JPH0910755A - Water quality operation control apparatus - Google Patents

Water quality operation control apparatus

Info

Publication number
JPH0910755A
JPH0910755A JP16034195A JP16034195A JPH0910755A JP H0910755 A JPH0910755 A JP H0910755A JP 16034195 A JP16034195 A JP 16034195A JP 16034195 A JP16034195 A JP 16034195A JP H0910755 A JPH0910755 A JP H0910755A
Authority
JP
Japan
Prior art keywords
water quality
injection rate
plant
water
calculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16034195A
Other languages
Japanese (ja)
Inventor
Kazuhiro Yokoi
一弘 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Fuji Facom Corp
Original Assignee
Fuji Electric Co Ltd
Fuji Facom Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Facom Corp filed Critical Fuji Electric Co Ltd
Priority to JP16034195A priority Critical patent/JPH0910755A/en
Publication of JPH0910755A publication Critical patent/JPH0910755A/en
Pending legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

PURPOSE: To realize the highly reliable operational control of water quality capable of corresponding to a change in season and weather, a plant operation state and sudden disturbance. CONSTITUTION: A feedback injection rate operation device 13 detects the downstream water quality WD2 of a control result from a water purifying basin 2-3 through water quality meters 3a, 3b and outputs an injection rate IR according to the operation formula selected corresponding to a season or weather through a selection switch 13a among a plurality of operation formulae. A feedforward injection rate operation device 12 detects upstream water quality WD1 before the treatment of water quality from a water arriving basin 2-1 through the water quality meters 3a, 3b. Usually, an F/B changeover switch 5 selects an injection rate IR1 and an operation result extra device 14 outputs a final injection rate IR increased corresponding to plant state data SD on the basis of an input injection rate and an injector 6 injects chemicals into a mixing basis 2-2 in the amt. corresponding to IR. As mentioned above, the merits of feedback control slow but highly reliable and feedforward control of low reliability rapidly corresponding to load variation are combined.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、浄水場などのプラン
トでの薬品注入率を演算し、プラントに流入する処理水
の水質を一定の目標水質に自動制御して、この制御後
(処理後)の処理水をプラントから送出させるための水
質演算制御システムに関する。なお、以下各図において
同一の符号は同一もしくは相当部分を示す。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention calculates the chemical injection rate in a plant such as a water purification plant and automatically controls the quality of treated water flowing into the plant to a constant target water quality. ) Related to a water quality control system for sending treated water from a plant. In the drawings, the same reference numerals indicate the same or corresponding parts.

【0002】[0002]

【従来の技術】図7は浄水場としてのプラントの従来の
水質演算制御システムの構成例を示す。同図において、
1はこのプラントに流入する処理対象の水としての処理
水、2−1〜2−3はこのプラント内での処理水1の上
流から下流に向う流路内に順次設けられた設備としての
池で、例えば2−1はプラントに流入した処理水1がそ
のまま先ず溜められる着水池、2−2は後述の薬品が注
入され混和される混和池、2−3は水質処理後の水が溜
められる浄水池である。なお、この例では混和池2−2
と浄水池2−3の間には図外の濾過池が存在する。
2. Description of the Related Art FIG. 7 shows a configuration example of a conventional water quality arithmetic control system for a plant as a water purification plant. In the figure,
1 is treated water as water to be treated which flows into this plant, and 2-1 to 2-3 are ponds as facilities which are sequentially installed in a flow path from upstream to downstream of the treated water 1 in this plant. For example, 2-1 is a landing basin in which the treated water 1 that has flowed into the plant is first stored as it is, 2-2 is a mixing basin in which the chemicals described below are injected and mixed, and 2-3 is water after water quality treatment is stored. It is a clean water pond. In this example, the mixing pond 2-2
There is a filter pond not shown in the figure between the water purification pond and the water purification pond 2-3.

【0003】また、3a,3bは夫々着水池2−1及び
浄水池2−3に設けられ、この各池の水質(例えばp
H,塩素量など)を計測する常用,非常用の水質計であ
る。21−1は着水池2−1側にて常用の水質計3aの
異常時又は保守時に非常用の水質計3bに手動操作で切
換えるための切換スイッチ、21−2は浄水池2−3側
にて同じく常用の水質計3aを非常用の水質計3bに手
動操作で切換えるための切換スイッチである。22は定
周期(本例では5分)毎に切換スイッチ21−1から入
力される着水池2−1の水質計3a又は3bの計測値と
しての水質データ(便宜上、上流水質データという)W
D1を入力し、所定の演算式でフィードフォワード注入
率IR1を演算出力するフィードフォワード注入率演算
装置、23は定周期(本例では25分)毎に切換スイッ
チ21−2から入力される浄水池2−3の水質計3a又
は3bの計測値としての水質データ(便宜上、下流水質
データという)WD2を入力し、所定の演算式でフィー
ドバック注入率IR2を演算出力するフィードバック注
入率演算装置である。
Further, 3a and 3b are provided in a landing pond 2-1 and a water purification pond 2-3, respectively, and the water quality of each pond (for example, p
It is a regular and emergency water quality meter that measures H, chlorine content, etc.). 21-1 is a changeover switch on the landing pond 2-1 side for manually switching to the emergency water quality meter 3b during abnormalities or maintenance of the regular water quality meter 3a, and 21-2 is on the water purification pond 2-3 side. Similarly, it is a changeover switch for manually changing the regular water quality meter 3a to the emergency water quality meter 3b. 22 is water quality data (for convenience, referred to as upstream water quality data) W as a measurement value of the water quality meter 3a or 3b of the landing pond 2-1 input from the changeover switch 21-1 at regular intervals (5 minutes in this example) W
A feedforward injection rate calculation device that inputs D1 and calculates and outputs the feedforward injection rate IR1 by a predetermined calculation formula, and 23 is a water purification tank that is input from the changeover switch 21-2 at regular intervals (25 minutes in this example) This is a feedback injection rate calculation device that inputs water quality data (for convenience, referred to as downstream water quality data) WD2 as a measurement value of the water quality meter 3a or 3b of 2-3, and calculates and outputs the feedback injection rate IR2 by a predetermined calculation formula.

【0004】5はフィードフォワード側,フィードバッ
ク側の各注入率演算装置22,23の出力注入率IR
1,IR2の何れか一方を手動操作で切換選択するため
のF/B切換スイッチ、6はF/B切換スイッチ5側か
ら入力される注入率(便宜上最終注入率という)IRに
よって定まる量の薬品(例えばアルカリ剤,消毒用塩素
剤など)を混和池2−2に注入する注入器である。
Reference numeral 5 indicates the output injection rate IR of each of the injection rate calculation devices 22 and 23 on the feedforward side and the feedback side.
F / B changeover switch for manually selecting one of IR1 and IR2, and 6 is an injection rate (conveniently called final injection rate) input from the F / B changeover switch 5 side. An injector for injecting (for example, an alkaline agent, a disinfecting chlorine agent, etc.) into the mixing pond 2-2.

【0005】このように従来の水質演算制御システムで
は、上流側の着水池2−1,下流側の浄水池2−3共に
常用,非常用の2台の水質計3a,3bを設け、夫々一
方の計器の異常時や保守時に切換スイッチ21−1,2
1−2の切換操作により他方の計器を用いてバックアッ
プできるようになっている。また、水質の制御方式とし
ては短い演算周期で上流の着水池2−1の水質を計測し
てその下流の混和池2−2への注入率を演算するため、
急な雨で水が濁る場合のように、急激なプラントの負荷
変動に対応できるが、制御結果の水質を検出しないため
信頼性に欠けるフィードフォワード方式を用いるか、あ
るいは長い演算周期で下流の浄水池2−3の制御結果の
水質を計測してその上流の混和池2−2への注入率を演
算するため、信頼性は高いが急激な負荷変動に追従でき
ないフィードバック方式を用いるかをオペレータの判断
で切換スイッチ5の切換操作により選択できるように構
成されている。
As described above, in the conventional water quality calculation control system, two water quality meters 3a and 3b, one for normal use and the other for emergency, are provided in both the landing basin 2-1 on the upstream side and the water purification basin 2-3 on the downstream side. Changeover switches 21-1 and 21-2 when the instrument is abnormal or during maintenance
By the switching operation of 1-2, the other instrument can be used for backup. In addition, as a water quality control method, since the water quality of the upstream landing pond 2-1 is measured in a short calculation cycle and the injection rate into the downstream mixing basin 2-2 is calculated,
Although it can cope with sudden load changes in the plant such as when the water becomes cloudy due to sudden rain, it uses a feedforward method that is unreliable because it does not detect the water quality of the control result, or the downstream purified water with a long calculation cycle. In order to measure the water quality of the control result of the pond 2-3 and calculate the injection rate to the upstream mixing basin 2-2, the operator is asked whether to use a feedback method that has high reliability but cannot follow a sudden load change. It is constructed so that it can be selected by a switching operation of the changeover switch 5 depending on the judgment.

【0006】なお、演算装置22,23が用いる演算式
は夫々長年の研究により求められた一本の演算式であ
り、その演算係数はオペレータが設定入力することによ
って調整されている。この調整の方法は、例えばオペレ
ータがプラントに流入する処理水1の雨後の濁った状態
や、晴天続きのアンモニアの含まれる状態などの水質状
態の変化を目視あるいは手分析で判別することによって
行われている。
The arithmetic expressions used by the arithmetic units 22 and 23 are one arithmetic equation obtained by many years of research, and the arithmetic coefficient is adjusted by the operator by setting and inputting. This adjustment method is performed, for example, by an operator visually or manually analyzing a change in the water quality state such as a turbid state of the treated water 1 flowing into the plant after rain and a state of containing ammonia in fine weather. ing.

【0007】また、図外の濾過池を洗浄する場合、浄水
池2−3の水の1部が濾過池より上流側に還流され、こ
の水がプラントに流入し外部へ配水される水の流れるに
加わる形でこのプラント内を循環するため、流量などが
通常時とは大巾に変化する。このため、このようなプラ
ントの運用状態の変化に合わせてオペレータが演算装置
を介さずに直接、注入器6に任意の注入率を設定入力す
ることも行われている。
Further, when washing a filter pond not shown in the figure, a part of the water in the water purification pond 2-3 is returned to the upstream side of the filter pond, and this water flows into the plant and flows out to the outside. Since it circulates in this plant in addition to the above, the flow rate etc. changes significantly from the normal time. Therefore, the operator may set and input an arbitrary injection rate to the injector 6 directly in accordance with such a change in the operating state of the plant without using the arithmetic unit.

【0008】[0008]

【発明が解決しようとする課題】しかしながら図7で述
べた従来の水質演算制御システムにおいては、次のよう
な問題がある。 1) 水質計器が2台あっても、何方か一方が必ず選択
されているわけで、どちらが選択されていたとしても、
計器の精度の問題やプラントへの外乱等により制御に悪
影響のあるデータが収集される可能性もあって安全性に
やや欠ける場合がある。
However, the conventional water quality arithmetic control system described in FIG. 7 has the following problems. 1) Even if there are two water quality meters, one of them is always selected, whichever is selected,
There is a possibility that the data may have a bad influence on the control due to the problem of the accuracy of the instrument, the disturbance to the plant, etc.

【0009】2) 制御方式についてもフィードバック
方式,フィードフォワード方式の何方も一長一短で、フ
ィードバック方式は制御結果を次回に反映させる面にお
いて安全確実ではあるが、制御結果を待つ時間としての
タイムラグが発生し、フィードフォワード方式において
は注入前に水質を診断し注入率を決定するため、タイム
ラグもなく迅速な制御が行われるが、制御結果が反映さ
れないので正確性に欠ける。
2) Both the feedback method and the feedforward method have advantages and disadvantages in the control method. Although the feedback method is safe and reliable in terms of reflecting the control result next time, a time lag as a time to wait for the control result occurs. In the feed-forward method, since water quality is diagnosed before injection and the injection rate is determined, rapid control is performed without a time lag, but the control result is not reflected, so accuracy is lacking.

【0010】3) 注入率を求める演算式一本で、夏冬
の季節変化や更にそこでの天候変化によるプラントへの
影響や連休等特異日の特殊運用等を全て包括し、プラン
トに流入する処理水の水質を目標水質へ追従させるには
無理がある。 4) プラントの運用状態に逐次人的に対応するには限
界がある。 5) 注入率演算装置で制御し切れない水質の変化に逐
次人的に対応するにも限界がある。
3) A process for inflowing into a plant that includes all the influences on the plant due to seasonal changes in summer and winter and weather changes there, and special operations such as consecutive days such as consecutive holidays. It is impossible to make the water quality of water follow the target water quality. 4) There is a limit to the sequential human response to the operating status of the plant. 5) There is a limit in sequentially responding to changes in water quality that cannot be controlled by the injection rate calculation device.

【0011】そこで本発明はこのような問題を解消でき
る水質演算制御システムを提供することを課題とする。
Therefore, an object of the present invention is to provide a water quality arithmetic control system capable of solving such a problem.

【0012】[0012]

【課題を解決するための手段】前記の課題を解決するた
めに、請求項1の水質演算制御システムは、プラント内
の上流から下流に向う処理水の流路上(の混和池2−
2)に設けられ、演算された注入率(最終注入率IR)
の入力に基づいて処理水に入力注入率に対応する量の所
定の薬品を注入混和する薬品注入手段(注入器6)を持
ち、プラントに流入する処理水(1)の水質を前記薬品
注入手段を介し目標とする水質へ向けて処理し、この処
理後の処理水をプラントから送出させる水質演算制御シ
ステムであって、プラント内の(浄水池2−3などの)
前記処理後の処理水の水質を検出する第1の水質検出手
段と、所定の第1の周期(25分など)毎に、第1の水
質検出手段の検出した水質データ(下流水質データWD
2)を入力とし、所定の第1の演算式の演算により第1
の注入率(フィードバック注入率IR2)を演算出力す
る第1の注入率演算手段(フィードバック注入率演算装
置13)と、プラント内の(着水池2−1などの)前記
処理前の処理水の水質を検出する第2の水質検出手段
と、第1の周期より短い所定の第2の周期(5分など)
毎に、第2の水質検出手段の検出した水質データ(上流
水質データWD1)と前記第1の注入率を入力とし、所
定の第2の演算式の演算により第2の注入率(フィード
フォワード注入率IR1)を演算出力する第2の注入率
演算手段(フィードフォワード注入率演算装置12)と
を備え、(F/B切換スイッチ5を介し)少なくとも第
2の注入率を前記薬品注入手段に入力し得るようにす
る。
In order to solve the above-mentioned problems, a water quality arithmetic control system according to a first aspect of the present invention is (on the mixing pond 2-of the treated water flow path from upstream to downstream in the plant).
The injection rate calculated in (2) and calculated (final injection rate IR)
Has a chemical injection means (injector 6) for injecting and mixing an amount of a predetermined chemical corresponding to the input injection rate into the treated water based on the input of the above, and the water quality of the treated water (1) flowing into the plant is the chemical injection means. A water quality calculation control system that treats water toward a target water quality through the water and sends out the treated water after the treatment from the plant, such as a water purification pond 2-3 in the plant.
First water quality detecting means for detecting the water quality of the treated water after the treatment, and water quality data detected by the first water quality detecting means (downstream water quality data WD) every predetermined first cycle (25 minutes, etc.).
2) as an input, and by the operation of the predetermined first arithmetic expression, the first
Injection rate calculation means (feedback injection rate calculation device 13) for calculating and outputting the injection rate (feedback injection rate IR2) of the water, and the water quality of the treated water in the plant (such as the landing pond 2-1) before the treatment. Second water quality detecting means for detecting a predetermined second cycle (5 minutes, etc.) shorter than the first cycle
For each time, the water quality data (upstream water quality data WD1) detected by the second water quality detecting means and the first injection rate are input, and the second injection rate (feedforward injection) is calculated by a predetermined second arithmetic expression. Second injection rate calculation means (feedforward injection rate calculation device 12) for calculating and outputting the rate IR1), and inputting at least the second injection rate to the chemical injection means (via the F / B changeover switch 5). To be able to do.

【0013】また、請求項2の水質演算制御システムで
は、請求項1に記載のシステムにおいて、前記第1,第
2の水質検出手段は夫々、2つの水質計(3a,3b)
と、この2つの水質計の計測値の平均値、並びに2つの
水質計の計測値のうち大きい側の計測値、又は小さい側
の計測値、の何れか予め指定した値を少なくとも前記水
質データとして選択出力させる手段(計測データ切換ス
イッチ11(11−1,11−2))とを備えたものと
する。
Further, in the water quality arithmetic control system according to claim 2, in the system according to claim 1, each of the first and second water quality detecting means has two water quality meters (3a, 3b).
And an average value of the measured values of the two water quality meters, and a measured value on the larger side of the measured values of the two water quality meters, or a measured value on the smaller side, which is designated in advance as at least the water quality data. A means for selectively outputting (measurement data changeover switch 11 (11-1, 11-2)) is provided.

【0014】また、請求項3の水質演算制御システムで
は、請求項1又は2に記載のシステムにおいて、前記第
1の演算式は季節,天候等に応じて予め定められた複数
の演算式から予めの指定により(演算式選択スイッチ1
3aを介し)選択されるものであるようにする。
Further, in the water quality arithmetic control system according to claim 3, in the system according to claim 1 or 2, the first arithmetic expression is preliminarily selected from a plurality of arithmetic expressions predetermined according to season, weather and the like. (Calculation formula selection switch 1
(Via 3a).

【0015】また、請求項4の水質演算制御システムで
は、請求項3に記載のシステムにおいて、前記複数の演
算式の夫々の係数(次回演算用係数K)は、第1の注入
率演算手段の直近の演算における、水質データと第1の
注入率との時間的推移から(演算用係数算出装置15を
介し)所定の演算処理で定められるものであるようにす
る。 また、請求項5の水質演算制御システムでは、請
求項1ないし4の何れかに記載のシステムにおいて、プ
ラント内の各種のポンプ,弁のオン/オフデータ等から
なるプラント運用状態データ(SD)に応じて、夫々予
め定められた所定の割増率で前記薬品注入手段へ入力す
る注入率をさらに自動的に割増す手段(演算結果割増装
置14)を備えたものとする。
Further, in a water quality arithmetic control system according to a fourth aspect, in the system according to the third aspect, each coefficient (next operation coefficient K) of the plurality of arithmetic expressions corresponds to that of the first injection rate arithmetic means. It is determined by a predetermined calculation process (via the calculation coefficient calculation device 15) from the temporal transition of the water quality data and the first injection rate in the latest calculation. Further, in the water quality arithmetic control system according to claim 5, in the system according to any one of claims 1 to 4, the plant operation state data (SD) including on / off data of various pumps and valves in the plant is used. Accordingly, it is assumed that a means (computation result surplus device 14) is further provided for automatically increasing the infusion rate input to the medicine injecting means at a predetermined extra rate.

【0016】[0016]

【作用】前記の1)〜5)の問題を夫々次の1)〜5)
の方式で解決する。 1) 水質計器データを常用・非常用の2点共常時取込
むこととし、この2点のデータについて毎回値の低いデ
ータを採用するか、平均値を採用するか、どちらか一方
を固定で採用するか、何れかを指定できるようにする
(請求項2)。
The above problems 1) to 5) are solved by the following 1) to 5), respectively.
To solve the problem. 1) Water quality meter data is always taken in for both regular and emergency use, and either low value data or average value is used for each of these two data points. Either one is fixed. Either of them can be designated (Claim 2).

【0017】2) フィードフォワード制御方式内に、
フィードバック制御方式にて演算した結果値を基とし
て、逐次補正をかけるロジックを組込む(請求項1)。 3) フィードバック注入率演算装置に季節や天候に合
わせた数種類の演算式を用意して、状況に応じて選択で
きるようにする(請求項3)。 4) プラントの運用状態を診断し、状態に合わせて注
入器に入力する演算結果の注入率を割増させる(請求項
5)。
2) Within the feedforward control system,
Based on the result value calculated by the feedback control method, a logic for sequentially correcting is incorporated (claim 1). 3) The feedback injection rate calculation device is provided with several kinds of calculation formulas according to the season and the weather so that they can be selected according to the situation (claim 3). 4) The operating state of the plant is diagnosed, and the injection rate of the calculation result input to the injector is increased according to the state (claim 5).

【0018】5) 水質処理結果の水質の状態を監視・
診断した結果でフィードバック注入率演算装置の演算式
の係数を算出する(請求項4)。
5) Monitoring the water quality status resulting from the water quality treatment
The coefficient of the calculation formula of the feedback injection rate calculation device is calculated based on the diagnosis result (claim 4).

【0019】[0019]

【実施例】図1は本発明の一実施例としてのシステム構
成図で図7に対応するものである。図1において11
(11−1,11−2)は夫々上流側の着水池2−1,
下流側の浄水池2−3の、夫々1対の水質計3a,3b
から得られる後述の4種の水質計測データの何れか1つ
をオペレータが切換選択するための計測データ切換スイ
ッチ、13は定周期(この例では25分)毎に、下流側
計測データ切換スイッチ11−2の出力としての下流水
質データWD2を入力し、フィードバック注入率IR2
を演算出力するフィードバック注入率演算装置、13a
はこの演算装置13の用いる演算式をオペレータが切換
選択するための演算式選択スイッチである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a system configuration diagram as an embodiment of the present invention and corresponds to FIG. 11 in FIG.
(11-1, 11-2) are the landing ponds 2-1 and 2-1 on the upstream side, respectively.
A pair of water quality meters 3a and 3b, respectively, in the water purification pond 2-3 on the downstream side
A measurement data changeover switch for allowing the operator to switch and select any one of the four types of water quality measurement data described later obtained from FIG. 13 is a downstream side measurement data changeover switch 11 for every fixed period (25 minutes in this example). -2, the downstream water quality data WD2 is input, and the feedback injection rate IR2
A feedback injection rate calculation device for calculating and outputting
Is an arithmetic expression selection switch for the operator to switch and select the arithmetic expression used by the arithmetic unit 13.

【0020】12は定周期(この例では5分)で上流側
計測データ切換スイッチ11−1の出力としての上流水
質データWD1と、フィードバック注入率演算装置13
の出力としてのフィードバック注入率IR2を入力し、
フィードフォワード注入率IR1を演算出力するフィー
ドフォワード注入率演算装置である。F/B切換スイッ
チ5は本発明においてもオペレータの選択によってフィ
ードフォワード注入率演算装置12側又はフィードバッ
ク注入率演算装置13側に切換え可能であるが、本発明
では通常はフィードフォワード注入率演算装置12が選
択され、上流側(着水池2−1)の水質計3a,3bが
何れも故障した場合とか、5分周期の計算機の負荷を軽
減したい場合などの異常時のバックアップ用としてフィ
ードバック注入率演算装置13が選択される。
Reference numeral 12 is a fixed cycle (5 minutes in this example), and the upstream water quality data WD1 as the output of the upstream side measurement data changeover switch 11-1 and the feedback injection rate calculation device 13 are provided.
Input the feedback injection rate IR2 as the output of
This is a feedforward injection rate calculation device that calculates and outputs the feedforward injection rate IR1. In the present invention, the F / B changeover switch 5 can be switched to the feedforward injection rate calculation device 12 side or the feedback injection rate calculation device 13 side by the operator's selection, but in the present invention, the feedforward injection rate calculation device 12 is usually used. Is selected, and the feedback injection rate calculation is performed as a backup in the event of an abnormality such as when the water quality meters 3a and 3b on the upstream side (landing pond 2-1) both fail or when it is desired to reduce the load on the 5-minute cycle computer. Device 13 is selected.

【0021】次に14はF/B切換スイッチ5によって
選択される演算装置12又は13の夫々の演算結果とし
てのフィードフォワード注入率IR1又はフィードバッ
ク注入率IR2に対して、次に述べるプラント状態デー
タSDに応じた割増演算を行い注入器6に対する最終の
注入率IRを求める演算結果割増装置である。なお、プ
ラント状態データSDは、例えば濾過池洗浄中などのプ
ラントの運用状態を判別するためのデータで、プラント
内の各部のポンプや弁のオン/オフデータなどからな
る。
Next, 14 is the plant state data SD described below with respect to the feedforward injection rate IR1 or the feedback injection rate IR2 as the calculation result of the calculation unit 12 or 13 selected by the F / B changeover switch 5. Is a calculation result premium device for calculating a final injection rate IR for the injector 6 by performing a premium calculation according to The plant state data SD is data for determining the operating state of the plant, for example, during washing of the filter basin, and includes ON / OFF data of pumps and valves of various parts in the plant.

【0022】図2は計測データ切換スイッチ11の構成
を示す。この例では切換スイッチ11は水質計3a,3
bの何れか固定の一方の値(これは一方の水質計の故障
時、又は点検中の場合に用いられ、他方の水質量が固定
的に選択される)、水質計3aと3bの平均値(これは
一般にアルカリ薬剤注入時に用いられる)、又は水質計
3a,3bの何れか最適な側の値(例えば塩素注入時に
は何れか低い方の値が選択され、アルカリ薬剤の場合何
れか高い方の値が選ばれる)の4種の値の手動選択が可
能である。また、何れの選択の場合でも使用中の水質計
が故障した場合、その水質計は自動的に切離され、正常
な水質計のみがそのまま、又は故障の水質計に代って用
いられる。
FIG. 2 shows the configuration of the measurement data changeover switch 11. In this example, the changeover switch 11 is the water quality meter 3a, 3
One of the fixed values of b (this is used when one of the water quality meters fails or is being inspected, and the other water mass is fixedly selected), the average value of the water quality meters 3a and 3b (This is generally used when injecting an alkaline drug), or the value on the most appropriate side of the water quality meters 3a and 3b (for example, when chlorine is injected, the lower value is selected, and in the case of an alkaline drug, the higher value is selected. Manual selection of four values (values are selected) is possible. Further, in any case, when the water quality meter in use fails, the water quality meter is automatically disconnected, and only the normal water quality meter is used as it is or instead of the malfunctioning water quality meter.

【0023】次に図3はフィードバック注入率演算装置
13の構成を示す。この演算装置13は下流(つまり制
御結果の)水質データWD2を入力とし、例えば夏の晴
天時,冬の雨天時といったように、季節とその時の天候
などに応じオペレータが演算式選択スイッチ13aを切
換え選択した演算式#1〜#5の1つによって、フィー
ドバック注入率IR2を演算出力する。なお、各演算式
#1〜#5の演算用係数は演算用係数算出装置15によ
って算出される。
Next, FIG. 3 shows the configuration of the feedback injection rate calculation device 13. The arithmetic unit 13 receives the downstream (that is, the control result) water quality data WD2 as an input, and the operator switches the arithmetic expression selection switch 13a according to the season and the weather at that time, such as in the case of fine weather in summer and in the case of rain in winter. The feedback injection rate IR2 is calculated and output by one of the selected calculation formulas # 1 to # 5. The calculation coefficients of the calculation formulas # 1 to # 5 are calculated by the calculation coefficient calculation device 15.

【0024】図4はこの演算用係数算出装置15の動作
のアルゴリズムを示す。即ち演算用係数算出装置15は
次式(1)によって次回演算時の演算用係数Kを算出す
る。
FIG. 4 shows an algorithm of the operation of the calculation coefficient calculating device 15. That is, the calculation coefficient calculation device 15 calculates the calculation coefficient K for the next calculation according to the following equation (1).

【0025】[0025]

【数1】 (次回演算用係数K)= [(今回下流水質データ)−(前回下流水質データ)] /[(今回フィードバック注入率)−(前回フィードバック注入率)] ・・・(1) ここで、現在は、25分周期のフィードバック注入率の
演算による水質制御中であるものとし、この式(1)
中、“今回”の各値は現制御の演算時の値を指し、“前
回”の各値は前回、つまり25分前の制御演算時の値を
示す。
[Equation 1] (Coefficient K for the next calculation) = [(Current downstream water quality data)-(Previous downstream water quality data)] / [(Current feedback injection rate)-(Previous feedback injection rate)] (1) Here Then, it is assumed that the water quality control is currently performed by calculating the feedback injection rate in a 25-minute cycle, and this equation (1)
In the middle, each value of "current time" indicates a value at the time of calculation of the current control, and each value of "previous time" indicates a value at the time of control calculation last time, that is, 25 minutes before.

【0026】図5はフィードフォワード注入率演算装置
12の演算のアルゴリズムを示す。即ちこの演算装置1
2は上流水質データWD1とフィードバック注入率IR
2を入力し、次式(2)によってフィードフォワード注
入率IR1を演算出力する。
FIG. 5 shows a calculation algorithm of the feedforward injection rate calculation device 12. That is, this arithmetic unit 1
2 is upstream water quality data WD1 and feedback injection rate IR
2 is input, and the feedforward injection rate IR1 is calculated and output by the following equation (2).

【0027】[0027]

【数2】 (フィードフォワード注入率)= (フィードバック注入率) +[(今回上流水質データ)−(前回上流水質データ)]/ (次回演算用係数K) ・・・(2) なお、式(2)中の“今回”,“前回”の値の意味も図
4と同様で“今回”は現制御中の演算時の値、“前回”
は前回つまり5分前の制御演算時の値を指す。また、次
回演算用係数Kは図4で述べた演算用係数算出装置15
の演算出力値である。
(Formula 2) (Feedforward injection rate) = (Feedback injection rate) + [(Current upstream water quality data)-(Previous upstream water quality data)] / (Next calculation coefficient K) (2) Note that the formula ( The meanings of the "current" and "previous" values in 2) are the same as in Fig. 4, and "this time" is the value at the time of calculation during the current control, "previous".
Indicates the value at the time of the control calculation last time, that is, 5 minutes before. Further, the next calculation coefficient K is the calculation coefficient calculation device 15 described with reference to FIG.
Is the calculated output value of.

【0028】次に図6は演算結果割増装置14の構成を
示す。即ちこの割増装置14はF/B切換スイッチ5の
選択に応じて入力される注入率演算装置12又は13の
演算結果としてのフィードフォワード注入率IR1又は
フィードバック注入率IR2に対し、プラントの運用状
態を示すプラント状態データSDに応じ予め定められて
いる率の割増を自動的に行って最終注入率IRを出力す
る。
Next, FIG. 6 shows the configuration of the calculation result extra unit 14. That is, the extra device 14 sets the operation state of the plant to the feedforward injection rate IR1 or the feedback injection rate IR2 as the calculation result of the injection rate calculation device 12 or 13 which is input according to the selection of the F / B changeover switch 5. The final injection rate IR is output by automatically increasing the predetermined rate according to the plant state data SD shown.

【0029】この例では通常のプラント運用状態#1で
は演算結果に割増率1.0が乗ぜられ結果的に割増は無
いが、状態#2と#3と#4では夫々演算結果に割増率
1.xと1.yと1.z(ここでx,y,zは小数点以
下の数値を示す)が乗ぜられ最終注入率IRとして出力
される。
In this example, in the normal plant operation state # 1, the calculation result is multiplied by the premium rate 1.0 and there is no premium as a result, but in the states # 2, # 3 and # 4, the premium rate 1 is added to the calculation result, respectively. . x and 1. y and 1. z (where x, y, and z are numerical values after the decimal point) are multiplied and output as the final injection rate IR.

【0030】[0030]

【発明の効果】本発明によれば次のような効果が得られ
る。 1) 水質計として3a,3bの2台を常時用い、水質
計から取込むデータを水質状態により2つの水質データ
の水質状況に応じた最適な一方又は平均を取込むように
したので(請求項2)、異常な水質データを取込む確率
が減少すると共に、外乱等による異常なデータを取込む
ことがあっても、この平均値処理によりデータの激変が
抑制される。
According to the present invention, the following effects can be obtained. 1) Two water quality meters, 3a and 3b, are always used, and the data taken from the water quality meter is set to the optimum one or the average depending on the water quality status of the two water quality data (claim) 2) The probability of taking in abnormal water quality data is reduced, and even if abnormal data is taken in due to a disturbance or the like, this averaging process suppresses drastic changes in data.

【0031】2) 1)で述べた水質データ及びプラン
トから収集し診断したプラント状態データを基に薬品注
入率の演算を行うにあたり、制御方式として制御結果を
次回の薬品注入率の演算に反映させるフィードバック方
式と、薬品の注入点より上流工程における水質変化を診
断しながら短周期毎に薬品注入率の演算を行うフィード
フォワード方式を組合わせ、フィードバック制御結果に
基づく薬品注入率に上流工程での水質変化に合わせた補
正をかける、いわば、フィードバック方式ベースのフィ
ードフォワード方式を用いるようにしたので(請求項
1)、フィードバック方式の確実性とフィードフォワー
ド方式の迅速性の両長所がかみ合い、演算結果の信頼性
も向上する。
2) When the chemical injection rate is calculated based on the water quality data described in 1) and the plant state data collected and diagnosed from the plant, the control result is reflected as the control method in the next calculation of the chemical injection rate. The feedback method and the feed-forward method, which calculates the chemical injection rate at short intervals while diagnosing water quality changes in the upstream process from the chemical injection point, are combined, and the chemical injection rate based on the feedback control result is used to determine the water quality in the upstream process. Since a feed-forward method based on a feedback method is used so as to make a correction according to the change (claim 1), the advantages of the reliability of the feedback method and the speediness of the feed-forward method are interlocked, and the calculation result Reliability is also improved.

【0032】3) フィードバック注入率の演算式とし
て、季節毎・天候毎に異なるプラント運用形態に対応さ
せるための複数の運用形態別演算式より適切な1式をオ
ペレータが選択できるようにしたので(請求項3)、非
日常時であっても、季節,天候の状況にあった演算式の
選択により制御が継続される。 4) 選択中の演算式が算出した注入率の結果値をプラ
ント状態に応じて自動的に割増させる演算結果割増装置
を組込むようにしたので(請求項5)、プラントの状態
をその都度意識すること無く、制御演算値としての最終
注入率が算出される。
3) Since the operator can select an appropriate formula as the calculation formula of the feedback injection rate from a plurality of calculation formulas for each operation mode for corresponding to different plant operation modes for each season and weather ( According to claim 3), even during non-daily days, control is continued by selecting an arithmetic expression suitable for the season and weather conditions. 4) Since the calculation result surcharge device that automatically surcharges the result value of the injection rate calculated by the selected arithmetic expression according to the plant state is incorporated (claim 5), the state of the plant is taken into consideration each time. Without doing so, the final injection rate as the control calculation value is calculated.

【0033】5) 前回制御時のフィードバック注入率
による制御結果水質(下流水質データ)と今回制御時の
フィードバック注入率による制御結果水質から、次回制
御時のフィードバック注入率の演算用係数を求めるよう
にしたので(請求項4)、水質の変化に対しても自動で
演算係数が算出されることにより、制御が途切れること
無く継続され安全性が向上する。
5) From the control result water quality (downstream water quality data) based on the feedback injection rate during the previous control and the control result water quality based on the feedback injection rate during the present control, the coefficient for calculating the feedback injection rate during the next control is calculated. Therefore, the calculation coefficient is automatically calculated with respect to the change in water quality, so that the control is continued without interruption and the safety is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例としてのシステム構成図FIG. 1 is a system configuration diagram as an embodiment of the present invention.

【図2】図1の計測データ切換スイッチの構成図FIG. 2 is a block diagram of the measurement data changeover switch of FIG.

【図3】図1のフィードバック注入率演算装置の構成図FIG. 3 is a block diagram of the feedback injection rate calculation device of FIG.

【図4】図3の演算用係数算出装置の動作のアルゴリズ
ムの説明図
FIG. 4 is an explanatory diagram of an algorithm of an operation of the calculation coefficient calculation device in FIG.

【図5】図1のフィードフォワード注入率演算装置の動
作のアルゴリズムの説明図
5 is an explanatory diagram of an algorithm of an operation of the feedforward injection rate calculation device of FIG.

【図6】図1の演算結果割増装置の構成図FIG. 6 is a block diagram of the calculation result extra unit of FIG.

【図7】図1に対応する従来のシステム構成図FIG. 7 is a conventional system configuration diagram corresponding to FIG.

【符号の説明】[Explanation of symbols]

1 処理水 2−1 着水池 2−2 混和池 2−3 浄水池 3a,3b 水質計 5 F/B切換スイッチ 6 注入器 11(11−1,11−2) 計測データ切換スイッチ 12 フィードフォワード注入率演算装置 13 フィードバック注入率演算装置 13a 演算式選択スイッチ 14 演算結果割増装置 15 演算用係数算出装置 WD1 上流水質データ WD2 下流水質データ IR1 フィードフォワード注入率 IR2 フィードバック注入率 IR 最終注入率 SD プラント状態データ K 次回演算用係数 1 Treated water 2-1 Landing basin 2-2 Mixing basin 2-3 Purification basin 3a, 3b Water quality meter 5 F / B changeover switch 6 Injector 11 (11-1, 11-2) Measurement data changeover switch 12 Feedforward injection Rate calculation device 13 Feedback injection rate calculation device 13a Calculation formula selection switch 14 Calculation result increase device 15 Calculation coefficient calculation device WD1 Upstream water quality data WD2 Downstream water quality data IR1 Feedforward injection rate IR2 Feedback injection rate IR Final injection rate SD Plant state data K Next calculation coefficient

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】プラント内の上流から下流に向う処理水の
流路上に設けられ、演算された注入率の入力に基づいて
処理水に入力注入率に対応する量の所定の薬品を注入混
和する薬品注入手段を持ち、 プラントに流入する処理水の水質を前記薬品注入手段を
介し目標とする水質へ向けて処理し、この処理後の処理
水をプラントから送出させる水質演算制御システムであ
って、 プラント内の前記処理後の処理水の水質を検出する第1
の水質検出手段と、 所定の第1の周期毎に、第1の水質検出手段の検出した
水質データを入力とし、所定の第1の演算式の演算によ
り第1の注入率を演算出力する第1の注入率演算手段
と、 プラント内の前記処理前の処理水の水質を検出する第2
の水質検出手段と、 第1の周期より短い所定の第2の周期毎に、第2の水質
検出手段の検出した水質データと前記第1の注入率を入
力とし、所定の第2の演算式の演算により第2の注入率
を演算出力する第2の注入率演算手段とを備え、 少なくとも第2の注入率を前記薬品注入手段に入力し得
るようにしたことを特徴とする水質演算制御システム。
1. A plant is provided on a treated water flow path from upstream to downstream in a plant, and a prescribed amount of a predetermined chemical corresponding to the input injection rate is injected and mixed into the treated water based on an input of a calculated injection rate. A water quality arithmetic control system that has a chemical injection means, treats the quality of treated water flowing into a plant toward a target water quality through the chemical injection means, and sends the treated water after the treatment from the plant, First to detect the water quality of the treated water in the plant
Water quality detecting means for inputting the water quality data detected by the first water quality detecting means for each predetermined first cycle, and calculating and outputting the first injection rate by the calculation of the predetermined first arithmetic expression. An injection rate calculating means of No. 1 and a second for detecting the water quality of the untreated water in the plant
Of the water quality detecting means and the water quality data detected by the second water quality detecting means and the first injection rate are input for each predetermined second cycle shorter than the first cycle, and the predetermined second arithmetic expression is used. And a second injection rate calculation means for calculating and outputting a second injection rate by the calculation of the above, and at least the second injection rate can be input to the chemical injection means. .
【請求項2】請求項1に記載のシステムにおいて、 前記第1,第2の水質検出手段は夫々、 2つの水質計と、 この2つの水質計の計測値の平均値、並びに2つの水質
計の計測値のうち大きい側の計測値、又は小さい側の計
測値、の何れか予め指定した値を少なくとも前記水質デ
ータとして選択出力させる手段とを備えたことを特徴と
する水質演算制御システム。
2. The system according to claim 1, wherein each of the first and second water quality detecting means has two water quality meters, an average value of measurement values of the two water quality meters, and two water quality meters. A measurement value on the larger side or a measurement value on the smaller side of the measurement values of 1. above, which is selected and output as at least the water quality data.
【請求項3】請求項1又は2に記載のシステムにおい
て、 前記第1の演算式は季節,天候等に応じて予め定められ
た複数の演算式から予めの指定により選択されるもので
あることを特徴とする水質演算制御システム。
3. The system according to claim 1 or 2, wherein the first arithmetic expression is selected from a plurality of arithmetic expressions predetermined according to the season, weather, etc. A water quality arithmetic and control system.
【請求項4】請求項3に記載のシステムにおいて、 前記複数の演算式の夫々の係数は、第1の注入率演算手
段の直近の演算における、水質データと第1の注入率と
の時間的推移から所定の演算処理で定められるものであ
ることを特徴とする水質演算制御システム。
4. The system according to claim 3, wherein the coefficient of each of the plurality of arithmetic expressions is the temporal relationship between the water quality data and the first injection rate in the latest calculation of the first injection rate calculation means. A water quality arithmetic control system characterized in that it is determined from a transition by a predetermined arithmetic processing.
【請求項5】請求項1ないし4の何れかに記載のシステ
ムにおいて、 プラント内の各種のポンプ,弁のオン/オフデータ等か
らなるプラント運用状態データに応じて、夫々予め定め
られた所定の割増率で前記薬品注入手段へ入力する注入
率をさらに自動的に割増す手段を備えたことを特徴とす
る水質演算制御システム。
5. The system according to any one of claims 1 to 4, wherein a predetermined predetermined value is set in accordance with plant operating state data including ON / OFF data of various pumps and valves in the plant. A water quality arithmetic and control system, further comprising means for automatically increasing the injection rate input to the chemical injection means at an additional rate.
JP16034195A 1995-06-27 1995-06-27 Water quality operation control apparatus Pending JPH0910755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16034195A JPH0910755A (en) 1995-06-27 1995-06-27 Water quality operation control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16034195A JPH0910755A (en) 1995-06-27 1995-06-27 Water quality operation control apparatus

Publications (1)

Publication Number Publication Date
JPH0910755A true JPH0910755A (en) 1997-01-14

Family

ID=15712895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16034195A Pending JPH0910755A (en) 1995-06-27 1995-06-27 Water quality operation control apparatus

Country Status (1)

Country Link
JP (1) JPH0910755A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013094686A (en) * 2011-10-28 2013-05-20 Meidensha Corp Chemical injection control method and chemical injection controller
CN107544570A (en) * 2017-10-11 2018-01-05 章志福 A kind of oxygenation control method of oxygen determination, aeration system and the system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013094686A (en) * 2011-10-28 2013-05-20 Meidensha Corp Chemical injection control method and chemical injection controller
CN107544570A (en) * 2017-10-11 2018-01-05 章志福 A kind of oxygenation control method of oxygen determination, aeration system and the system
CN107544570B (en) * 2017-10-11 2020-10-27 章志福 Oxygen measuring and increasing system and oxygen increasing control method thereof

Similar Documents

Publication Publication Date Title
US6001254A (en) Method of operating and monitoring a group of filter membrane modules, and a group of modules implementing the method
US5830365A (en) Means for determining hemodynamic parameters during extracorporeal blood treatment
EP2640439B1 (en) Device for achieving, as closely as possible, the substitution target in blood ultrafiltration
DE60127694T2 (en) DIALYSIS DEVICE AND METHOD FOR CONTROLLING THE FUNCTIONALITY OF A DIALYZER
CA2101537C (en) Dialysis machine with safety monitoring and a corresponding method for monitoring safety
EP2203198B1 (en) Method and apparatus for monitoring the supply of replacement fluid during an extracorporeal treatment of blood
US11447404B2 (en) System and method of deionization of water
US6530262B1 (en) Method and device for determining the existence of leaks in a system with flowing fluid
KR101889510B1 (en) Method of estimating coagulant injection rate in water treatment using deep neural network
WO2004014463A1 (en) Blood purifying device and method of operating the same
JPH08126882A (en) Device for controlling operation of water generating plant
CN117153336B (en) Hemodialysis monitoring system and method based on hemodialysis machine
AU7768000A (en) Extracorporeal blood purification device
CN116216807B (en) Intelligent Dosing System Based on Sewage Treatment
CN112691413A (en) Sludge discharge control method and device for sedimentation tank
JPH0910755A (en) Water quality operation control apparatus
JP2009136704A (en) Dialyzing system
JP3311158B2 (en) Operation control device for desalination plant
CN104062903B (en) A kind of carbon fiber coagulation bath reconfigurable controller based on immunologic mechanism
US5288398A (en) Filter bed backwashing devices and methods
EP2783716A1 (en) Method and device for detecting recirculation in a shunt
JP4093695B2 (en) Dialysis treatment device
JP4654526B2 (en) Specific resistance adjustment water production equipment
JP3045221B2 (en) Chemical mixing device
KR102535621B1 (en) Water quality measuring device