JPH09105732A - Contact combustion type gas sensor - Google Patents

Contact combustion type gas sensor

Info

Publication number
JPH09105732A
JPH09105732A JP26456095A JP26456095A JPH09105732A JP H09105732 A JPH09105732 A JP H09105732A JP 26456095 A JP26456095 A JP 26456095A JP 26456095 A JP26456095 A JP 26456095A JP H09105732 A JPH09105732 A JP H09105732A
Authority
JP
Japan
Prior art keywords
gas
platinum
nickel
detection element
gas sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26456095A
Other languages
Japanese (ja)
Other versions
JP3078485B2 (en
Inventor
Tatsunari Oohashi
龍成 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP07264560A priority Critical patent/JP3078485B2/en
Publication of JPH09105732A publication Critical patent/JPH09105732A/en
Application granted granted Critical
Publication of JP3078485B2 publication Critical patent/JP3078485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a contact combustion type gas sensor wherein an enough amount of change in electric resistance to detect a flammable gas is acquired even when temperature of a gas detection element is low, i.e., under 300 deg.C. SOLUTION: A contact combustion type gas sensor 1 has, as a gas detection element 2, an electric resistor 9 comprizing a metal, surface of which is coated with platinum or palladium 10. A flammable gas which is in contact with the gas detection element 2 retained at a predetermined temperature is burnt with platinum or palladium 10 as catalyzer and change in electric resistance of the electric resistor 9 owing to combustion heat of the flammable gas is detected, and thereby concentration of the flammable gas is detected. The electric resistor 9 is made of iron or nickel. The electric resistor 9 comprizes iron, surface of which is coated with nickel and further coated, on the nickel coating, with platinum or palladium 10. The gas sensor 1 detects imperfect combustion or non-ignition of a gas apparatus.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、接触燃焼式ガスセ
ンサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalytic combustion type gas sensor.

【0002】[0002]

【従来の技術】従来、ガス器具の不完全燃焼または不点
火を検出するために、可燃性気体の存在を検知する手段
として、接触燃焼式ガスセンサが知られている。前記接
触燃焼式ガスセンサは、半導体表面のガス脱吸着による
半導体の抵抗変化によりガスを検知する半導体式ガスセ
ンサに比較して、そのガス検知特性が長期に亘り安定し
ているため、可燃性ガス、特に一酸化炭素の検知用とし
て広く用いられている。
2. Description of the Related Art Conventionally, a catalytic combustion type gas sensor has been known as a means for detecting the presence of combustible gas in order to detect incomplete combustion or misfire of a gas appliance. The catalytic combustion type gas sensor, as compared with a semiconductor type gas sensor that detects a gas by a resistance change of the semiconductor due to gas desorption of the semiconductor surface, since the gas detection characteristics are stable for a long period of time, a flammable gas, particularly It is widely used for detecting carbon monoxide.

【0003】前記従来の接触燃焼式ガスセンサは、表面
を白金またはパラジウムで被覆した白金線からなる電気
抵抗体をガス検知素子とするものである。このようなガ
ス検知素子は所定温度に保持された状態で可燃性気体が
接触すると、該可燃性気体が前記白金またはパラジウム
を触媒として燃焼し、その燃焼熱により前記電気抵抗体
が加熱され、電気抵抗が変化する。そこで、前記電気抵
抗体に通電しておき、前記前記電気抵抗体の加熱時の電
気抵抗の変化量を検出することにより、可燃性気体の濃
度を検知するものである。
The conventional catalytic combustion gas sensor uses a platinum wire whose surface is coated with platinum or palladium as an electric resistance element as a gas detection element. When a combustible gas comes into contact with such a gas detection element while being maintained at a predetermined temperature, the combustible gas burns using the platinum or palladium as a catalyst, and the heat of combustion heats the electric resistor to generate electricity. The resistance changes. Therefore, the electric resistance is energized and the amount of change in the electric resistance when the electric resistance is heated is detected to detect the concentration of the combustible gas.

【0004】前記接触燃焼式ガスセンサは、前記ガス検
知素子に可燃性気体が接触したときに触媒活性を高めて
燃焼し易くするために、前記ガス検知素子が300℃以
上の温度に保持されるようになっている。ところが、前
記接触燃焼式ガスセンサは、ガス器具が設置されている
室内でシリコーンオイルを含むヘアスプレーが使用され
たり、該ガス器具のガス配管のシール剤に珪素樹脂が使
用されているときには、ガス検知感度が著しく低下する
との問題がある。
In the catalytic combustion type gas sensor, when the combustible gas comes into contact with the gas detecting element, the gas detecting element is kept at a temperature of 300 ° C. or higher in order to enhance the catalytic activity and facilitate combustion. It has become. However, the catalytic combustion type gas sensor detects gas when a hair spray containing silicone oil is used in the room where the gas appliance is installed, or when a silicone resin is used as a sealant for the gas pipe of the gas appliance. There is a problem that the sensitivity is significantly reduced.

【0005】前記問題は、シリコーンオイル等の低重合
度の珪素樹脂が300℃以上の温度に保持されている前
記ガス検知素子に接触して、重合反応を起こし、生成し
た高重合度の珪素樹脂あるいは該珪素樹脂がさらに高温
下で酸化されて生成したガラス質の二酸化珪素により前
記触媒の表面が覆われ、前記触媒と前記可燃性気体との
接触が遮断されるためと考えられる。そこで、前記問題
を解決するために、前記接触燃焼式ガスセンサを前記ガ
ス検知素子の温度が300℃以上にならないようにし
て、使用することが考えられる。
The problem is that a low polymerization silicone resin such as silicone oil is brought into contact with the gas detection element held at a temperature of 300 ° C. or higher to cause a polymerization reaction, and a high polymerization silicone resin produced. Alternatively, it is considered that the surface of the catalyst is covered with glassy silicon dioxide produced by further oxidation of the silicon resin at a higher temperature, and the contact between the catalyst and the combustible gas is blocked. Therefore, in order to solve the above problem, it is conceivable to use the catalytic combustion type gas sensor while keeping the temperature of the gas detection element not higher than 300 ° C.

【0006】しかしながら、表面を白金またはパラジウ
ムで被覆した白金線からなる電気抵抗体をガス検知素子
とする従来の接触燃焼式ガスセンサでは、ガス検知素子
の温度が300℃未満の低温のときには可燃性ガスの存
在を検知するために十分な電気抵抗の変化量が得られな
いとの不都合がある。
[0006] However, in the conventional catalytic combustion type gas sensor which uses an electric resistor made of a platinum wire whose surface is coated with platinum or palladium as a gas detecting element, when the temperature of the gas detecting element is lower than 300 ° C, a combustible gas is generated. However, there is an inconvenience that it is not possible to obtain a sufficient amount of change in electric resistance for detecting the presence of

【0007】[0007]

【発明が解決しようとする課題】本発明は、かかる不都
合を解消して、ガス検知素子の温度が300℃未満の低
温のときにも可燃性ガスの存在を検知するために十分な
電気抵抗の変化量が得られる接触燃焼式ガスセンサを提
供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention eliminates such inconvenience, and has sufficient electric resistance for detecting the presence of flammable gas even when the temperature of the gas detecting element is low temperature of less than 300.degree. An object of the present invention is to provide a catalytic combustion type gas sensor that can obtain the amount of change.

【0008】[0008]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明の接触燃焼式ガスセンサは、表面を白金ま
たはパラジウムで被覆した金属からなる電気抵抗体をガ
ス検知素子とし、所定温度に保持された該ガス検知素子
に接触した可燃性気体を該白金またはパラジウムを触媒
として燃焼せしめ、該可燃性気体の燃焼熱による該電気
抵抗体の電気抵抗の変化を検出することにより可燃性気
体の濃度を検知する接触燃焼式ガスセンサにおいて、該
電気抵抗体は、鉄またはニッケルであることを特徴とす
る。
In order to achieve the above object, the catalytic combustion type gas sensor of the present invention uses an electric resistor made of a metal whose surface is coated with platinum or palladium as a gas detection element and is maintained at a predetermined temperature. The combustible gas in contact with the gas detecting element is burned by using the platinum or palladium as a catalyst, and the change in the electric resistance of the electric resistor due to the combustion heat of the combustible gas is detected to detect the concentration of the combustible gas. In the catalytic combustion gas sensor for detecting, the electric resistor is iron or nickel.

【0009】かかる手段によれば、電気抵抗体として白
金よりも電気抵抗率の温度による変化率が大きい鉄また
はニッケルを用いるので、該ガス検知素子の温度を30
0℃未満の低温としたときにも、可燃性ガスの存在を検
知するために十分な電気抵抗の変化を得ることができ
る。
According to such means, since iron or nickel, which has a larger rate of change in electric resistivity with temperature than platinum, is used as the electric resistor, the temperature of the gas detecting element is set to 30.
Even when the temperature is lower than 0 ° C., it is possible to obtain a sufficient change in electric resistance for detecting the presence of flammable gas.

【0010】前記電気抵抗体は細線をコイル状に成形し
て用いられるが、本発明の接触燃焼式ガスセンサでは、
前記電気抵抗体が鉄であるときには、その表面がニッケ
ルで被覆されていて、該ニッケルの被覆上にさらに白金
またはパラジウムが被覆されている構成とすることによ
り、鉄が反復使用によって酸化して抵抗が高くなっても
通電時の発熱による断線を防止することができる。
The electric resistor is used by forming a thin wire into a coil shape. In the catalytic combustion type gas sensor of the present invention,
When the electric resistor is iron, the surface of the electric resistor is coated with nickel, and platinum or palladium is further coated on the nickel coating, whereby the iron is oxidized by repeated use and resistance is increased. Even if the temperature rises, it is possible to prevent disconnection due to heat generation during energization.

【0011】また、本発明の接触燃焼式ガスセンサは、
一酸化炭素、水素及び可燃性気体を検知するセンサであ
るので、都市ガスまたは液化石油ガス(LPG)を燃料
とするガス器具の不完全燃焼または不点火を検知するた
めに好適に用いられる。
Further, the catalytic combustion type gas sensor of the present invention is
Since it is a sensor for detecting carbon monoxide, hydrogen and combustible gas, it is preferably used for detecting incomplete combustion or misfire of gas appliances using city gas or liquefied petroleum gas (LPG) as fuel.

【0012】[0012]

【発明の実施の形態】次に、添付の図面を参照しながら
本発明の実施の一形態についてさらに詳しく説明する。
図1(a)は本発明の接触燃焼式ガスセンサの回路構成
を示す回路図、図1(b)は図1(a)示のガス検知素
子の一部断面を示す斜視図、図2は電気抵抗体となる金
属の電気抵抗率と温度との関係を示すグラフである。
BEST MODE FOR CARRYING OUT THE INVENTION Next, an embodiment of the present invention will be described in more detail with reference to the accompanying drawings.
1A is a circuit diagram showing a circuit configuration of a catalytic combustion type gas sensor of the present invention, FIG. 1B is a perspective view showing a partial cross section of the gas detection element shown in FIG. 1A, and FIG. It is a graph which shows the relationship between the electrical resistivity of the metal used as a resistor, and temperature.

【0013】図1(a)示のように、本発明の接触燃焼
式ガスセンサ1は、都市ガスまたは液化石油ガス(LP
G)を燃料とするガス器具の不完全燃焼または不点火を
検知するために用いられるものであって、その回路構成
は、ガス検知素子2と温度補償素子3とが、他の抵抗4
a,4bとともにブリッジ5を形成するとともに、ブリ
ッジ5に電力を供給する電源6と、ガス検知素子2で検
知されるガス濃度を示すガス濃度指示メータ7と、検知
されたガスの濃度が所定の基準を超えたときに警報を発
出する警報手段8とを備えている。前記ガス濃度指示メ
ータ7はブリッジ5の固定接点Aと可動接Bとに接続さ
れており、前記警報手段8はガス濃度指示メータ7と並
列に接続されている。
As shown in FIG. 1 (a), the catalytic combustion type gas sensor 1 of the present invention comprises a city gas or a liquefied petroleum gas (LP).
G) is used as a fuel for detecting incomplete combustion or misfire of a gas appliance, and its circuit configuration is such that the gas detecting element 2 and the temperature compensating element 3 have different resistances from each other.
The bridge 5 is formed together with a and 4b, the power source 6 for supplying electric power to the bridge 5, the gas concentration indicator 7 for indicating the gas concentration detected by the gas detection element 2, and the concentration of the detected gas are predetermined. An alarm means 8 for issuing an alarm when the standard is exceeded is provided. The gas concentration indicator meter 7 is connected to the fixed contact A and the movable contact B of the bridge 5, and the alarm means 8 is connected in parallel with the gas concentration indicator meter 7.

【0014】前記ガス検知素子2は、図1(b)示のよ
うに、金属の細線をコイル状に成形した電気抵抗体9の
表面に、電気メッキ等により形成された白金またはパラ
ジウムの被覆層10を備えている。本発明の接触燃焼式
ガスセンサ1では、前記電気抵抗体9として、鉄(F
e)またはニッケル(Ni)を用いる。
As shown in FIG. 1 (b), the gas detecting element 2 has a platinum or palladium coating layer formed by electroplating or the like on the surface of an electric resistor 9 formed by forming a metal thin wire into a coil shape. Equipped with 10. In the catalytic combustion type gas sensor 1 of the present invention, as the electric resistor 9, iron (F
e) or nickel (Ni) is used.

【0015】鉄及びニッケルは、図2示のように、20
0℃以上の温度では白金(Pt)よりも電気抵抗率の温
度による変化が大きいので、300℃未満の温度で使用
される前記ガス検知素子の前記電気抵抗体9に適してい
る。前記電気抵抗体9に用いる鉄としては、例えば純度
99.5%のようなものを挙げることができる。また、
前記電気抵抗体9に用いるニッケルとしては、例えば純
度99.7%のようなものを挙げることができる。
Iron and nickel, as shown in FIG.
At a temperature of 0 ° C. or higher, the change in electrical resistivity with temperature is larger than that of platinum (Pt), and thus it is suitable for the electrical resistor 9 of the gas detection element used at a temperature of less than 300 ° C. Examples of iron used for the electric resistor 9 include those having a purity of 99.5%. Also,
Examples of nickel used for the electric resistor 9 include those having a purity of 99.7%.

【0016】尚、図2示の銅(Cu)は参考のために示
したものであり、良導体であって、白金よりも電気抵抗
率の温度による変化が小さいので、前記電気抵抗体9と
しては好ましくない。
The copper (Cu) shown in FIG. 2 is shown as a reference and is a good conductor, and the change in electric resistivity with temperature is smaller than that of platinum. Not preferable.

【0017】前記電気抵抗体9が鉄であるときには、反
復使用によって酸化して抵抗が高くなる傾向があるの
で、通電時の発熱による断線を防止するために、その表
面をニッケルで被覆し、該ニッケルの被覆上に前記白金
またはパラジウムを被覆する。前記ニッケルの被覆は安
定であり、表面酸化を防止するので、反復使用しても鉄
の電気抵抗が変化しない。前記電気抵抗体9の鉄に対す
るニッケル被覆は、例えば、無電解メッキにより行う。
When the electric resistor 9 is iron, it tends to be oxidized by repeated use to increase the resistance. Therefore, in order to prevent disconnection due to heat generation during energization, its surface is coated with nickel. The platinum or palladium is coated on the nickel coating. The nickel coating is stable and prevents surface oxidation so that the electrical resistance of iron does not change with repeated use. The iron of the electric resistor 9 is coated with nickel by, for example, electroless plating.

【0018】また、前記鉄の断線を防止するためには、
前記ニッケルの被覆と同様に、鉄の表面に酸化を防止で
きる被膜を構成すればよく、触媒である前記白金または
パラジウムの被覆を、例えば、パラジウムや白金の薄膜
を表面に形成し、さらにその表面に触媒としての白金黒
やパラジウム黒を付着させるようにして形成してもよ
い。
In order to prevent the breakage of the iron,
Similar to the nickel coating, it is sufficient to form a coating capable of preventing oxidation on the surface of iron, and the platinum or palladium coating as a catalyst, for example, a thin film of palladium or platinum is formed on the surface, and the surface thereof is further formed. It may be formed by attaching platinum black or palladium black as a catalyst to.

【0019】次に、前記接触燃焼式ガスセンサ1の作動
について説明する。まず、接触燃焼式ガスセンサ1は、
図示しない外部ヒータ等によりガス検知素子2が所定温
度に保持されている状態で、電源6からブリッジ5に電
力を供給して、ガス検知素子2の前記金属の細線からな
る電気抵抗体9に通電する。ガス検知素子2は前記のよ
うにその表面に白金またはパラジウムの被覆層10を備
える電気抵抗体9からなるので、前記のように所定温度
に保持されているガス検知素子2に一酸化炭素等の可燃
性気体が接触すると、該可燃性ガスが前記被覆層10の
白金またはパラジウムを触媒として燃焼し、該可燃性気
体の燃焼熱により電気抵抗体9の抵抗が変化する。
Next, the operation of the catalytic combustion type gas sensor 1 will be described. First, the catalytic combustion type gas sensor 1
While the gas detection element 2 is kept at a predetermined temperature by an external heater or the like (not shown), power is supplied from the power supply 6 to the bridge 5 to energize the electric resistor 9 made of the thin metal wire of the gas detection element 2. To do. Since the gas detecting element 2 is composed of the electric resistor 9 having the platinum or palladium coating layer 10 on the surface thereof as described above, the gas detecting element 2 which is maintained at the predetermined temperature as described above is made of carbon monoxide or the like. When the flammable gas comes into contact with the flammable gas, the flammable gas burns using platinum or palladium of the coating layer 10 as a catalyst, and the resistance of the electric resistor 9 changes due to the combustion heat of the flammable gas.

【0020】そこで、接触燃焼式ガスセンサ1は、ブリ
ッジ5の可動接点Bを移動させて、電気抵抗体9の電気
抵抗の変化量をブリッジ5の接点A,B間の電圧差とし
て検出するようになっている。前記のようにして検出さ
れた電気抵抗体9の電気抵抗変化量はガス濃度に比例す
るので、前記電気抵抗変化量から換算されたガス濃度が
ガス濃度指示メータ7に直接示されるとともに、警報手
段8に出力される。前記警報手段8は、図示しない制御
手段を備えており、検出されたガスの濃度が所定の基準
を超えると、該制御手段が前記ガス器具に不完全燃焼ま
たは不点火が発生したものと判断し、電子音等の聴覚的
手段または光電的表示等の視覚的手段を介して警報を発
出するようになっている。
Therefore, the catalytic combustion type gas sensor 1 moves the movable contact B of the bridge 5 so as to detect the amount of change in the electric resistance of the electric resistor 9 as a voltage difference between the contacts A and B of the bridge 5. Has become. Since the electric resistance change amount of the electric resistor 9 detected as described above is proportional to the gas concentration, the gas concentration converted from the electric resistance change amount is directly indicated on the gas concentration indicating meter 7 and an alarm means is provided. 8 is output. The alarm means 8 includes a control means (not shown), and when the detected gas concentration exceeds a predetermined standard, the control means determines that incomplete combustion or misfire has occurred in the gas appliance. An alarm is issued via an auditory means such as electronic sound or a visual means such as a photoelectric display.

【0021】次に、本発明の実施例及び比較例について
説明する。
Next, examples and comparative examples of the present invention will be described.

【0022】[0022]

【実施例1】図3は接触燃焼式ガスセンサに用いるガス
検知素子のガス検知性能を測定するための実験装置の構
成を示す説明的断面図であり、図4乃至図6は本発明の
実施例及び比較例のガス検知素子における一酸化炭素濃
度と電気抵抗値の変化量との関係を示すグラフであり、
図4は実施例1のガス検知素子の場合、図5は実施例2
のガス検知素子の場合、図6は比較例のガス検知素子の
場合をそれぞれ示す。また、図7乃至図10は所定の温
度における各実施例及び比較例の接触燃焼式ガスセンサ
の一酸化炭素濃度と電気抵抗値の変化量との関係を示す
グラフであり、図7は230℃の場合、図8は300℃
の場合、図9は350℃の場合、図10は400℃の場
合をそれぞれ示す。
Example 1 FIG. 3 is an explanatory sectional view showing the structure of an experimental apparatus for measuring the gas detection performance of a gas detection element used in a catalytic combustion type gas sensor, and FIGS. 4 to 6 are examples of the present invention. And is a graph showing the relationship between the carbon monoxide concentration and the amount of change in the electrical resistance value in the gas detection element of the comparative example,
FIG. 4 shows the case of the gas detecting element of Example 1, and FIG. 5 shows Example 2
6 shows the case of the gas detection element of Comparative Example. 7 to 10 are graphs showing the relationship between the concentration of carbon monoxide and the amount of change in electric resistance value of the catalytic combustion type gas sensors of Examples and Comparative Examples at a predetermined temperature. In case of Fig.8, 300 ℃
9 shows the case of 350 ° C., and FIG. 10 shows the case of 400 ° C.

【0023】本実施例では、直径0.1mm、長さ10
0mmのコイル状ニッケル線(純度99.7%)を用意
し、その表面を白金黒で被覆した。
In this embodiment, the diameter is 0.1 mm and the length is 10 mm.
A 0 mm coil-shaped nickel wire (purity 99.7%) was prepared, and its surface was covered with platinum black.

【0024】白金黒による被覆は、電気メッキ法によ
り、次のようにして行った。まず、前記ニッケル線をア
セトン中に浸漬して1分間超音波洗浄して脱脂したの
ち、常温の水に1分間浸漬して水洗した。次に、前記ニ
ッケル線を常温のクロム混酸に1分間浸漬して酸洗した
のち、常温の水に1分間浸漬して水洗した。
The coating with platinum black was performed by the electroplating method as follows. First, the nickel wire was immersed in acetone and ultrasonically cleaned for 1 minute to degrease it, and then immersed in water at room temperature for 1 minute and washed with water. Next, the nickel wire was immersed in chromium mixed acid at room temperature for 1 minute to be pickled, and then immersed in water at room temperature for 1 minute to be washed with water.

【0025】次に、電極を備えた電気メッキ槽にメッキ
液として常温のヘキサクロロ白金酸水溶液を供給し、前
記のようにして洗浄した前記ニッケル線を該メッキ液に
浸漬して、該ニッケル線と前記電極との間に5Vの電圧
を印加するとともに0.4〜15.5mAの電流を3分
間通電する操作を2回行うことにより、前記ニッケル線
の表面を白金黒で被覆した。次に、前記白金黒で被覆さ
れたニッケル線を、常温の水に1分間以上浸漬して水洗
した。
Next, a hexachloroplatinic acid aqueous solution at room temperature is supplied as a plating solution to an electroplating tank equipped with electrodes, and the nickel wire washed as described above is immersed in the plating solution to form the nickel wire. The surface of the nickel wire was coated with platinum black by applying a voltage of 5 V between the electrodes and applying an electric current of 0.4 to 15.5 mA for 3 minutes twice. Next, the nickel wire coated with platinum black was immersed in water at room temperature for 1 minute or more and washed with water.

【0026】次に、電極を備えた電解槽に電解液として
1N硫酸を供給し、前記白金黒で被覆されたニッケル線
を該電解液に浸漬して、該ニッケル線と前記電極との間
に5Vの電圧を印加するとともに0.5〜15mAの電
流を1分間通電する操作を2回行うことにより、前記ニ
ッケル線を電解洗浄した。
Next, 1N sulfuric acid was supplied as an electrolytic solution to an electrolytic cell equipped with an electrode, the nickel wire coated with platinum black was immersed in the electrolytic solution, and between the nickel wire and the electrode. The nickel wire was electrolytically cleaned by applying a voltage of 5 V and applying a current of 0.5 to 15 mA for 1 minute twice.

【0027】次に、前記白金黒で被覆されたニッケル線
を、常温の水に1分間以上浸漬して水洗し、前記ニッケ
ル線に付着している水をアセトンで置換したのち、温風
乾燥した。前記電気メッキにより、前記ニッケル線の表
面には、0.9〜1.1mgの白金黒が付着している。
Next, the nickel wire coated with platinum black was immersed in water at room temperature for 1 minute or more to wash with water, the water adhering to the nickel wire was replaced with acetone, and then dried with warm air. . Due to the electroplating, 0.9 to 1.1 mg of platinum black is attached to the surface of the nickel wire.

【0028】次に、前記白金黒で被覆されたニッケル線
を10-3トールの減圧下で400℃に1時間保持する熱
処理を施し、図1(b)示のガス検知素子2を製造し
た。
Next, the nickel wire coated with platinum black was subjected to a heat treatment of holding it at 400 ° C. for 1 hour under a reduced pressure of 10 −3 Torr to manufacture a gas detecting element 2 shown in FIG. 1 (b).

【0029】次に、前記ガス検知素子2のガス検知性能
を図3示の装置を用いて評価した。図3示の装置は、ガ
ス検知素子2を図1(a)及び図1(b)示の接触燃焼
式ガスセンサ1に使用することを想定して、所定温度に
保持されたガス検知素子2の一酸化炭素検知性能を測定
するものであって、前記ガス検知素子2を保持する密閉
されたムライト管11と、ムライト管11を収容する電
気炉12とからなる。
Next, the gas detection performance of the gas detection element 2 was evaluated using the apparatus shown in FIG. The apparatus shown in FIG. 3 assumes that the gas detection element 2 is used in the catalytic combustion type gas sensor 1 shown in FIGS. 1 (a) and 1 (b), and the gas detection element 2 is maintained at a predetermined temperature. The carbon monoxide detection performance is measured, and includes a sealed mullite tube 11 that holds the gas detection element 2 and an electric furnace 12 that houses the mullite tube 11.

【0030】ムライト管11は、一方の口11aに可燃
性ガスとしての一酸化炭素導入手段13と空気導入手段
14とを備え、他方の口11bに一酸化炭素分析器15
が接続されている。また、一方の口11aには、ガス検
知素子2の温度を測定する温度計16が接続されてい
る。
The mullite tube 11 is provided with a carbon monoxide introducing means 13 and an air introducing means 14 as flammable gas at one port 11a, and a carbon monoxide analyzer 15 at the other port 11b.
Is connected. Further, a thermometer 16 for measuring the temperature of the gas detection element 2 is connected to the one port 11a.

【0031】電気炉12は、PID温度コントローラ1
7を備え、炉内の温度を調整できるようになっている。
また、前記ガス検知素子2は、ムライト管11の口11
a,11bを介して定電流源18に接続されており、ガ
ス検知素子2と直列に電流計19,並列に電圧計20が
接続されている。
The electric furnace 12 is a PID temperature controller 1
7 is provided so that the temperature inside the furnace can be adjusted.
Further, the gas detection element 2 is provided with a port 11 of the mullite tube 11.
It is connected to a constant current source 18 via a and 11b, and an ammeter 19 is connected in series with the gas detection element 2 and a voltmeter 20 is connected in parallel.

【0032】前記ガス検知素子2のガス検知性能は、前
記電気炉12によりガス検知素子2の温度を230℃、
300℃、350℃、400℃の各温度に保持した状態
で、まず、空気中でガス検知素子2に定電流源18から
10mAの一定電流を流したときのガス検知素子2両端
の電圧を電圧計20で測定することにより、前記各温度
における電気抵抗体9の電気抵抗(R1 )を求めた。
The gas detection performance of the gas detection element 2 is that the temperature of the gas detection element 2 is 230 ° C. by the electric furnace 12.
With the temperature kept at 300 ° C., 350 ° C., and 400 ° C., first, the voltage across the gas sensing element 2 when a constant current of 10 mA was passed from the constant current source 18 to the gas sensing element 2 in the air was measured. By measuring with a total of 20, the electric resistance (R 1 ) of the electric resistor 9 at each temperature was obtained.

【0033】次に、前記各温度において、一酸化炭素導
入手段13及び空気導入手段14により、一酸化炭素が
それぞれ500ppm、1000ppm、1500pp
m、2000ppm、2500ppm混入した空気をム
ライト管11内に導入し、ムライト管11内の雰囲気を
各一酸化炭素濃度の空気で十分に置換したのち、流入ガ
スを遮断し、前記と全く同じ方法で前記各一酸化炭素濃
度に対応する電気抵抗体9の電気抵抗(R2 )を求め
た。そして、前記各温度ごとに、一酸化炭素が混入した
空気中での電気抵抗体9の電気抵抗(R2 )と、一酸化
炭素を含まない空気中での電気抵抗(R1 )との差を求
め、一酸化炭素濃度に対応する電気抵抗体9の電気抵抗
変化量(ΔR=R2 −R1 、単位:mΩ)を求めた。結
果を下記表1及び図4に示す。
Next, at each of the above-mentioned temperatures, the carbon monoxide introducing means 13 and the air introducing means 14 respectively add 500 ppm, 1000 ppm and 1500 pp of carbon monoxide.
m, 2000 ppm, 2500 ppm mixed air was introduced into the mullite tube 11, and the atmosphere in the mullite tube 11 was sufficiently replaced with air of each carbon monoxide concentration, and then the inflowing gas was shut off. The electric resistance (R 2 ) of the electric resistor 9 corresponding to each carbon monoxide concentration was obtained. The difference between the electric resistance (R 2 ) of the electric resistor 9 in the air mixed with carbon monoxide and the electric resistance (R 1 ) in the air not containing carbon monoxide for each temperature. Then, the amount of change in electric resistance of the electric resistor 9 (ΔR = R 2 −R 1 , unit: mΩ) corresponding to the carbon monoxide concentration was obtained. The results are shown in Table 1 below and FIG.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【実施例2】本実施例では、直径0.1mm、長さ10
0mmのコイル状鉄線(純度99.7%)を用意し、そ
の表面を、まずニッケルで被覆し、次いで該ニッケルの
被覆上にさらに白金黒の被覆を施した。
Example 2 In this example, the diameter is 0.1 mm and the length is 10 mm.
A 0 mm coiled iron wire (purity 99.7%) was prepared, and the surface thereof was first coated with nickel, and then a platinum black coating was further applied on the nickel coating.

【0036】ニッケルによる被覆は、無電解メッキ法に
より、次のようにして行った。まず、前記鉄線をアセト
ン中に浸漬して1分間超音波洗浄して脱脂したのち、常
温の水に1分間浸漬して水洗した。次に、前記鉄線を常
温の20%塩酸に1分間浸漬して酸洗したのち、常温の
水に浸漬して1分間以内で水洗した。
The coating with nickel was performed by the electroless plating method as follows. First, the iron wire was immersed in acetone, ultrasonically cleaned for 1 minute to degrease, and then immersed in water at room temperature for 1 minute and washed with water. Next, the iron wire was immersed in 20% hydrochloric acid at room temperature for 1 minute to be pickled, then immersed in water at room temperature and washed within 1 minute.

【0037】次に、前記鉄線を80℃の無電解ニッケル
メッキ液中に1時間浸漬して、無電解メッキすることに
より、前記鉄線の表面をニッケルで被覆した。次に、前
記ニッケルで被覆された鉄線を、常温の水に5分間以上
浸漬して水洗し、前記鉄線に付着している水をアセトン
で置換する操作を2分間行ったのち温風乾燥し、ニッケ
ルで被覆された鉄線を得た。前記無電解メッキにより、
前記鉄線の表面には、0.4mgのニッケルが1.2μ
mの厚さで平滑に付着している。
Next, the surface of the iron wire was coated with nickel by immersing the iron wire in an electroless nickel plating solution at 80 ° C. for 1 hour and performing electroless plating. Next, the iron wire coated with nickel is immersed in water at room temperature for 5 minutes or more to wash with water, and the operation of replacing water adhering to the iron wire with acetone is performed for 2 minutes, followed by drying with warm air, An iron wire coated with nickel was obtained. By the electroless plating,
0.4 mg of nickel is 1.2μ on the surface of the iron wire.
It has a thickness of m and adheres smoothly.

【0038】次に、前記ニッケルで被覆された鉄線の表
面を、実施例1のニッケル線と全く同一の電気メッキ法
により白金黒で被覆した。前記電気メッキにより、前記
ニッケル被覆上には、0.9〜1.1mgの白金黒が付
着している。
Next, the surface of the iron wire coated with nickel was coated with platinum black by the same electroplating method as that of the nickel wire of Example 1. By the electroplating, 0.9 to 1.1 mg of platinum black is attached on the nickel coating.

【0039】次に、前記ニッケル被覆上にさらに白金黒
の被覆が施された鉄線を10-3トールの減圧下で400
℃に1時間保持する熱処理を施した後、400℃で焼き
鈍しを行って、図1(a)示のガス検知素子2を製造し
た。
Next, an iron wire further coated with platinum black on the nickel coating was heated to 400 at a reduced pressure of 10 -3 Torr.
After heat treatment of holding at 1 ° C. for 1 hour, annealing was performed at 400 ° C. to manufacture the gas detection element 2 shown in FIG.

【0040】次に、前記ガス検知素子2のガス検知性能
を、図3示の装置を用い、実施例1と全く同じ方法で評
価した。結果を下記表2及び図5に示す。
Next, the gas detection performance of the gas detection element 2 was evaluated by the same method as in Example 1 using the apparatus shown in FIG. The results are shown in Table 2 below and FIG.

【0041】[0041]

【表2】 [Table 2]

【0042】[0042]

【比較例】本実施例では、直径0.1mm、長さ100
mmのコイル状白金線を用意し、その表面を、実施例1
のニッケル線と全く同一の電気メッキ法により白金黒で
被覆した。前記電気メッキにより、前記白金線の表面に
は、0.9〜1.1mgの白金黒が付着している。
Comparative Example In this example, the diameter is 0.1 mm and the length is 100 mm.
mm coil-shaped platinum wire was prepared, and the surface thereof was prepared as in Example 1.
It was coated with platinum black by the same electroplating method as the nickel wire. Due to the electroplating, 0.9 to 1.1 mg of platinum black is attached to the surface of the platinum wire.

【0043】次に、前記白金黒で被覆された白金線を1
-3トールの減圧下で400℃に1時間保持する熱処理
を施し、図1(a)示のガス検知素子2を製造した。
Next, the platinum wire coated with the platinum black is
Heat treatment was carried out at 400 ° C. for 1 hour under a reduced pressure of 0 −3 Torr to manufacture the gas detection element 2 shown in FIG.

【0044】次に、前記ガス検知素子2のガス検知性能
を、図3示の装置を用い、実施例1と全く同じ方法で評
価した。結果を下記表3及び図6に示す。
Next, the gas detection performance of the gas detection element 2 was evaluated by the same method as in Example 1 using the apparatus shown in FIG. The results are shown in Table 3 below and FIG.

【0045】[0045]

【表3】 [Table 3]

【0046】前記表1〜3及び図4〜6のデータから、
前記各実施例及び比較例のガス検知素子2によれば、電
気抵抗体9の電気抵抗変化量は一酸化炭素の濃度にほぼ
対応して、一酸化炭素の濃度が低ければ電気抵抗変化量
も小さく、一酸化炭素の濃度が高ければ電気抵抗変化量
も大きくなっており、接触燃焼式ガスセンサに使用でき
ることが明らかである。
From the data of Tables 1 to 3 and FIGS.
According to the gas detection elements 2 of the respective examples and comparative examples, the amount of change in electric resistance of the electric resistor 9 substantially corresponds to the concentration of carbon monoxide, and if the concentration of carbon monoxide is low, the amount of change in electric resistance is also small. If the carbon monoxide is small and the concentration of carbon monoxide is high, the electric resistance change amount is also large, and it is clear that it can be used for a catalytic combustion type gas sensor.

【0047】前記表1〜3及び図4〜6のデータを前記
各温度別にして、図7〜10にまとめた。図7から、前
記実施例1及び実施例2のガス検知素子2によれば、2
30℃という300℃未満の温度に維持されているとき
でも、2500ppm以下の一酸化炭素に対して、電気
抵抗体9が白金からなるガス検知素子2(比較例)より
大きな電気抵抗の変化量が得られることが明らかであ
る。従って、前記実施例1及び実施例2のガス検知素子
2によれば、珪素樹脂の重合反応が進行しにくい温度範
囲で、一酸化炭素等の可燃性気体を検知することができ
る。
The data of Tables 1 to 3 and FIGS. 4 to 6 are summarized in FIGS. From FIG. 7, according to the gas detecting elements 2 of the first and second embodiments,
Even when the temperature is maintained at 30 ° C., which is lower than 300 ° C., the amount of change in electrical resistance larger than that of the gas detection element 2 (comparative example) in which the electrical resistor 9 is platinum is 2500 ppm or less of carbon monoxide. It is clear that it can be obtained. Therefore, according to the gas detection element 2 of the first and second embodiments, a combustible gas such as carbon monoxide can be detected in a temperature range in which the polymerization reaction of the silicon resin is unlikely to proceed.

【0048】また、図8乃至図10から、前記実施例1
及び実施例2のガス検知素子2によれば、300℃に維
持されているときの1000ppm以下の一酸化炭素に
対する場合を除いて、前記比較例のガス検知素子2より
大きな電気抵抗の変化量が得られることが明らかであ
る。
Further, from FIG. 8 to FIG.
Also, according to the gas detecting element 2 of Example 2, a larger amount of change in electric resistance than that of the gas detecting element 2 of Comparative Example is obtained except for the case of carbon monoxide of 1000 ppm or less when maintained at 300 ° C. It is clear that it can be obtained.

【0049】尚、前記各実施例では、電気抵抗体9を白
金(白金黒)で被覆しているが、パラジウムで被覆する
ようにしてもよい。
Although the electric resistor 9 is coated with platinum (platinum black) in each of the above embodiments, it may be coated with palladium.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1(a)は本発明の接触燃焼式ガスセンサの
回路構成を示す回路図、図1(b)は図1(a)示のガ
ス検知素子の一部断面を示す斜視図。
FIG. 1 (a) is a circuit diagram showing a circuit configuration of a catalytic combustion gas sensor of the present invention, and FIG. 1 (b) is a perspective view showing a partial cross section of the gas detection element shown in FIG. 1 (a).

【図2】電気抵抗体となる金属の電気抵抗率と温度との
関係を示すグラフ。
FIG. 2 is a graph showing the relationship between the electric resistivity of a metal serving as an electric resistor and temperature.

【図3】ガス検知素子のガス検知性能を測定する装置の
構成を示す説明的断面図。
FIG. 3 is an explanatory sectional view showing a configuration of an apparatus for measuring gas detection performance of a gas detection element.

【図4】本発明の実施例1のガス検知素子における一酸
化炭素濃度と電気抵抗値の変化量との関係を示すグラ
フ。
FIG. 4 is a graph showing the relationship between the carbon monoxide concentration and the amount of change in electric resistance value in the gas detection element according to the first embodiment of the present invention.

【図5】本発明の実施例2のガス検知素子における一酸
化炭素濃度と電気抵抗値の変化量との関係を示すグラ
フ。
FIG. 5 is a graph showing the relationship between the carbon monoxide concentration and the amount of change in electric resistance value in the gas detection element of Example 2 of the present invention.

【図6】従来のガス検知素子2における一酸化炭素濃度
と電気抵抗値の変化量との関係を示すグラフ。
FIG. 6 is a graph showing the relationship between the carbon monoxide concentration and the amount of change in electric resistance value in the conventional gas detection element 2.

【図7】ガス検知素子を230℃に維持したときの一酸
化炭素濃度と電気抵抗値の変化量との関係を示すグラ
フ。
FIG. 7 is a graph showing the relationship between the carbon monoxide concentration and the amount of change in electric resistance when the gas detection element is maintained at 230 ° C.

【図8】ガス検知素子を300℃に維持したときの一酸
化炭素濃度と電気抵抗値の変化量との関係を示すグラ
フ。
FIG. 8 is a graph showing the relationship between the carbon monoxide concentration and the amount of change in electric resistance value when the gas detection element is maintained at 300 ° C.

【図9】ガス検知素子を350℃に維持したときの一酸
化炭素濃度と電気抵抗値の変化量との関係を示すグラ
フ。
FIG. 9 is a graph showing the relationship between the carbon monoxide concentration and the amount of change in electric resistance when the gas detection element is maintained at 350 ° C.

【図10】ガス検知素子を400℃に維持したときの一
酸化炭素濃度と電気抵抗値の変化量との関係を示すグラ
フ。
FIG. 10 is a graph showing the relationship between the carbon monoxide concentration and the amount of change in electric resistance value when the gas detection element is maintained at 400 ° C.

【符号の説明】[Explanation of symbols]

1…接触燃焼式ガスセンサ、 2…ガス検知素子、 9
…電気抵抗体、 10…白金またはパラジウム。
1 ... Contact combustion type gas sensor, 2 ... Gas detection element, 9
… Electric resistors, 10… Platinum or palladium.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】表面を白金またはパラジウムで被覆した金
属からなる電気抵抗体をガス検知素子とし、所定温度に
保持された該ガス検知素子に接触した可燃性気体を該白
金またはパラジウムを触媒として燃焼せしめ、該可燃性
気体の燃焼熱による該電気抵抗体の電気抵抗の変化を検
出することにより可燃性気体の濃度を検知する接触燃焼
式ガスセンサにおいて、 該電気抵抗体は、鉄またはニッケルであることを特徴と
する接触燃焼式ガスセンサ。
1. An electric resistor made of a metal whose surface is coated with platinum or palladium is used as a gas detection element, and a combustible gas contacted with the gas detection element maintained at a predetermined temperature is burned with the platinum or palladium as a catalyst. In the contact combustion gas sensor for detecting the concentration of the combustible gas by detecting the change in the electric resistance of the electric resistor due to the combustion heat of the combustible gas, the electric resistor is iron or nickel. A catalytic combustion type gas sensor characterized by:
【請求項2】前記電気抵抗体は表面がニッケルで被覆さ
れている鉄であって、該ニッケルの被覆上に白金または
パラジウムが被覆されていることを特徴とする請求項1
記載の接触燃焼式ガスセンサ。
2. The electric resistor is iron whose surface is coated with nickel, and platinum or palladium is coated on the nickel coating.
The catalytic combustion type gas sensor described.
【請求項3】前記ガスセンサは、ガス器具の不完全燃焼
または不点火を検知することを特徴とする請求項1また
は請求項2記載の接触燃焼式ガスセンサ。
3. The catalytic combustion gas sensor according to claim 1, wherein the gas sensor detects incomplete combustion or misfire of a gas appliance.
JP07264560A 1995-10-12 1995-10-12 Contact combustion type gas sensor Expired - Fee Related JP3078485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07264560A JP3078485B2 (en) 1995-10-12 1995-10-12 Contact combustion type gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07264560A JP3078485B2 (en) 1995-10-12 1995-10-12 Contact combustion type gas sensor

Publications (2)

Publication Number Publication Date
JPH09105732A true JPH09105732A (en) 1997-04-22
JP3078485B2 JP3078485B2 (en) 2000-08-21

Family

ID=17404983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07264560A Expired - Fee Related JP3078485B2 (en) 1995-10-12 1995-10-12 Contact combustion type gas sensor

Country Status (1)

Country Link
JP (1) JP3078485B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001021437A (en) * 1999-07-12 2001-01-26 Sanyo Electric Co Ltd Gas leak sensor and absorption refrigerator mounted it
JP2007057267A (en) * 2005-08-22 2007-03-08 Fis Inc Gas detector
JP2007519905A (en) * 2004-01-16 2007-07-19 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド Apparatus and method for detecting a target gas species in a semiconductor processing system
WO2007097025A1 (en) * 2006-02-27 2007-08-30 Fis Inc. Hydrogen gas sensor
JP2009042097A (en) * 2007-08-09 2009-02-26 Seiko Npc Corp Hydrogen gas sensor
JP2012037413A (en) * 2010-08-09 2012-02-23 Fis Inc Sensing element and contact combustion type gas sensor
JP5044540B2 (en) * 2006-02-27 2012-10-10 エフアイエス株式会社 Hydrogen gas sensor
JP2016114435A (en) * 2014-12-12 2016-06-23 日本写真印刷株式会社 Contact combustion type hydrogen gas sensor element and contact combustion type hydrogen gas sensor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001021437A (en) * 1999-07-12 2001-01-26 Sanyo Electric Co Ltd Gas leak sensor and absorption refrigerator mounted it
JP2007519905A (en) * 2004-01-16 2007-07-19 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド Apparatus and method for detecting a target gas species in a semiconductor processing system
JP2007057267A (en) * 2005-08-22 2007-03-08 Fis Inc Gas detector
JP4575862B2 (en) * 2005-08-22 2010-11-04 エフアイエス株式会社 Gas detector
WO2007097025A1 (en) * 2006-02-27 2007-08-30 Fis Inc. Hydrogen gas sensor
WO2007099933A1 (en) * 2006-02-27 2007-09-07 Fis Inc. Hydrogen gas sensor
JP5044540B2 (en) * 2006-02-27 2012-10-10 エフアイエス株式会社 Hydrogen gas sensor
JP2009042097A (en) * 2007-08-09 2009-02-26 Seiko Npc Corp Hydrogen gas sensor
JP2012037413A (en) * 2010-08-09 2012-02-23 Fis Inc Sensing element and contact combustion type gas sensor
JP2016114435A (en) * 2014-12-12 2016-06-23 日本写真印刷株式会社 Contact combustion type hydrogen gas sensor element and contact combustion type hydrogen gas sensor

Also Published As

Publication number Publication date
JP3078485B2 (en) 2000-08-21

Similar Documents

Publication Publication Date Title
JP2702279B2 (en) Gas detection element
JP3175890B2 (en) Temperature sensor
US3607084A (en) Combustible gas measurement
JPS6239390B2 (en)
JP2007024508A (en) Membrane gas sensor
JP3078485B2 (en) Contact combustion type gas sensor
JP4585756B2 (en) Semiconductor gas sensor and gas monitoring method using semiconductor gas sensor
CN114324535B (en) Detachable metal melt hydrogen measuring sensor device
US6437294B2 (en) Pyrolytic self-cleaning oven
JP5532385B2 (en) Semiconductor gas sensor intermittent drive method
JP4830714B2 (en) Anomaly detection method for thin film gas sensor
JP4970584B2 (en) Thin film gas sensor
JP4084333B2 (en) Contact combustion type gas sensor
JPH1082755A (en) Hydrocarbon gas sensor and manufacture thereof
JP2000221152A (en) Gas detector
JPH11237298A (en) Gas leakage measurement and alarm device
JPS60194347A (en) Hydrogen gas sensor
JPH06242060A (en) Hydrocarbon sensor
JP2006145369A (en) Gas sensor and its manufacturing method
JP3486797B2 (en) Activation method of catalyst for gas sensor
JPH03162658A (en) Gas detecting element
JPH09145656A (en) Contact burning type gas sensor
JPH0949819A (en) Carbon monoxide detector
JPH10274636A (en) Co gas detection element
CN112505109A (en) Hydrogen sensor device based on thermoelectric effect and hydrogen detection method using same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100616

LAPS Cancellation because of no payment of annual fees