface and the gas absorption capacity of the high-viscosity fluid are improved. (12) It is possible to prevent lumps when the powder is dissolved. (13) Crushing of the solid catalyst can be prevented by the stirring blade. (14) The dispersibility of the high-concentration slurry is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法を実施するのに使用される撹拌装
置の一例を示す概略的な断面斜視図である。
1 is a schematic cross-sectional perspective view showing an example of a stirring device used to carry out the method of the present invention.

【図2】従来翼と本発明の結合撹拌翼の回転数と消費動
力の関係を示した図である。
FIG. 2 is a diagram showing the relationship between the rotational speed and power consumption of a conventional impeller and the combined stirring impeller of the present invention.

【図3】生成結晶の破砕特性を調べる実験に使用したバ
ッチ式撹拌槽型晶析装置を示す図である。
FIG. 3 is a view showing a batch-type stirred tank crystallizer used in an experiment for investigating the crushing characteristics of generated crystals.

【図4】本発明による結合撹拌翼による粒子径分布を示
した図である。
FIG. 4 is a diagram showing a particle size distribution by the combined stirring blade according to the present invention.

【図5】従来翼による粒子径分布を示した図である。FIG. 5 is a diagram showing a particle size distribution of a conventional blade.

【図6】本発明翼を用いた場合の種々の翼回転数におけ
るホウ酸の粒子径分布を示す図である。
FIG. 6 is a diagram showing the particle size distribution of boric acid at various blade rotation speeds when the blade of the present invention is used.

【図7】従来翼を用いた場合の種々の翼回転数における
ホウ酸の粒子径分布を示す図である。
FIG. 7 is a diagram showing a particle size distribution of boric acid at various blade rotation speeds when a conventional blade is used.

【図8】高粘度系乳化重合でのフロック発生量を本発明
の結合撹拌翼と従来翼の場合について比較して示した図
である。
FIG. 8 is a diagram showing the amount of flocs generated in high-viscosity emulsion polymerization in comparison between the combined stirring blade of the present invention and the conventional blade.

【図9】本発明の結合撹拌翼と従来のパドル型翼の伝熱
性能を比較した図である。
FIG. 9 is a diagram comparing the heat transfer performances of the combined stirring blade of the present invention and a conventional paddle type blade.

【図10】スラリー液の伝熱性能を本発明の結合撹拌翼
と従来の傾斜パドル型3段翼とで比較して示した図であ
る。
FIG. 10 is a diagram showing heat transfer performance of slurry liquid in comparison between the combined stirring blade of the present invention and a conventional inclined paddle type three-stage blade.

【図11】各翼の気液界面からのガス巻き込みによる液
側物質移動容量の比較図である。
FIG. 11 is a comparison diagram of liquid-side mass transfer capacities due to gas entrainment from the gas-liquid interface of each blade.

【図12】従来槽と本発明の結合撹拌翼の槽での運転時
間を比較した図である。
FIG. 12 is a diagram comparing operating times in a conventional tank and a tank of the combined stirring blade of the present invention.

【符号の説明】[Explanation of symbols]

1 撹拌槽 2 撹拌軸 3 軸受 4 駆動装置 5 カップリング 6 格子翼 7 ボトムパドル 8 アーム部分 9 ストリップ 10 邪魔板 1 Stirring Tank 2 Stirring Shaft 3 Bearing 4 Driving Device 5 Coupling 6 Lattice Blade 7 Bottom Paddle 8 Arm Part 9 Strip 10 Baffle Plate

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08F 2/00 MDB C08F 2/00 MDB C08G 85/00 NVC C08G 85/00 NVC ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location C08F 2/00 MDB C08F 2/00 MDB C08G 85/00 NVC C08G 85/00 NVC

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】竪形円筒撹拌槽の中心に槽外から回転可能
な回転軸が配置され、該軸の下部に、該撹拌槽の底壁面
と僅かな間隙をもって平板状のボトムパドルが装着さ
れ、該ボトムパドルの上側に、縦材と横材から成る格子
翼が装着された撹拌機を用いて、被撹拌流体の混合、溶
解、晶析、重縮合反応等の処理を行い、これらの処理に
応じて前記被撹拌流体の粒子径、液滴径その他濃度等の
制御を行うことを特徴とする撹拌処理方法。
1. A vertical cylindrical stirring tank is provided with a rotary shaft rotatable from the outside of the tank at the center of the vertical cylindrical stirring tank, and a flat bottom paddle is mounted below the shaft with a slight gap from the bottom wall surface of the stirring tank. , The upper paddle of the bottom paddle, using a stirrer, which is equipped with a lattice blade consisting of a vertical member and a horizontal member, performs processing such as mixing, dissolution, crystallization, polycondensation reaction of the fluid to be stirred, and these processing The stirring treatment method is characterized by controlling the particle diameter, the droplet diameter, and the concentration of the fluid to be stirred according to the above.
JP29364795A 1995-10-16 1995-10-16 Agitation treatment method Pending JPH09108557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29364795A JPH09108557A (en) 1995-10-16 1995-10-16 Agitation treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29364795A JPH09108557A (en) 1995-10-16 1995-10-16 Agitation treatment method

Publications (1)

Publication Number Publication Date
JPH09108557A true JPH09108557A (en) 1997-04-28

Family

ID=17797426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29364795A Pending JPH09108557A (en) 1995-10-16 1995-10-16 Agitation treatment method

Country Status (1)

Country Link
JP (1) JPH09108557A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002114847A (en) * 2000-10-06 2002-04-16 Kanegafuchi Chem Ind Co Ltd Method for producing reactive silicon group-containing polyether oligomer
JP2003002964A (en) * 2001-06-22 2003-01-08 Kanegafuchi Chem Ind Co Ltd Method for alkoxylating polyetherpolyols
JP2007137978A (en) * 2005-11-16 2007-06-07 Toagosei Co Ltd Apparatus for producing urethane (meth)acrylate or epoxy (meth)acrylate and method for production
JP2008007783A (en) * 2001-05-16 2008-01-17 Nippon Shokubai Co Ltd Method for production of alkoxylated compound
WO2009040886A1 (en) * 2007-09-25 2009-04-02 Shi Mechanical & Equipment Inc. Agitating apparatus
JP2009233640A (en) * 2008-03-28 2009-10-15 Dowa Eco-System Co Ltd Method for treating boron-containing water
JP2009233641A (en) * 2008-03-28 2009-10-15 Dowa Eco-System Co Ltd Method for treating boron-containing water
JP2010007056A (en) * 2008-05-29 2010-01-14 Mitsubishi Gas Chemical Co Inc Process for producing polyamide
JP2011178905A (en) * 2010-03-02 2011-09-15 Chiyoda Kako Kensetsu Kk Stirring apparatus and stirring method
JP2013086022A (en) * 2011-10-18 2013-05-13 Daiyanitorikkusu Kk Method for dissolving powdery water-soluble polymer compound
JP2014223581A (en) * 2013-05-16 2014-12-04 株式会社井上製作所 Low shear type concentric biaxial mixer
CN105289035A (en) * 2015-11-21 2016-02-03 衢州图艺工业设计有限公司 Air jet clogging-resistant discharge pipe
CN106390508A (en) * 2016-12-09 2017-02-15 梅新星 Crystal kettle for chemical industry
CN106730977A (en) * 2016-12-13 2017-05-31 顾马飞 A kind of syrup solution quick solidification apparatus
CN106890589A (en) * 2017-04-28 2017-06-27 四川美霖科技有限责任公司 It is a kind of with the stirring feed device for washing function certainly
CN107551596A (en) * 2017-08-28 2018-01-09 安徽春辉仪表线缆集团有限公司 It is a kind of can the convenient conveying of rapid crystallization magma tank
CN112646332A (en) * 2020-12-16 2021-04-13 上海金发科技发展有限公司 Low-haze high-gloss PBT (polybutylene terephthalate) composite material and preparation method thereof
WO2021081726A1 (en) * 2019-10-28 2021-05-06 江西虔研科技咨询有限公司 High-stability ammonium paratungstate crystallization kettle
EP3680008A4 (en) * 2018-03-05 2021-06-16 Nippon Sosey Kogyo Co., Ltd. Paddle for container-rotating mixing device
KR20220049454A (en) 2020-10-14 2022-04-21 스미토모 쥬기카이 프로세스 기키 가부시키가이샤 Stirring apparatus
CN115138323A (en) * 2022-09-05 2022-10-04 山东群鑫助剂有限公司 Chemical products production is with mixing response device
KR20220140941A (en) * 2021-04-11 2022-10-19 박준한 Mixing Apparatus for Making Filler Composition and Making Method of Filler Composition
CN116022753A (en) * 2023-02-23 2023-04-28 江苏润普食品科技股份有限公司 Dipotassium hydrogen phosphate ion exchange type preparation device

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002114847A (en) * 2000-10-06 2002-04-16 Kanegafuchi Chem Ind Co Ltd Method for producing reactive silicon group-containing polyether oligomer
JP2008007783A (en) * 2001-05-16 2008-01-17 Nippon Shokubai Co Ltd Method for production of alkoxylated compound
JP2003002964A (en) * 2001-06-22 2003-01-08 Kanegafuchi Chem Ind Co Ltd Method for alkoxylating polyetherpolyols
JP2007137978A (en) * 2005-11-16 2007-06-07 Toagosei Co Ltd Apparatus for producing urethane (meth)acrylate or epoxy (meth)acrylate and method for production
WO2009040886A1 (en) * 2007-09-25 2009-04-02 Shi Mechanical & Equipment Inc. Agitating apparatus
JP2009233640A (en) * 2008-03-28 2009-10-15 Dowa Eco-System Co Ltd Method for treating boron-containing water
JP2009233641A (en) * 2008-03-28 2009-10-15 Dowa Eco-System Co Ltd Method for treating boron-containing water
JP2010007056A (en) * 2008-05-29 2010-01-14 Mitsubishi Gas Chemical Co Inc Process for producing polyamide
JP2011178905A (en) * 2010-03-02 2011-09-15 Chiyoda Kako Kensetsu Kk Stirring apparatus and stirring method
JP2013086022A (en) * 2011-10-18 2013-05-13 Daiyanitorikkusu Kk Method for dissolving powdery water-soluble polymer compound
JP2014223581A (en) * 2013-05-16 2014-12-04 株式会社井上製作所 Low shear type concentric biaxial mixer
CN105289035A (en) * 2015-11-21 2016-02-03 衢州图艺工业设计有限公司 Air jet clogging-resistant discharge pipe
CN106390508A (en) * 2016-12-09 2017-02-15 梅新星 Crystal kettle for chemical industry
CN106730977A (en) * 2016-12-13 2017-05-31 顾马飞 A kind of syrup solution quick solidification apparatus
CN106890589A (en) * 2017-04-28 2017-06-27 四川美霖科技有限责任公司 It is a kind of with the stirring feed device for washing function certainly
CN106890589B (en) * 2017-04-28 2023-07-21 四川美霖科技有限责任公司 Stirring material feeding unit with from washing function
CN107551596A (en) * 2017-08-28 2018-01-09 安徽春辉仪表线缆集团有限公司 It is a kind of can the convenient conveying of rapid crystallization magma tank
EP3680008A4 (en) * 2018-03-05 2021-06-16 Nippon Sosey Kogyo Co., Ltd. Paddle for container-rotating mixing device
WO2021081726A1 (en) * 2019-10-28 2021-05-06 江西虔研科技咨询有限公司 High-stability ammonium paratungstate crystallization kettle
KR20220049454A (en) 2020-10-14 2022-04-21 스미토모 쥬기카이 프로세스 기키 가부시키가이샤 Stirring apparatus
CN112646332A (en) * 2020-12-16 2021-04-13 上海金发科技发展有限公司 Low-haze high-gloss PBT (polybutylene terephthalate) composite material and preparation method thereof
KR20220140941A (en) * 2021-04-11 2022-10-19 박준한 Mixing Apparatus for Making Filler Composition and Making Method of Filler Composition
CN115138323A (en) * 2022-09-05 2022-10-04 山东群鑫助剂有限公司 Chemical products production is with mixing response device
CN116022753A (en) * 2023-02-23 2023-04-28 江苏润普食品科技股份有限公司 Dipotassium hydrogen phosphate ion exchange type preparation device
CN116022753B (en) * 2023-02-23 2023-09-19 江苏润普食品科技股份有限公司 Dipotassium hydrogen phosphate ion exchange type preparation device

Similar Documents

Publication Publication Date Title
JPH09108557A (en) Agitation treatment method
EP1208905B1 (en) Agitated vessel for producing a suspension of solids
US20050237853A1 (en) Mixer
US5102229A (en) Agitator
US20030007417A1 (en) Agitating impeller, agitator using the same, and agitating method
JP5373709B2 (en) Polymer synthesis reactor and polymer synthesis apparatus using the same
CN102350289B (en) Reaction kettle for producing static material not easy to flow and use method thereof
JP2005220203A (en) Polymer synthesis apparatus
JPH0975699A (en) Agitator
JP2853605B2 (en) Method and apparatus for producing highly viscous substance
TWI322803B (en) Process for producing terephthalic acid
CN202212193U (en) Reaction kettle for producing static and difficult-to-flow materials
CN214390188U (en) Efficient and uniform stirrer
EP2621619B1 (en) Method of mixing
JP2749002B2 (en) High viscosity liquid stirring tank
JPH04215829A (en) Stirring apparatus
CN217189504U (en) High-viscosity material stirring device and reaction kettle comprising same
KR101340712B1 (en) Mix apparatus including draft tube
CN214913963U (en) Filter equipment is used in polyurethane resin production
CN211463091U (en) Improved generation solid-liquid reaction device
CN209304800U (en) A kind of stirring feeding device of polyarylate production
JP2008285680A (en) Apparatus for synthesizing polymer
JPH0699429A (en) Continuous processing apparatus for high-viscosity material
CN116272821A (en) Special conical reaction device for continuous polymerization polyurethane stock solution non-fluctuation efficient prepolymerization
JPH07106312B2 (en) Agitator for powder and granules