JPH09107118A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH09107118A
JPH09107118A JP7292119A JP29211995A JPH09107118A JP H09107118 A JPH09107118 A JP H09107118A JP 7292119 A JP7292119 A JP 7292119A JP 29211995 A JP29211995 A JP 29211995A JP H09107118 A JPH09107118 A JP H09107118A
Authority
JP
Japan
Prior art keywords
substrate
shape
layer
film
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7292119A
Other languages
Japanese (ja)
Inventor
Yasuki Harada
康樹 原田
Norihiro Terada
典裕 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP7292119A priority Critical patent/JPH09107118A/en
Publication of JPH09107118A publication Critical patent/JPH09107118A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0463PV modules composed of a plurality of thin film solar cells deposited on the same substrate characterised by special patterning methods to connect the PV cells in a module, e.g. laser cutting of the conductive or active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0465PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising particular structures for the electrical interconnection of adjacent PV cells in the module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To mass-produce a solid substrate which is easily manufactured and has excellent characteristics by composing the substrate of a semiconductor device, which is on the substrate, by using shape-memory material, changing the substrate from the prescribed shape during the manufacturing process and returning the substrate to the prescribed shape after the manufacture. SOLUTION: A substrate 1 is heated sufficiently higher than 100 deg.C and is held by changing the substrate 1 into a flat plate, which can be processed most easily, from the prescribed wave shape. An insulating film 2 and an electrode Al film 11 are formed on the substrate 1. Then, the Al film 11 is processed into rear side electrodes 3 by laser processing, etc. The substrate 1 is heated to 120-200 deg.C by RF plasma CD method, the (n) layer 6, (i) layer 7 and the (p) layer of a photovoltaic layer 5 are formed on the substrate 1, including the rear side electrodes 3, and each layer is processed by each unit photovoltaic element 4 by laser processing, etc. Then, a transparent conductive film is integrally formed on each photovoltaic layer 5 by deposition, a surface electrode 9 is formed for each unit element by laser processing, the surface electrode 9 is covered with a protective film 10 and the substrate 1 is returned to 100 deg.C or below. Thus, the solid substrate which has excellent characteristics is easily mass-produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、種々の3次元形状
の基板上に少なくとも非晶質薄膜半導体等の薄膜半導体
を形成した半導体装置及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device in which at least a thin film semiconductor such as an amorphous thin film semiconductor is formed on a substrate having various three-dimensional shapes, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来、薄膜半導体の1例である水素化非
晶質シリコン半導体等の薄膜非晶質半導体は、液晶表示
パネルの駆動用トランジスタとして基板に形成されて表
示パネルと一体化して用いられたり、太陽電池等の光起
電力装置の起電力層として基板に形成されたり、さらに
は、コピー機の感光体材料として円筒形基板上に形成さ
れたりしている。
2. Description of the Related Art Conventionally, a thin film amorphous semiconductor such as a hydrogenated amorphous silicon semiconductor, which is one example of a thin film semiconductor, is formed on a substrate as a driving transistor of a liquid crystal display panel and used integrally with the display panel. Or is formed on a substrate as an electromotive force layer of a photovoltaic device such as a solar cell, or is formed on a cylindrical substrate as a photosensitive material of a copying machine.

【0003】この場合、薄膜非晶質半導体が形成される
基板はその用途等に応じて種々の3次元形状に形成さ
れ、例えば光起電力装置の起電力層として用いられるテ
トラヘドラル系の水素化非晶質半導体の基板は、実開昭
64−13739号公報(H01L 31/04),実
開昭64−30858号公報(H01L 31/04)
等に記載されているように波形形状(鋸歯状)に形成さ
れる。
In this case, the substrate on which the thin film amorphous semiconductor is formed is formed into various three-dimensional shapes according to its application and the like. For example, a tetrahedral hydrogenated non-hydrogen used as an electromotive force layer of a photovoltaic device is used. Substrates of crystalline semiconductors are disclosed in Japanese Utility Model Publication No. 64-13739 (H01L 31/04) and Japanese Utility Model Publication No. 64-30858 (H01L 31/04).
Etc., it is formed in a wavy shape (sawtooth shape).

【0004】これは、基板を波形形状にしてその表面の
非晶質半導体を一体に波形形状にし、光の照射面積を通
常の平板形状(2次元形状)の場合より広くするためで
ある。従って、斯かる波形形状を有した光起電力装置に
おいては、通常の平板形状の光起電力装置よりも、その
起電力層として用いられる薄膜非晶質半導体の厚さを薄
くでき、このため光劣化を低減することができる。
This is because the substrate is corrugated and the amorphous semiconductor on the surface thereof is corrugated integrally, so that the light irradiation area is wider than in the case of a normal flat plate shape (two-dimensional shape). Therefore, in the photovoltaic device having such a waveform shape, the thickness of the thin film amorphous semiconductor used as the electromotive force layer can be made smaller than that in the ordinary flat plate-shaped photovoltaic device, and therefore It is possible to reduce deterioration.

【0005】[0005]

【発明が解決しようとする課題】前記従来のこの種半導
体装置は、波形形状や円筒形状等の3次元形状の基板を
用意し、この3次元形状の基板上に薄膜半導体を形成し
て製造される。
The conventional semiconductor device of this type is manufactured by preparing a substrate having a three-dimensional shape such as a corrugated shape or a cylindrical shape, and forming a thin film semiconductor on the substrate having the three-dimensional shape. It

【0006】例えば、前記光起電力装置は波形形状に加
工した基板を用意し、非晶質半導体の形成方法として最
も一般的な平行平板容量結合型のRFプラズマCVD法
により、波形形状の基板上に薄膜非晶質半導体を形成し
て製造される。
For example, in the photovoltaic device, a substrate processed into a corrugated shape is prepared, and a parallel plate capacitive coupling type RF plasma CVD method, which is the most common method for forming an amorphous semiconductor, is used to form a corrugated substrate. It is manufactured by forming a thin film amorphous semiconductor on.

【0007】この場合、3次元形状の基板に半導体の薄
膜を均一に形成することは容易でなく、その膜厚を均一
にすることは平坦な2次元基板上に形成する場合より著
しく困難である。
In this case, it is not easy to uniformly form a semiconductor thin film on a three-dimensional substrate, and it is significantly more difficult to make the film thickness uniform than when it is formed on a flat two-dimensional substrate. .

【0008】したがって、製造の歩留まりが低く、安価
に量産することができない問題点がある。また、半導体
を均一な膜厚で形成することが困難であるため、特性の
優れた光起電力装置等を提供することができない問題点
もある。
Therefore, there is a problem that the production yield is low and the mass production cannot be carried out at a low cost. Further, since it is difficult to form a semiconductor with a uniform film thickness, it is not possible to provide a photovoltaic device having excellent characteristics.

【0009】本発明は、安価に量産することができる3
次元基板形状の特性の優れた光起電力装置等の半導体装
置及びその製造方法を提供することを目的とする。
The present invention can be mass-produced at low cost.
It is an object of the present invention to provide a semiconductor device such as a photovoltaic device having excellent three-dimensional substrate shape characteristics and a method for manufacturing the same.

【0010】[0010]

【課題を解決するための手段】前記の目的を達成するた
めに、この出願の請求項1の半導体装置は、基板上に、
少なくとも薄膜半導体を形成した半導体装置において、
基板が形状を記憶した素材からなる。
In order to achieve the above-mentioned object, a semiconductor device according to claim 1 of the present application is provided on a substrate,
At least in a semiconductor device formed with a thin film semiconductor,
The substrate is made of a material that remembers its shape.

【0011】さらに、この出願の請求項2の半導体装置
の製造方法においては、基板上への薄膜半導体の製造工
程中は基板を所定の形状から変化させ、製造後は基板を
所定の形状にする。
Further, in the method of manufacturing a semiconductor device according to claim 2 of the present application, the substrate is changed from a predetermined shape during the manufacturing process of the thin film semiconductor on the substrate, and after manufacturing, the substrate is made into a predetermined shape. .

【0012】したがって、製造中の基板を、波形形状等
の製造後の所定の形状でなく、平板形状等の薄膜半導体
が形成し易い形状にすることにより、薄膜半導体等が基
板に均一な膜厚で精度良く形成される。
Therefore, the substrate being manufactured is not formed into a predetermined shape such as a corrugated shape after manufacturing, but is formed into a flat plate shape or the like that facilitates the formation of the thin film semiconductor. With high precision.

【0013】そして、形状変化の記憶に基づき、製造後
の基板を所定の形状にすることにより、従来は困難であ
った3次元基板形状の特性の優れた半導体装置を安価な
手法で量産することが可能になる。
Then, based on the memory of the shape change, the manufactured substrate is formed into a predetermined shape, so that it is possible to mass-produce a semiconductor device having excellent characteristics of a three-dimensional substrate shape, which has been difficult in the past, by an inexpensive method. Will be possible.

【0014】[0014]

【発明の実施の形態】本発明の実施の1形態につき、図
1及び図2を参照して説明する。 (構成)図1は波形形状の基板上に薄膜半導体構成の複
数個の単位起電力素子を直列接続して設けた集積形の光
起電力装置の拡大断面図を示し、同図において、1は波
形の形状を記憶した形状記憶合金の基板であり、100
℃より高温のときは平板形状になり、100℃以下では
傾斜面を有する波形形状になる。2は基板1上に形成さ
れたSiO2 又はAl2 3 の絶縁膜、3は絶縁膜1上
の各単位起電力素子4の位置に形成されたAl膜の複数
の裏面電極(第2電極)である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIGS. (Structure) FIG. 1 is an enlarged cross-sectional view of an integrated photovoltaic device in which a plurality of unit photovoltaic elements having a thin film semiconductor structure are connected in series on a corrugated substrate. It is a substrate of shape memory alloy that memorizes the shape of the corrugation.
When the temperature is higher than 0 ° C, the shape is flat, and when the temperature is 100 ° C or lower, the shape is wavy with an inclined surface. Reference numeral 2 is an insulating film of SiO 2 or Al 2 O 3 formed on the substrate 1, and 3 is a plurality of back surface electrodes (second electrodes) of an Al film formed at the position of each unit electromotive element 4 on the insulating film 1. ).

【0015】5は各裏面電極3上に設けられた単位起電
力素子4の薄膜半導体構成の光起電力層であり、それぞ
れ裏面電極3上にn層6,i層7,p層8を順に積層し
てpin型シングルタイプに形成され、n層6及びi層
7は水素化非晶質シリコン半導体薄膜からなり、p層8
は水素化非晶質シリコン−カーボン半導体膜からなる。
Reference numeral 5 denotes a photovoltaic layer having a thin film semiconductor structure of the unit electromotive force element 4 provided on each back surface electrode 3, and an n layer 6, an i layer 7 and a p layer 8 are arranged on the back surface electrode 3 in this order. The n-type layer 6 and the i-type layer 7 are made of a hydrogenated amorphous silicon semiconductor thin film and formed into a p-type single type.
Is a hydrogenated amorphous silicon-carbon semiconductor film.

【0016】なお、n層6,i層7,p層8は左端部が
裏面電極3間に位置し、n層6の一部が裏面電極3間に
充填されている。
The left ends of the n layer 6, the i layer 7, and the p layer 8 are located between the back electrodes 3, and a part of the n layer 6 is filled between the back electrodes 3.

【0017】9は各単位起電力素子4の透明な表面電極
(第1電極)であり、SnO2 ,In2 3 又はIn2
3 にSnを添加したITO等の透明導電性膜からな
り、左端部が左隣りの単位起電力素子4の裏面電極3に
接合し、この接合により左右方向の各列の単位起電力素
子4が直列に接続されている。なお、各列の左端の単位
起電力素子4は、例えば、表面電極9が前隣りの単位起
電力素子4の裏面電極3に接合して直列接続されてい
る。
Reference numeral 9 denotes a transparent surface electrode (first electrode) of each unit electromotive force element 4, which is SnO 2 , In 2 O 3 or In 2.
It is made of a transparent conductive film such as ITO in which Sn is added to O 3 , and the left end portion is joined to the back surface electrode 3 of the unit electromotive element 4 adjacent on the left side. Are connected in series. In addition, the unit electromotive force element 4 at the left end of each row is connected in series, for example, with the front surface electrode 9 joined to the back surface electrode 3 of the unit electromotive force element 4 that is adjacent to the front.

【0018】10は各表面電極10上に基板表面を一体
に覆うように形成された透明樹脂の保護膜である。そし
て、基板1は製造後(完成後)、その形状に基づき、1
00℃以下で所定の形状,すなわち図1の波形形状にな
る。
Reference numeral 10 denotes a transparent resin protective film formed on each surface electrode 10 so as to integrally cover the substrate surface. Then, the substrate 1 is manufactured (after completion), and based on its shape, 1
A predetermined shape, that is, the waveform shape of FIG.

【0019】このとき、基板1上の各単位起電力素子4
も、起電力層5の各薄膜半導体及び電極3,9が基板1
に一体に波形形状になり、装置全体が所望の3次元形状
(波形形状)になる。
At this time, each unit electromotive element 4 on the substrate 1
Also, each thin-film semiconductor of the electromotive force layer 5 and the electrodes 3 and 9 are formed on the substrate 1.
And the whole device has a desired three-dimensional shape (corrugated shape).

【0020】(製造方法)つぎに、図1の光起電力装置
の製造方法について、その製造プロセスを示した図2を
参照して説明する。
(Manufacturing Method) Next, a manufacturing method of the photovoltaic device of FIG. 1 will be described with reference to FIG. 2 showing the manufacturing process thereof.

【0021】まず、図2の(a)〜(e)に示す製造の
各工程中は、図中の矢印線に示すように基板1を100
℃より十分に高い温度に加熱し、波形形状(所定の形
状)から最も製造し易い平板形状に変化させてこの形状
に保持する。
First, during the respective manufacturing steps shown in FIGS. 2 (a) to 2 (e), the substrate 1 is made of 100 as shown by the arrow lines in the figure.
It is heated to a temperature sufficiently higher than 0 ° C., and the corrugated shape (predetermined shape) is changed to a flat plate shape that is the most easy to manufacture and the shape is maintained.

【0022】そして、図2の(a)の第1の工程によ
り、平坦な基板1上に絶縁膜2及び電極用のアルミニウ
ム膜(以下Al膜という)11を順に積層して形成す
る。
Then, in the first step of FIG. 2A, an insulating film 2 and an aluminum film (hereinafter referred to as an Al film) 11 for electrodes are sequentially laminated on a flat substrate 1.

【0023】つぎに、図2の(b)の第2の工程に移行
し、レーザ加工又はエッチングによりAl膜11を各裏
面電極3に加工する。
2B, the Al film 11 is processed into each back electrode 3 by laser processing or etching.

【0024】さらに、図2の(c)の第3の工程に移行
し、例えば最も一般的な平行平板型容量結合方式のRF
プラズマCVD法により、基板1を120℃〜200℃
に加熱して各裏面電極3を含んで基板1上に光起電力層
5のn層6,i層7,p層8を順に形成し、各層をレー
ザ加工またはエッチングにより各単位光起電力素子4毎
に加工する。
Further, the process shifts to the third step of FIG. 2C, for example, the most common parallel plate type capacitive coupling type RF.
The substrate 1 is 120 ° C. to 200 ° C. by the plasma CVD method.
The n-layer 6, the i-layer 7, and the p-layer 8 of the photovoltaic layer 5 are sequentially formed on the substrate 1 including the backside electrodes 3 by heating to each unit photovoltaic element by laser processing or etching. Process every 4.

【0025】つぎに、図2の(d)の第4の工程に移行
し、例えば蒸着により各光起電力層5上に一体に透明導
電性膜を形成し、この膜をレーザ加工等して各単位起電
力素子4の表面電極9を形成する。
Next, in the fourth step of FIG. 2D, a transparent conductive film is integrally formed on each photovoltaic layer 5 by, for example, vapor deposition, and this film is subjected to laser processing or the like. The surface electrode 9 of each unit electromotive force element 4 is formed.

【0026】そして、図2の(e)の第5の工程に移行
し、いわゆるラミネート加工により保護膜10を形成
し、光起電力装置を形成する。
Then, the process shifts to the fifth step of FIG. 2E, the protective film 10 is formed by so-called laminating, and the photovoltaic device is formed.

【0027】この光起電力装置は製造後に基板温度が1
00℃以下に下がると、基板1が形状の記憶に基づいて
平板形状から波形形状に変化し、この変化にしたがって
図1の波形形状になる。
This photovoltaic device has a substrate temperature of 1 after manufacturing.
When the temperature falls below 00 ° C., the substrate 1 changes from a flat plate shape to a wavy shape based on the memory of the shape, and the wavy shape of FIG. 1 is obtained according to this change.

【0028】そして、製造の各工程中は、基板1が平板
形状(2次元形状)に保たれるため、光起電力層5の各
半導体の薄膜等が従来の3次元形状の基板に形成する場
合より均一な膜厚で精度よく、しかも、歩留まりよく形
成される。
Since the substrate 1 is maintained in a flat plate shape (two-dimensional shape) during each manufacturing process, thin films of each semiconductor of the photovoltaic layer 5 are formed on the conventional three-dimensional shape substrate. In this case, the film thickness is more uniform than that in the case, and the yield is high.

【0029】そのため、安価かつ量産に適した手法によ
り、特性の優れた波形形状の集積型構造の光起電力装置
が形成され、とくに、非晶質半導体を用いた電力用の大
面積タイプの光起電力装置の形成に適用して著しい効果
を奏する。
Therefore, a photovoltaic device having a waveform-shaped integrated structure with excellent characteristics is formed by a method that is inexpensive and suitable for mass production. In particular, a large-area type photovoltaic device for electric power using an amorphous semiconductor is formed. It has a remarkable effect when applied to the formation of an electromotive force device.

【0030】そして、本発明の方法により基板1上に単
位起電力素子4を14個直列接続して形成した波形形状
基板の光起電力装置(本発明の装置)と、従来方法によ
り同一構成に形成した光起電力装置(従来装置)とにつ
き、その光劣化及び製造の歩留まりを比較したところ、
つぎの表1の結果が得られた。
Then, a photovoltaic device (corresponding to the present invention) having a corrugated substrate formed by serially connecting 14 unit electromotive elements 4 on the substrate 1 by the method of the present invention and a conventional method have the same structure. Comparing the photo-degradation and manufacturing yield of the formed photovoltaic device (conventional device),
The results shown in Table 1 below were obtained.

【0031】[0031]

【表1】 [Table 1]

【0032】なお、両光起電力装置のパターニング部や
接続部等の発電に無効な部分も含む全面積は、共に10
0cm2 とした。
The total area of both photovoltaic devices, including the patterning portion and the connecting portion, which are ineffective for power generation, is 10 in total.
It was set to 0 cm 2 .

【0033】また、光劣化の特性は、太陽電池の加速劣
化試験と同様に、AM1.5,100mW/cm2 ,48
℃,300時間の照射条件で光を照射し、その照射前の
出力(初期出力),照射後の出力(光照射後出力)の測
定値により示している。
The characteristics of photodegradation are AM 1.5, 100 mW / cm 2 , 48 as in the accelerated degradation test of solar cells.
Light is irradiated under the irradiation conditions of 300 ° C. for 300 hours, and the output before irradiation (initial output) and the output after irradiation (output after light irradiation) are shown as measured values.

【0034】このとき、照射前,後の出力は、AM1.
5,100mW/cm2 の照射強度の光を照射して測定し
たものである。
At this time, the outputs before and after irradiation are AM1.
It is measured by irradiating light with an irradiation intensity of 5,100 mW / cm 2 .

【0035】そして、表1からも明らかなように、本発
明の装置は、従来装置に比して初期出力が大きく、しか
も、光照射後の出力低下も少なく、特性が優れている。
As is clear from Table 1, the device of the present invention has a large initial output as compared with the conventional device, and the output decrease after light irradiation is small, so that the device has excellent characteristics.

【0036】これは、従来装置では、波形形状(3次元
形状)の基板上に非晶質半導体の薄膜等を形成するた
め、その形成面が傾斜等して膜厚が均一にならず、ま
た、裏面電極を形成するAl膜,表面電極を形成する透
明導電性膜の密着不良,膜厚の不均一等に起因する各単
位光起電力素子の特性不良及び素子間の接続不良等が生
じ易いが、本発明の装置では、そのような特性劣化の原
因がほとんど生じないためである。
In the conventional apparatus, since a thin film of an amorphous semiconductor is formed on a corrugated (three-dimensional) substrate, the surface on which it is formed is inclined and the film thickness is not uniform. , The adhesion of the Al film forming the back electrode and the transparent conductive film forming the front electrode, the characteristic defects of each unit photovoltaic element due to the nonuniformity of the film thickness, and the connection failure between the elements are likely to occur. However, in the device of the present invention, the cause of such characteristic deterioration hardly occurs.

【0037】また、両装置を100個ずつ製造したとき
の歩留まりも、従来装置が85個であるのに対して、本
発明の装置は95個にも達し、本発明の装置が著しく優
れている。
Further, the yield when 100 of each of the devices was manufactured was 85 in the conventional device, whereas the yield of the device of the present invention was 95, and the device of the present invention was remarkably excellent. .

【0038】ところで、基板1は所定の形状を記憶した
種々の素材により形成してよく、このとき、その形状が
温度や圧力の変化,光の照射又は時間経過等の物理的な
変化にしたがって変わるものであってもよく、さらに
は、組成の変化等の化学変化にしたがって変わるような
ものであってもよい。
By the way, the substrate 1 may be formed of various materials that have a predetermined shape stored therein, and the shape at this time changes according to physical changes such as changes in temperature and pressure, light irradiation, and the passage of time. It may be one that changes according to a chemical change such as a change in composition.

【0039】また、基板1の製造後の所定の形状は用途
等に応じた種々の3次元形状であってよく、例えば円筒
形状であってもよい。
Further, the predetermined shape after the manufacture of the substrate 1 may be various three-dimensional shapes according to the application etc., and may be, for example, a cylindrical shape.

【0040】さらに、基板の製造工程中の形状も平板形
状に限るものではなく、製造し易い種々形状であればよ
い。
Further, the shape of the substrate during the manufacturing process is not limited to the flat plate shape, and may be any shape that is easy to manufacture.

【0041】そして、半導体装置は基板上に少なくとも
薄膜半導体が形成された光起電力装置等の種々の用途の
ものであってよく、このとき、薄膜半導体は、種々の非
晶質半導体又は結晶質半導体であってよく、また、図1
のように多数個が直列接続された形状に形成されていな
くてもよいのは勿論である。
The semiconductor device may be used in various applications such as a photovoltaic device in which at least a thin film semiconductor is formed on a substrate. At this time, the thin film semiconductor may be various amorphous semiconductors or crystalline semiconductors. It may be a semiconductor and is also shown in FIG.
Needless to say, it is not necessary that a large number of them are connected in series.

【0042】[0042]

【発明の効果】本発明は、以下に説明する効果を奏す
る。波形形状等の3次元形状の基板1が形状を記憶した
素材により形成され、製造中は基板1を波形形状等の製
造後の所定の形状でなく、平板形状等の薄膜半導体(光
起電力層5)を形成し易い形状にし、製造後、基板1を
その形状変化により所定の形状にして3次元基板形状の
所望の半導体装置を形成することができる。
The present invention has the effects described below. A substrate 1 having a three-dimensional shape such as a corrugated shape is formed of a material that stores a shape, and during manufacturing, the substrate 1 is not a predetermined shape such as a corrugated shape after manufacturing, but a thin film semiconductor (photovoltaic layer 5) can be formed into a shape that is easy to form, and after manufacturing, the substrate 1 can be formed into a predetermined shape by changing the shape thereof to form a desired semiconductor device having a three-dimensional substrate shape.

【0043】この場合、従来のような製造の困難性な
く、簡単な製造プロセスにより、基板1に薄膜半導体を
均一な膜厚で精度よく形成することができ、その歩留ま
りも従来より向上し、安価に量産することができる3次
元基板形状の特性の優れた光起電力装置等の半導体装置
及びその製造方法を提供することができる。
In this case, it is possible to accurately form a thin film semiconductor on the substrate 1 with a uniform film thickness by a simple manufacturing process without difficulty in manufacturing as in the conventional case, the yield is improved as compared with the conventional case, and the cost is low. It is possible to provide a semiconductor device, such as a photovoltaic device, which can be mass-produced and has excellent characteristics of a three-dimensional substrate shape, and a manufacturing method thereof.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の1形態の半導体装置の拡大断面
図である。
FIG. 1 is an enlarged cross-sectional view of a semiconductor device according to a first embodiment of the present invention.

【図2】(a)〜(e)は図1の製造プロセスの説明図
である。
2A to 2E are explanatory views of the manufacturing process of FIG.

【符号の説明】[Explanation of symbols]

1 基板 5 光起電力層 1 substrate 5 photovoltaic layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 31/04 S ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display area H01L 31/04 S

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板上に少なくとも薄膜半導体を形成し
た半導体装置において、前記基板が形状を記憶した素材
からなることを特徴とする半導体装置。
1. A semiconductor device in which at least a thin film semiconductor is formed on a substrate, wherein the substrate is made of a material whose shape is memorized.
【請求項2】 基板上への薄膜半導体の製造工程中は前
記基板を所定の形状から変化させ、製造後は前記基板を
前記所定の形状にすることを特徴とする半導体装置の製
造方法。
2. A method of manufacturing a semiconductor device, wherein the substrate is changed from a predetermined shape during a manufacturing process of a thin film semiconductor on the substrate, and the substrate is formed into the predetermined shape after manufacturing.
JP7292119A 1995-10-12 1995-10-12 Semiconductor device and its manufacture Pending JPH09107118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7292119A JPH09107118A (en) 1995-10-12 1995-10-12 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7292119A JPH09107118A (en) 1995-10-12 1995-10-12 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPH09107118A true JPH09107118A (en) 1997-04-22

Family

ID=17777795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7292119A Pending JPH09107118A (en) 1995-10-12 1995-10-12 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPH09107118A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008131592A1 (en) * 2007-04-29 2008-11-06 Qinghui Liang Solar cell structure
JP2012522393A (en) * 2009-03-31 2012-09-20 エルジー イノテック カンパニー リミテッド Photovoltaic power generation apparatus and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008131592A1 (en) * 2007-04-29 2008-11-06 Qinghui Liang Solar cell structure
JP2012522393A (en) * 2009-03-31 2012-09-20 エルジー イノテック カンパニー リミテッド Photovoltaic power generation apparatus and manufacturing method thereof
EP2416376A4 (en) * 2009-03-31 2017-07-05 LG Innotek Co., Ltd. Solar photovoltaic power generation apparatus and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US6870088B2 (en) Solar battery cell and manufacturing method thereof
US8294021B2 (en) Photovoltaic device and method for manufacturing the same
US4879251A (en) Method of making series-connected, thin-film solar module formed of crystalline silicon
US7755157B2 (en) Photovoltaic device and manufacturing method of photovoltaic device
US20090178711A1 (en) Polycrystalline silicon solar cell having high efficiency and method for fabricating the same
KR20080074127A (en) Method of manufacturing n-type multicrystalline silicon solar cells
JP2000068548A (en) Photovoltaic cell and manufacture thereof
JP3469729B2 (en) Solar cell element
CN102347381A (en) Solar cell module and solar cell module manufacturing method
US4941032A (en) Semiconductor device
JP3653800B2 (en) Method for manufacturing integrated thin film solar cell
EP2352180A1 (en) Thin film solar cell and method for manufacturing same
US8329500B2 (en) Method of manufacturing photovoltaic device
WO2005013378A1 (en) An improved thin-film photovoltaic module
US20090308429A1 (en) Thin-film solar module
JPH0851229A (en) Integrated solar battery and its manufacture
JP2003197943A (en) Solar cell device and solar cell module
JPH09107118A (en) Semiconductor device and its manufacture
EP0645828B1 (en) Process for preparing photovoltaic modules based on crystalline silicon
US20050016582A1 (en) Solar cell and method of manufacturing the same
JP2003264308A (en) Thin film solar cell module and its manufacturing method
JP3281760B2 (en) Method for manufacturing photovoltaic device
JP3278535B2 (en) Solar cell and method of manufacturing the same
JPH0528513B2 (en)
JP2892929B2 (en) Manufacturing method of integrated photoelectric conversion element