JPH09102419A - Magnetic recording medium and manufacture thereof - Google Patents

Magnetic recording medium and manufacture thereof

Info

Publication number
JPH09102419A
JPH09102419A JP25653795A JP25653795A JPH09102419A JP H09102419 A JPH09102419 A JP H09102419A JP 25653795 A JP25653795 A JP 25653795A JP 25653795 A JP25653795 A JP 25653795A JP H09102419 A JPH09102419 A JP H09102419A
Authority
JP
Japan
Prior art keywords
magnetic
film
thin film
recording medium
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25653795A
Other languages
Japanese (ja)
Inventor
Akihiro Murayama
明宏 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Komag Co Ltd
Original Assignee
Asahi Komag Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Komag Co Ltd filed Critical Asahi Komag Co Ltd
Priority to JP25653795A priority Critical patent/JPH09102419A/en
Publication of JPH09102419A publication Critical patent/JPH09102419A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)
  • Physical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a small product of the remanent magnetization and the film thickness and sufficiently high coercive force and rectangularity ratio, by using a Co-based magnetic thin film in which the product of the remanent magnetization and the film thickness is not greater than a predetermined value and which contains Ni. SOLUTION: A Co-based magnetic thin film is used which has a product of the remanent regnetization and the film thickness not greater than 1×10<-3> emu/cm<2> and contains Ni. The composition of the Co-based magnetic thin film is preferably represented by Co100-a-b-c-d Nia Crb Ptc Md where M represents a non-magnetic non-metal element or compound, and each number of atoms is within the following ranges by atomic percentage: 1<=a<=15, 0<=b<=15, 0<=c<=20, and 0<=d<=20. Also, it is preferable to use a Co-based magnetic thin film which has a product of the remanent magnetization and the film thickness not smaller than 3×10<4> emu/cm<2> and not greater than 1×10<-3> emu/cm<2> , and contains not less than two atoms and not more than eight atoms of Ni. It is preferable that any of these Co-based magnetic thin films has a coercive force on a magnetic remanence curve not less than 2000Oe and a coercive force squareness not less than 0.8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は磁気記録媒体に関す
る。
[0001] The present invention relates to a magnetic recording medium.

【0002】[0002]

【従来の技術及びその問題点】コンピュータの高容量記
録媒体として用いられているハード磁気ディスクの記録
密度は年々増加の一途をたどっている。しかしその記録
密度に対してはさらなる増加が強く求められており、様
々な技術開発が行われつつある。このようなハード磁気
ディスクの磁気記録密度を増加させるには、その磁気記
録媒体であるCo系合金強磁性薄膜の磁気特性の改善が
必須となる。一般に、面内磁気記録における高密度化に
対しては、孤立再生波の時間半値幅PW50を小さくする
ことが本質的に有効である。
2. Description of the Related Art The recording density of hard magnetic disks used as high-capacity recording media for computers has been increasing year by year. However, there is a strong demand for further increase in the recording density, and various technological developments are being made. In order to increase the magnetic recording density of such a hard magnetic disk, it is essential to improve the magnetic characteristics of the Co-based alloy ferromagnetic thin film that is the magnetic recording medium. Generally, it is essentially effective to reduce the half-value width PW 50 of the isolated reproduction wave for increasing the density in the in-plane magnetic recording.

【0003】すなわち磁気記録の記録再生過程を考えて
みると、書き込み時には、磁気ヘッドにより磁気記録媒
体である磁性膜に磁場を印加し、その磁場印加方向をヘ
ッド走行方向に対して変えることにより、局所的に磁化
方向が異なる面内磁化領域を形成し記録したい信号とす
る。
That is, considering the recording / reproducing process of magnetic recording, at the time of writing, a magnetic field is applied to a magnetic film as a magnetic recording medium by a magnetic head, and the direction in which the magnetic field is applied is changed with respect to the head traveling direction. A signal to be recorded is formed by forming an in-plane magnetized region having a locally different magnetization direction.

【0004】読み出し時には、この磁性膜に形成された
磁化遷移領域から漏洩する磁場中をヘッドが走行するこ
とにより生じる磁束の時間変化を通してヘッドに誘導さ
れる起電圧を読みとり、その正負の組み合せにより信号
を再生する。
At the time of reading, the electromotive voltage induced in the head is read through the time change of the magnetic flux generated by the head traveling in the magnetic field leaking from the magnetic transition region formed in the magnetic film, and the signal is obtained by the combination of the positive and negative. To play.

【0005】ここで、このような磁気記録における記録
密度を増加させることを考えると、再生される信号出力
波の時間幅が十分狭く、高密度記録時すなわち再生出力
波が時間軸上で密接した場合でも十分に分離識別されて
いることが本質的に重要である。
Here, considering increasing the recording density in such magnetic recording, the time width of the signal output wave to be reproduced is sufficiently narrow, and at the time of high density recording, that is, the reproduction output wave is closely contacted on the time axis. It is essential that they are well separated and identified.

【0006】これは前述のPW50を小さくすることに相
当する。さてこのようなPW50は様々な因子により決定
されているが、その本質を定量的に議論するモデルとし
て、Williams-Comstock モデルが知られている(17th A
IP Conference Proceeding,Part 1,No.5(1971)738)。
このモデルによるとPW50は以下のように表される。
This is equivalent to reducing the above PW 50 . The PW 50 is determined by various factors, and the Williams-Comstock model is known as a model for quantitatively discussing its essence (17th A
IP Conference Proceeding, Part 1, No.5 (1971) 738).
According to this model, PW 50 is expressed as follows.

【0007】PW50={g2+4(deff+a)(deff+a+t)}1/2 ここでgはヘッドギャップ長、tは磁性膜の膜厚、deff
はヘッドと磁性膜間の有効距離であり、一般には保護膜
表面からヘッドギャップまでの距離すなわちヘッドの浮
上高さdと保護膜膜厚sによりdeff=d+s+t/2と表され
る。さらにaは磁性膜に書き込まれた磁化の遷移領域の
長さであり、以下のように表される。
PW 50 = {g 2 +4 (d eff + a) (d eff + a + t)} 1/2 where g is the head gap length, t is the thickness of the magnetic film, and d eff
Is the effective distance between the head and the magnetic film, and is generally expressed as d eff = d + s + t / 2 by the distance from the protective film surface to the head gap, that is, the flying height d of the head and the protective film thickness s. It Further, a is the length of the transition region of the magnetization written in the magnetic film, and is represented as follows.

【0008】a=deff(1-S*)/πQ+[{deff(1-S*)/πQ}2+
tMr deff/πQHc]1/2 ここでS* は保磁力角型比、tMr は膜厚と残留磁化の
積(残留磁化膜厚積)、Qはヘッドにおける特性パラメ
ータであり、ヘッド磁場勾配の急峻さを表す指標であ
る。このWilliams-Comstock モデルはその導出に当って
はいくつかの近似を含んでいるが、現実の面内磁気記録
過程を良く表しているモデルとして広く用いられてい
る。実際に上述のパラメータに実測値を入れてPW50
計算すると、実測値とほぼ一致する値が得られる。
A = d eff (1-S * ) / πQ + [{d eff (1-S * ) / πQ} 2 +
tM r d eff / πQH c ] 1/2 where S * is the coercive force squareness ratio, tM r is the product of film thickness and remanent magnetization (remanent magnetization film thickness product), and Q is a characteristic parameter of the head. It is an index showing the steepness of the magnetic field gradient. Although the Williams-Comstock model includes some approximations in its derivation, it is widely used as a model that well represents the actual in-plane magnetic recording process. When PW 50 is calculated by actually inserting the actually measured values into the above-mentioned parameters, a value that substantially matches the actually measured values is obtained.

【0009】さてこのWilliams-Comstock モデルに基づ
いてPW50を小さくすることを考えると、磁性膜の磁気
特性上においては、保磁力Hc を高くし残留磁化膜厚積
tMr を小さくしかつ保磁力角型比S* を大きくするこ
とが考えられる。実際にこのような指針に基づき磁性膜
の特性改善がなされ、結果としてPW50の改善効果が得
られていることは広く知られるところである。
Considering the reduction of PW 50 based on the Williams-Comstock model, in view of the magnetic characteristics of the magnetic film, the coercive force H c is increased and the remanent magnetization film thickness product tM r is reduced and the retention is reduced. It is conceivable to increase the magnetic squareness ratio S * . It is widely known that the characteristics of the magnetic film are actually improved based on such guidelines, and as a result, the effect of improving PW 50 is obtained.

【0010】たとえば現在実用化されつつある磁性膜の
磁気特性としては、Hc が1800Oe程度、tMr
して2.5×10-3emu/cm2 程度、S* は0.8
から0.9程度である。
For example, magnetic properties of a magnetic film which is being put into practical use are as follows: H c of about 1800 Oe, tM r of about 2.5 × 10 −3 emu / cm 2 , and S * of 0.8.
To about 0.9.

【0011】しかし上述の議論に基づいた磁気特性改善
においては、その限界があることがわかっている。すな
わちHc を増加させることは、必然的に書き込み時のヘ
ッド磁場を強めることが要求されるが、ヘッドギャップ
の加工精度や用いられる磁性材質からくる磁場強度の上
限があり、結果的にHc をむやみに増加させると書き換
え能力を表すオーバーライト特性が悪化してしまう。ま
たtMr を小さくすることは、記録再生時にヘッドに誘
導される再生出力強度を弱め、結果としてその信号読み
出しを妨げる。S* についても既に0.8から0.9程
度の値を示しており、改善の余地としては少ない。
However, it has been found that there is a limit in improving the magnetic characteristics based on the above discussion. That is, increasing H c inevitably requires strengthening the head magnetic field at the time of writing, but there is an upper limit of the magnetic field strength derived from the processing accuracy of the head gap and the magnetic material used, and consequently H c If the number is excessively increased, the overwrite characteristic, which represents the rewriting ability, deteriorates. Further, reducing tM r weakens the reproduction output intensity induced in the head during recording and reproduction, and consequently hinders the signal reading. S * has already shown a value of about 0.8 to 0.9, and there is little room for improvement.

【0012】一方、通常のリングヘッドなどの記録再生
時に誘導起電圧を利用するヘッドに比較して、著しく磁
場に対する感度の高い磁気抵抗効果を利用した読みとり
専用ヘッド、いわゆるMRヘッドを用いることにより、
tMr が1×10-3emu/cm2 程度以下と非常に低
い領域でも十分強い再生出力を得ることができると考え
られる。
On the other hand, by using a so-called MR head, which is a read-only head that utilizes a magnetoresistive effect having a significantly high sensitivity to a magnetic field, as compared with a head that uses an induced electromotive voltage during recording and reproduction such as a normal ring head,
It is considered that a sufficiently strong reproduction output can be obtained even in a region where tM r is as low as about 1 × 10 −3 emu / cm 2 or less.

【0013】したがって従来の誘導起電圧ヘッドを書き
込み専用とし、このMRヘッドを読み出し専用ヘッドと
して組み合わせる方式により、磁気記録媒体である磁性
膜のtMr を小さくすることが可能となり、結果として
さらなる高密度記録が可能になると考えられる。なお上
述したWilliams-Comstock モデルは、記録時に形成され
る磁化遷移領域がPW50を決定づける要因となってお
り、記録時にリングヘッドなどによる誘導起電圧ヘッド
を用いる限り成り立つものである。
Therefore, by using the conventional induced electromotive voltage head only for writing and combining this MR head as a read-only head, it is possible to reduce the tM r of the magnetic film as the magnetic recording medium, resulting in a higher density. It will be possible to record. The above-mentioned Williams-Comstock model is a factor that determines the PW 50 by the magnetization transition region formed during recording, and is valid as long as an induced electromotive voltage head such as a ring head is used during recording.

【0014】さて磁性膜のtMr を小さくする場合、磁
性膜の膜厚tを薄くするか、磁性膜の残留磁化Mr が小
さな磁性膜材料を選定する方法が考えられる。ここで前
者のtを小さくする方法の方が、後者の方法より一層効
果的である。なぜならば、後者においては磁性膜厚tが
小さくならないため、PW50を表す式を見る限りその改
善効果が少ないためである。しかしいずれの方法にせ
よ、通常ハード磁気ディスクに用いられているCo系合
金の場合、そのtMr を小さくしていくと、磁気特性上
重要な保磁力や角型比が著しく低下してしまうという問
題があり、上述したMRヘッドを用いた高密度磁気記録
を実現する上で大きな障害となっていた。
To reduce tM r of the magnetic film, a method of reducing the film thickness t of the magnetic film or selecting a magnetic film material having a small residual magnetization M r of the magnetic film can be considered. Here, the former method of reducing t is more effective than the latter method. This is because, in the latter case, the magnetic film thickness t does not become small, and as far as the formula representing PW 50 is concerned, the improvement effect is small. However, whichever method is used, in the case of a Co-based alloy that is usually used for hard magnetic disks, the coercive force and squareness ratio, which are important for magnetic properties, are significantly reduced as tM r is reduced. There is a problem, and it has been a major obstacle in realizing high-density magnetic recording using the MR head described above.

【0015】さらに高密度磁気記録においては、記録再
生時にその媒体に起因するノイズが低いことも非常に重
要である。一般に薄膜メディアの媒体ノイズは、磁区遷
移境界領域の磁区構造の乱れ、いわゆる"Zig-zag Domai
n"の形成に起因するものが支配的である。これは磁性薄
膜の結晶粒構造に大きく左右され、とくに磁性膜を構成
する数百Å程度以下の微細な結晶粒子構造において、そ
の結晶粒子間に働く数原子程度の近距離かつ極めて強い
磁気的相互作用である交換相互作用を何らかの方法によ
り遮断する、すなわち強磁性結晶粒子間の磁気的分離を
はかることが媒体ノイズ特性の改善に非常に効果的であ
るという理論的提案がなされている(J.Appl.Phys.,63,
3248(1988))。
Further, in high density magnetic recording, it is also very important that the noise caused by the medium during recording and reproduction is low. In general, the medium noise of thin film media is the disorder of the magnetic domain structure in the domain transition boundary region, so-called "Zig-zag Domai
It is mainly due to the formation of n ". This is largely influenced by the crystal grain structure of the magnetic thin film, and especially in the fine crystal grain structure of several hundred Å or less that constitutes the magnetic film, It is very effective to improve the medium noise characteristics by blocking the exchange interaction, which is a very strong magnetic interaction with a short distance of about several atoms, that acts on the magnetic field, that is, by magnetically separating the ferromagnetic crystal grains. Has been proposed theoretically (J.Appl.Phys., 63,
3248 (1988)).

【0016】したがって媒体ノイズ改善のためには磁性
薄膜の結晶粒構造を改質、制御するための磁性膜合金成
分の検討やスパッタープロセス制御が必要である。一般
にCoPt系磁性膜に対してNiPスパッター下地膜を
用いることで媒体ノイズの低減がなされることが見いだ
されている(米国特許No.4786564)。
Therefore, in order to improve the medium noise, it is necessary to study the alloy components of the magnetic film for modifying and controlling the crystal grain structure of the magnetic thin film and controlling the sputtering process. It has been generally found that the medium noise is reduced by using a NiP sputtered base film for a CoPt-based magnetic film (US Pat. No. 4785664).

【0017】これはNiP下地膜の結晶粒構造が磁性膜
の結晶粒構造を制御する効果を利用したものである。さ
らにCoNiPt磁性膜にCrを添加したCoNiCr
Pt磁性膜を用いることにより、孤立再生波半値幅など
の高周波特性やオーバーライト特性の劣化なしに、より
いっそうの低媒体ノイズ特性が得られることも提案され
ている(米国特許No.5180640)。
This utilizes the effect that the crystal grain structure of the NiP underlayer controls the crystal grain structure of the magnetic film. Further, CoNiCr in which Cr is added to the CoNiPt magnetic film
It has also been proposed that by using a Pt magnetic film, further low medium noise characteristics can be obtained without deterioration of high frequency characteristics such as half-value width of isolated reproduction wave and overwrite characteristics (US Pat. No. 5180640).

【0018】しかし前述したように、今後の高密度磁気
記録においては、現在用いられている薄膜ヘッドやMI
Gヘッドなどの誘導起電圧タイプのヘッドに変わって、
磁気抵抗効果を利用したいわゆるMRヘッドが極めて効
果的でありその実用は必至のものであると考えられてい
る。
However, as described above, in the future high density magnetic recording, the thin film heads and MIs currently used are used.
Instead of an induced electromotive force type head such as a G head,
A so-called MR head utilizing the magnetoresistive effect is extremely effective, and its practical use is considered inevitable.

【0019】このMRヘッドの特性上重要なこととし
て、ヘッド自体に起因するノイズが通常の誘導起電圧タ
イプのヘッドに比べ著しく低いことがあげられる。その
ため磁性膜に起因するいわゆる媒体ノイズを従来のもの
に比べ一段と低減させなければ、MRヘッドの持つ優れ
た高密度記録特性を発揮させることができない。
What is important in the characteristics of this MR head is that the noise caused by the head itself is significantly lower than that of a normal induced electromotive force type head. Therefore, unless the so-called medium noise caused by the magnetic film is further reduced as compared with the conventional one, the excellent high density recording characteristics of the MR head cannot be exhibited.

【0020】このような目的で、NiPスパッター下地
膜上のCoNiCrPt磁性膜にSiO2 などの酸化物
を含有させることにより、著しい低媒体ノイズ特性が得
られることが本発明者らによって実現されている(特開
平5-197944)。このようにして得られる媒体のノイズ特
性は、MRヘッドとの組み合わせにおいて評価したとこ
ろ、MRヘッドの持つ高感度特性を損なうことなく十分
に低い優れたものであった。
[0020] In this purpose, by the inclusion of oxides such as SiO 2 in CoNiCrPt magnetic film on NiP sputtered underlayer, low medium noise characteristics that can be obtained is realized by the present inventors significant (JP-A-5-197944). When evaluated in combination with the MR head, the noise characteristic of the medium thus obtained was sufficiently low and excellent without impairing the high sensitivity characteristic of the MR head.

【0021】したがって、このようなNiPスパッター
膜を下地としたCoNiCrPtSiO磁性膜などにお
いて、前述したようtMr が1×10-3emu/cm2
以下といった極めて小さな領域で、そのPW50特性を改
善するのに十分な高保磁力化が達成されれば、低媒体ノ
イズ特性と合わせて、MRヘッドを用いた次世代の著し
く高い磁気記録密度が実現されることが期待される。
Therefore, in such a CoNiCrPtSiO magnetic film having such a NiP sputtered film as a base, the tM r is 1 × 10 −3 emu / cm 2 as described above.
If a high coercive force sufficient to improve the PW 50 characteristic is achieved in an extremely small region such as the following, next-generation remarkably high magnetic recording density using an MR head will be realized together with the low medium noise characteristic. Expected to be done.

【0022】[0022]

【発明が解決しようとする課題】本発明は前述の問題点
を解決しようとするものであり、MRヘッドを用いた将
来の高密度磁気記録において必要となる、残留磁化膜厚
積が小さく十分高い保磁力や角型比を得るための磁性薄
膜とその磁性薄膜を用いた磁気記録媒体およびその製造
方法を新規に得ることを目的とする。
SUMMARY OF THE INVENTION The present invention is intended to solve the above-mentioned problems, and has a small residual magnetization film thickness product and a sufficiently high product, which is required in future high-density magnetic recording using an MR head. It is an object of the present invention to newly obtain a magnetic thin film for obtaining a coercive force and a squareness ratio, a magnetic recording medium using the magnetic thin film and a manufacturing method thereof.

【0023】[0023]

【課題を解決するための手段】本発明は上述の課題を解
決するためになされたものであり、残留磁化と膜厚の積
が1×10-3emu/cm2 以下であり、かつNiを含
有するCo系磁性薄膜を用いたことを特徴とする磁気記
録媒体を提供する。
The present invention has been made in order to solve the above-mentioned problems and has a product of remanent magnetization and film thickness of 1 × 10 −3 emu / cm 2 or less and Ni Provided is a magnetic recording medium characterized by using a Co-based magnetic thin film contained therein.

【0024】前記Co系磁性薄膜はその組成が、Mを非
強磁性非金属元素または化合物としたとき、Co
100-a-b-c-d Nia Crb Ptcd と表され、各組成
が原子パーセントで、1≦a≦15、0<b≦15、0
<c≦20、0<d≦20であることが好ましい。
The composition of the Co type magnetic thin film is such that when M is a non-ferromagnetic non-metal element or compound,
100-abcd Ni a Cr b Pt c M d , where each composition is an atomic percentage and 1 ≦ a ≦ 15, 0 <b ≦ 15,0.
It is preferable that <c ≦ 20 and 0 <d ≦ 20.

【0025】また、本発明は、残留磁化と膜厚の積が3
×10-4emu/cm2 以上、1×10-3emu/cm
2 以下であり、かつNiを2原子%以上、8原子%以下
含有するCo系磁性薄膜を用いたことを特徴とする磁気
記録媒体を提供する。
In the present invention, the product of the residual magnetization and the film thickness is 3
X10 -4 emu / cm 2 or more, 1 x 10 -3 emu / cm
A magnetic recording medium characterized by using a Co-based magnetic thin film containing 2 or less and 2 atomic% or more and 8 atomic% or less of Ni.

【0026】前記Co系磁性薄膜はその組成が、Mを非
強磁性非金属元素または化合物としたとき、Co
100-a-b-c-d Nia Crb Ptcd と表され、各組成
が原子パーセントで、2≦a≦8、0<b≦15、0<
c≦20、0<d≦20であることが好ましい。
The composition of the Co-based magnetic thin film is such that when M is a non-ferromagnetic non-metallic element or compound.
It is expressed as 100-abcd Ni a Cr b Pt c M d, and each composition is an atomic percentage, and 2 ≦ a ≦ 8, 0 <b ≦ 15, 0 <.
It is preferable that c ≦ 20 and 0 <d ≦ 20.

【0027】また、上記Co系磁性薄膜は、いずれも、
磁気レマネンス曲線上の保磁力が2000 Oe以上、
かつ保磁力角型比が0.8以上であることが好ましい。
The above Co-based magnetic thin films are all
The coercive force on the magnetic remanence curve is 2000 Oe or more,
In addition, the coercive force squareness ratio is preferably 0.8 or more.

【0028】また、上記Co系磁性薄膜は、いずれもそ
の非強磁性非金属相が酸化物であることが好ましく、ま
た該酸化物がSiO2 、Al23 、TiO2 、及びZ
rO2 から選ばれる1種以上であることが好ましい。
In each of the above Co-based magnetic thin films, the nonferromagnetic nonmetallic phase is preferably an oxide, and the oxides are SiO 2 , Al 2 O 3 , TiO 2 , and Z.
It is preferably at least one selected from rO 2 .

【0029】また上記Co系磁性薄膜は、いずれもNi
Pスパッター下地膜上またはNiBスパッター下地膜上
に形成されていることが好ましい。
The above Co-based magnetic thin films are all made of Ni.
It is preferably formed on the P sputter base film or the NiB sputter base film.

【0030】また本発明は、残留磁化と膜厚の積が1×
10-3emu/cm2 以下であり、かつNiを含有する
Co系磁性薄膜を、成膜前の到達真空度が5×10-6
orr以下の雰囲気で、酸素、水蒸気、及び窒素から選
ばれる1種以上のガスを0.01体積%以上10体積%
以下含有するArガスを導入したスパッター法により作
成することを特徴とするCo系磁性薄膜を用いた磁気記
録媒体の製造方法を提供する。
In the present invention, the product of the residual magnetization and the film thickness is 1 ×.
A Co-based magnetic thin film having a Ni content of 10 −3 emu / cm 2 or less and an ultimate vacuum of 5 × 10 −6 T before film formation was formed.
One or more gases selected from oxygen, water vapor, and nitrogen in an atmosphere of or or less, 0.01 volume% or more and 10 volume% or more.
Provided is a method for manufacturing a magnetic recording medium using a Co-based magnetic thin film, which is produced by a sputtering method in which an Ar gas contained therein is introduced.

【0031】また本発明は、残留磁化と膜厚の積が3×
10-4emu/cm2 以上、1×10-3emu/cm2
以下であり、かつNiを2原子%以上、8原子%以下含
有するCo系磁性薄膜を、成膜前の到達真空度が5×1
-6Torr以下の雰囲気で、酸素、水蒸気、及び窒素
から選ばれる1種以上のガスを0.01体積%以上10
体積%以下含有するArガスを導入したスパッター法に
より作成することを特徴とするCo系磁性薄膜を用いた
磁気記録媒体の製造方法を提供する。
In the present invention, the product of residual magnetization and film thickness is 3 ×.
10 -4 emu / cm 2 or more, 1 × 10 -3 emu / cm 2
A Co-based magnetic thin film containing Ni of 2 atomic% or more and 8 atomic% or less has an ultimate vacuum of 5 × 1 before film formation.
0.01% by volume or more and 10% by volume of one or more gases selected from oxygen, water vapor, and nitrogen in an atmosphere of 0 -6 Torr or less.
Provided is a method for producing a magnetic recording medium using a Co-based magnetic thin film, which is produced by a sputtering method in which an Ar gas containing less than or equal to volume% is introduced.

【0032】また、上記のように、本発明において残留
磁化と膜厚の積が1×10-3emu/cm2 以下または
3×10-4emu/cm2 以上、1×10-3emu/c
以下であるが、好ましくはそれぞれ8×10−4
mu/cm2 以下または3×10-4emu/cm2
上、8×10-4emu/cm2 以下である。
Further, as described above, in the present invention, the product of the residual magnetization and the film thickness is 1 × 10 −3 emu / cm 2 or less or 3 × 10 −4 emu / cm 2 or more, 1 × 10 −3 emu / cm 2 or more. c
m 2 or less, but preferably 8 × 10 −4 e each
It is not more than mu / cm 2 or not less than 3 × 10 −4 emu / cm 2 and not more than 8 × 10 −4 emu / cm 2 .

【0033】前述したように、MRヘッドを用いた将来
の高密度磁気記録においては、残留磁化膜厚積tMr
小さく、かつ十分高い保磁力や角型比を持つCo系磁性
薄膜が必要となる。本発明者らは、このような特性を発
現させることを目的として、従来ほとんど知られていな
かったtMr が極めて小さな領域でのCo系磁性膜の組
成と磁気特性の関係について詳細に検討した。
As described above, in the future high-density magnetic recording using an MR head, a Co-based magnetic thin film having a small residual magnetization film thickness product tM r and a sufficiently high coercive force and squareness ratio is required. Become. The present inventors have studied in detail the relationship between the composition and magnetic characteristics of a Co-based magnetic film in a region where tM r, which has hitherto been unknown, is extremely small, for the purpose of expressing such characteristics.

【0034】その結果、Niをある程度含有した磁性膜
においてtMr が1×10-3emu/cm2 以下と小さ
な領域において、その記録再生時における磁気特性を表
す磁気レマネンス曲線上において保磁力Hr が2000
Oe以上、保磁力角型比S* rが0.8以上と十分高い
特性を持つことを見いだした。このような知見はいまま
で知られてはおらず、将来の高密度磁気記録媒体を設計
する上できわめて重要となるものである。
As a result, the coercive force H r on the magnetic remanence curve, which represents the magnetic characteristics during recording and reproduction, in a region where tM r is as small as 1 × 10 −3 emu / cm 2 or less in the magnetic film containing Ni to some extent. Is 2000
It was found that it has a sufficiently high characteristic of Oe or more and a coercive force squareness ratio S * r of 0.8 or more. Such knowledge has not been known so far, and will be extremely important in designing future high-density magnetic recording media.

【0035】なおここでHr やS* rは、磁気レマネンス
曲線上での保磁力と保磁力角型比であり、前述の議論で
述べた磁気ヒステリシス特性上の保磁力Hc や保磁力角
型比S* と同様の意味を持つ。レマネンス曲線の測定は
以下のようにして行った。
Here, H r and S * r are the coercive force and the coercive force squareness ratio on the magnetic remanence curve, and the coercive force H c and the coercive force angle on the magnetic hysteresis characteristics described in the above discussion. It has the same meaning as the type ratio S * . The remanence curve was measured as follows.

【0036】磁性膜の膜面内のテクスチャー方向に、十
分その磁化が飽和するような強い外部磁場(10kO
e)を印加し磁化を特定方向に揃えた後、逆向きに特定
の大きさの磁場を印加する。しかる後にその外部磁場を
取り去り、残留状態の磁化を測定する。得られた残留磁
化を印加磁場の強さに対してプロットする。得られたレ
マネンス曲線上での磁化反転磁場をHr 、磁化反転の急
峻性を最大値が1となるようにS* rとして定義する。し
たがってHr やS* rが高い場合に、前述のPW50が良い
値となる。
A strong external magnetic field (10 kO) sufficient to saturate the magnetization of the magnetic film in the in-plane texture direction of the film.
After applying e) to align the magnetization in a specific direction, a magnetic field of a specific magnitude is applied in the opposite direction. Then, the external magnetic field is removed, and the residual magnetization is measured. The resulting remanent magnetization is plotted against the strength of the applied magnetic field. The magnetization reversal magnetic field on the obtained remanence curve is defined as H r , and the steepness of the magnetization reversal is defined as S * r so that the maximum value becomes 1. Therefore, when H r and S * r are high, the above PW 50 has a good value.

【0037】その測定においては実際の磁気記録を反映
した残留磁化過程をもとにしているため、将来の高密度
磁気記録に必要な特性を評価するためにはより適してい
ると考えられるものである。このレマネンス曲線の原
理、測定方法や磁気記録特性との関係などは、例えばJo
urnal of The Magnetic Society of Japan,Vol.13,Supp
lement,No.S1(1989),p.351に述べられている。
Since the measurement is based on the remanent magnetization process that reflects the actual magnetic recording, it is considered to be more suitable for evaluating the characteristics required for future high-density magnetic recording. is there. The principle of this remanence curve, the measuring method, and the relationship with the magnetic recording characteristics are described in, for example, Jo
urnal of The Magnetic Society of Japan, Vol.13, Supp
lement, No. S1 (1989), p.351.

【0038】ここで磁性膜に含有させるNiは1原子%
未満ではその効果が得られず、また15原子%より大き
い場合は磁性膜の結晶構造が変化し保磁力などの磁気特
性が大幅に低下してしまうため不適である。また特にN
i含有量が2原子%以上、8原子%以下の場合、その磁
気特性改善効果が顕著である。また本発明で述べられ
た、Niを適量含有させることによりtMr が小さな領
域での保磁力などの磁気特性が改善される効果は、本発
明の実施例に述べられた合金組成以外の他のCo系磁性
薄膜においても発現するものである。
Here, Ni contained in the magnetic film is 1 atomic%
If it is less than 15% by weight, the effect cannot be obtained, and if it exceeds 15% by atom, the crystal structure of the magnetic film is changed and the magnetic properties such as coercive force are significantly deteriorated. Also especially N
When the i content is 2 atomic% or more and 8 atomic% or less, the effect of improving the magnetic properties is remarkable. Further, the effect of improving the magnetic properties such as the coercive force in the region where the tM r is small as described in the present invention by containing an appropriate amount of Ni is different from the alloy composition described in the examples of the present invention. It is also expressed in the Co type magnetic thin film.

【0039】[0039]

【実施例】【Example】

[実施例1]表面に膜厚10μmのNiPメッキ膜を施
した後、ヘッドの吸着防止のためのテクスチャーと呼ば
れる形状加工処理を施したアルミディスク基板上に、N
iP下地膜/CoNiCrPtSiO磁性膜/カーボン
保護膜を順次スパッター法により積層してなる磁気記録
媒体を形成した。磁性膜を作成する際には、Co(69)C
r(11)Pt(14)SiO2(6)焼結ターゲット(括弧内の数
字は原子パーセントを表す。以下同様)を使用し、その
ターゲット上にNiチップを数を変えて配置することに
より磁性膜中のNi組成を制御した。またNiP下地膜
の膜厚は210Åと一定にした。磁性膜厚は、その残留
磁化膜厚積tMr を変えるため約50Åから250Åの
範囲で変化させた。
[Example 1] After a NiP plating film having a film thickness of 10 µm was applied on the surface, N was formed on an aluminum disk substrate which had been subjected to a shape processing called texture for preventing head adsorption.
A magnetic recording medium was formed by sequentially laminating an iP underlayer film / CoNiCrPtSiO magnetic film / carbon protective film by a sputtering method. When creating a magnetic film, Co (69) C
By using a r (11) Pt (14) SiO 2 (6) sintered target (the numbers in parentheses represent atomic percentages, the same applies below) and arranging Ni chips of varying numbers on the target The Ni composition in the film was controlled. Further, the film thickness of the NiP base film was kept constant at 210Å. The magnetic film thickness was changed in the range of about 50Å to 250Å in order to change the remanent magnetization film thickness product tM r .

【0040】成膜に先立ち真空槽の到達真空度が4×1
-7Torrとなるまで排気を行い、その後純Arガス
を導入し下地NiPスパッター膜の成膜を行い、さらに
磁性膜成膜時には窒素ガスを0.1体積%含んだArガ
スを使用し、いずれもその圧力を20mTorrとし
た。また成膜時には積極的な基板加熱や基板バイアス印
加は行っていない。得られた磁気記録媒体の磁気特性と
して、残留磁化磁力計により測定されたレマネンス曲線
上の保磁力Hr のtMr 依存性を図1に示す。
The degree of vacuum reached in the vacuum chamber is 4 × 1 prior to film formation.
The gas was evacuated to 0 -7 Torr, then pure Ar gas was introduced to form a base NiP sputtered film, and when forming the magnetic film, Ar gas containing 0.1% by volume of nitrogen gas was used. In all cases, the pressure was 20 mTorr. Further, the substrate is not heated positively or the substrate bias is not applied during the film formation. As magnetic characteristics of the obtained magnetic recording medium, FIG. 1 shows the dependence of the coercive force H r on the remanence curve measured by a remanence magnetometer on tM r .

【0041】ここで磁性膜の組成は各々、比較例として
のNiを含有しないCo(69)Cr(11)Pt(14)SiO
2(6)、本発明実施例としてのNiを3原子%含有するC
o(68)Ni(3) Cr(10)Pt(13)SiO2(6)、及びNi
を7原子%含有するCo(66)Ni(7) Cr(9) Pt(13)
SiO2(5)である。
Here, the composition of the magnetic films is Co (69) Cr (11) Pt (14) SiO containing no Ni as a comparative example.
2 (6), C as an example of the present invention containing 3 atom% of Ni
o (68) Ni (3) Cr (10) Pt (13) SiO 2 (6), and Ni
Co (66) Ni (7) Cr (9) Pt (13) containing 7 atomic% of
It is SiO 2 (5).

【0042】また振動試料型磁力計により測定された、
tMr が6×10-4emu/cm2近傍のこれらの磁性
膜の磁気特性を表1に示す。
Also measured by a vibrating sample magnetometer,
Table 1 shows the magnetic characteristics of these magnetic films having a tM r in the vicinity of 6 × 10 −4 emu / cm 2 .

【0043】tMr が6×10-4emu/cm2 程度の
Niを含有しないCoCrPtSiO磁性膜ではHr
して1500 Oe程度、S* rとしては0.7以下であ
り(表中の比較例)、さらにtMr が5×10-4emu
/cm2 程度のNiを含有しないCoCrPtSiO磁
性膜ではHr として500 Oe程度と大幅に低下す
る。
In a CoCrPtSiO magnetic film containing tM r of about 6 × 10 -4 emu / cm 2 and containing no Ni, H r is about 1500 Oe and S * r is 0.7 or less (comparative example in the table). , And further, tM r is 5 × 10 −4 emu.
In the case of a CoCrPtSiO magnetic film which does not contain Ni of about / cm 2 , H r is significantly reduced to about 500 Oe.

【0044】これに対しNiを含有している場合は、t
r が4.5×10-4emu/cm2 程度までHr が2
000 Oe以上の値を示し、これは例えば5×10-4
emu/cm2 程度ではNiを含有しない場合に比べて
1500 Oe以上高い値である。またtMr が6×1
-4emu/cm2 程度ではそのS* rが0.85程度以
上と十分高い値を示す(表1中の実施例)。
On the other hand, when Ni is contained, t
, M r 4.5 × 10 -4 emu / cm 2 about to H r is 2
It shows a value of 000 Oe or more, which is, for example, 5 × 10 −4.
At about emu / cm 2, it is 1500 Oe or more higher than that when Ni is not contained. Also, tM r is 6 × 1
At about 0 −4 emu / cm 2 , its S * r is about 0.85 or more, which is a sufficiently high value (Examples in Table 1).

【0045】したがってこのようなtMr の小さな場合
の磁気特性の改善には、Niの含有が非常に効果的であ
ることが分かる。以上の結果より、Niを3原子%及び
7原子%含有したCoNiCrPtSiO磁性膜におい
ては、MRヘッドを用いた将来の高密度磁気記録におい
て必要となる、tMr が6×10-4emu/cm2 程度
と小さな領域において、その記録再生時における磁気特
性を表す磁気レマネンス曲線上における保磁力Hr が2
000 Oe以上、保磁力角型比S* rが0.8以上と十
分高い特性を持つことが明らかになった。
Therefore, it can be seen that the inclusion of Ni is very effective for improving the magnetic characteristics when the tM r is small. From the above results, in the CoNiCrPtSiO magnetic film containing 3 atomic% and 7 atomic% of Ni, tM r of 6 × 10 −4 emu / cm 2 which will be necessary in future high density magnetic recording using an MR head will be obtained. The coercive force H r on the magnetic remanence curve, which represents the magnetic characteristics at the time of recording / reproducing, is 2 in a small area.
It has been revealed that it has sufficiently high characteristics of 000 Oe or more and a coercive force squareness ratio S * r of 0.8 or more.

【0046】またHr のtMr 依存性の傾きを見ると、
Niを含有しないCoCrPtSiO磁性膜では、その
tMr が7×10-4emu/cm2 程度以下になるとt
rの減少につれてHr が急激に減少してしまうため、
量産時に一定のHr を得るためにはtMr の制御を厳密
に行うことが必須となり生産時の歩留まり確保等非常に
難しいものとなってしまう。これに対しNiを含有させ
た場合、tMr の小さな領域でのHr のtMr に対する
変化は大幅に緩やかなものとなり、生産時のHr の制御
が極めて容易になることが推定される。
Looking at the slope of the dependency of H r on tM r ,
In a CoCrPtSiO magnetic film containing no Ni, when the tM r becomes about 7 × 10 −4 emu / cm 2 or less, t
Since H r sharply decreases as M r decreases,
In order to obtain a constant H r during mass production, it is essential to strictly control tM r , which makes it very difficult to secure a yield during production. On the other hand, when Ni is contained, the change of H r with respect to tM r in a small region of tM r becomes significantly gradual, and it is presumed that the control of H r during production becomes extremely easy.

【0047】[実施例2]実施例1と同様のアルミディ
スク基板上に、NiP下地膜/CoNiCrPtSiO
磁性膜/カーボン保護膜を順次スパッター法により積層
してなる磁気記録媒体を形成した。磁性膜を作成する際
には、Co(69)Ni(7) Cr(4) Pt(14)SiO2(6)焼
結ターゲットを使用し、そのターゲット上にCrチップ
を配置することにより磁性膜中のCr組成を制御した。
またNiP下地膜の膜厚は210Åと一定にした。磁性
膜厚は、その残留磁化膜厚積tMr を変えるため約50
Åから250Åの範囲で変化させた。
[Embodiment 2] A NiP base film / CoNiCrPtSiO is formed on the same aluminum disk substrate as in Embodiment 1.
A magnetic recording medium was formed by sequentially stacking a magnetic film / carbon protective film by a sputtering method. When forming a magnetic film, a Co (69) Ni (7) Cr (4) Pt (14) SiO 2 (6) sintered target is used, and a Cr chip is placed on the target to form the magnetic film. The Cr composition in the inside was controlled.
Further, the film thickness of the NiP base film was kept constant at 210Å. The magnetic film thickness is about 50 because the remanent magnetization film thickness product tM r is changed.
I changed it from Å to 250Å.

【0048】成膜に先立ち真空槽の到達真空度が4×1
-7Torrとなるまで排気を行い、その後純Arガス
を導入し下地NiPスパッター膜の成膜を行い、さらに
磁性膜成膜時には酸素ガスを0.1体積%含んだArガ
スを使用し、いずれもその圧力を20mTorrとし
た。また成膜時には積極的な基板加熱や基板バイアス印
加は行っていない。得られた磁気記録媒体の磁気特性と
して、残留磁化磁力計により測定されたレマネンス曲線
上の保磁力Hr のtMr 依存性を図2に示す。
The degree of vacuum reached in the vacuum chamber is 4 × 1 prior to film formation.
The gas was evacuated to 0 -7 Torr, then pure Ar gas was introduced to form a base NiP sputtered film, and when forming the magnetic film, Ar gas containing 0.1% by volume of oxygen gas was used. In all cases, the pressure was 20 mTorr. Further, the substrate is not heated positively or the substrate bias is not applied during the film formation. As magnetic characteristics of the obtained magnetic recording medium, FIG. 2 shows the dependence of the coercive force H r on the remanence curve measured by a remanence magnetometer on tM r .

【0049】ここで磁性膜の組成は各々、Co(69)Ni
(7) Cr(4) Pt(14)SiO2(6)とCo(68)Ni(6) C
r(8) Pt(13)SiO2(5)である。この結果より、Ni
を6ないし7原子%含有したCoNiCrPtSiO磁
性膜においては、MRヘッドを用いた将来の高密度磁気
記録において必要となる、tMr が4×10-4emu/
cm2 程度と非常に小さな場合にも、その記録再生時に
おける磁気特性を表す磁気レマネンス曲線上における保
磁力Hr が2000 Oe以上と十分高い特性を持つこ
とが明らかになった。
The composition of the magnetic films is Co (69) Ni.
(7) Cr (4) Pt (14) SiO 2 (6) and Co (68) Ni (6) C
It is r (8) Pt (13) SiO 2 (5). From this result, Ni
In the CoNiCrPtSiO magnetic film containing 6 to 7 atom% of t, the tM r required in future high-density magnetic recording using an MR head is 4 × 10 −4 emu /
It has been revealed that the coercive force H r on the magnetic remanence curve showing the magnetic characteristics at the time of recording and reproducing has a sufficiently high value of 2000 Oe or more even when it is very small, such as about cm 2 .

【0050】[0050]

【表1】 [Table 1]

【0051】[0051]

【発明の効果】本発明により、将来のMRヘッドを用い
た高密度磁気記録において必要になる、残留磁化膜厚積
tMr が1×10-3emu/cm2 以下の領域におい
て、その記録再生時における磁気特性を表す磁気レマネ
ンス曲線上における保磁力Hr が2000 Oe以上、
保磁力角型比S* rが0.8以上の特性が得られた。
According to the present invention, recording / reproducing is performed in a region where the residual magnetization film thickness product tM r is 1 × 10 -3 emu / cm 2 or less, which is required in high density magnetic recording using a future MR head. The coercive force H r on the magnetic remanence curve representing the magnetic characteristics at time is 2000 Oe or more,
The characteristic that the coercive force squareness ratio S * r was 0.8 or more was obtained.

【0052】また磁性膜にNiを含有させることによ
り、tMr が7×10-4emu/cm2 程度以下の、H
r のtMr に対する変化は緩やかなものとなり、生産時
のHrの制御が極めて容易になり製品の歩留まりを大幅
に上げることができる。
Further, by including Ni in the magnetic film, tM r of 7 × 10 −4 emu / cm 2 or less, H
The change of r with respect to tM r becomes gradual, the control of H r at the time of production becomes extremely easy, and the yield of products can be greatly increased.

【0053】さらに本発明によれば、磁性膜中に少量の
Niを添加するという、磁気記録特性の高周波数特性に
悪い影響を与える飽和磁化の低下の少ない合金成分で、
かつその作成プロセスが高い生産性を持つ従来のスパッ
ター方式である磁性膜とその磁性膜を用いた磁気記録媒
体において、前述したような高保磁力と高角型比特性を
得ることが可能となった。
Further, according to the present invention, a small amount of Ni is added to the magnetic film, which is an alloy component with a small decrease in saturation magnetization, which adversely affects the high frequency characteristics of the magnetic recording characteristics.
In addition, it has become possible to obtain the above-mentioned high coercive force and high squareness ratio characteristic in the magnetic film of the conventional sputtering method having a high productivity in its manufacturing process and the magnetic recording medium using the magnetic film.

【0054】また本発明においては磁性膜中に少量のN
iを添加するため、その磁性膜の機械的強度は低下しな
い。すなわちハード磁気ディスクなどで問題となるヘッ
ドとディスクの摩擦や磨耗、あるいはヘッド起動終了時
におけるいわゆるCSSと呼ばれる動作に対する機械的
強度の低下が見られないという効果を有する。またこの
ような場合、耐湿度や耐薬品性も損なうことがなく総合
的な磁気記録媒体としての信頼性も優れた媒体を作成で
きた。
In the present invention, a small amount of N is contained in the magnetic film.
Since i is added, the mechanical strength of the magnetic film does not decrease. That is, there is an effect that friction and wear between the head and the disk, which are a problem in a hard magnetic disk, or the mechanical strength against the so-called CSS operation at the time of starting the head is not reduced. Moreover, in such a case, a medium having excellent reliability as a comprehensive magnetic recording medium could be prepared without impairing the humidity resistance and the chemical resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】CoCrPtSiO磁性膜及びCoNiCrP
tSiO磁性膜の、レマネンス曲線上の保磁力Hr の残
留磁化膜厚積tMr 依存性を示すグラフ。
FIG. 1 CoCrPtSiO magnetic film and CoNiCrP
of tSiO magnetic film, a graph showing the residual magnetization and thickness product tM r dependence of the coercivity H r of the remanence curves.

【図2】CoNiCrPtSiO磁性膜の、レマネンス
曲線上の保磁力Hr の残留磁化膜厚積tMr 依存性を示
すグラフ。
FIG. 2 is a graph showing the dependence of the coercive force H r on the remanence curve of the CoNiCrPtSiO magnetic film on the residual magnetization film thickness product tM r .

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 41/18 H01F 41/18 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H01F 41/18 H01F 41/18

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】残留磁化と膜厚の積が1×10-3emu/
cm2 以下であり、かつNiを含有するCo系磁性薄膜
を用いたことを特徴とする磁気記録媒体。
1. The product of residual magnetization and film thickness is 1 × 10 −3 emu /
A magnetic recording medium characterized by using a Co-based magnetic thin film having a diameter of cm 2 or less and containing Ni.
【請求項2】残留磁化と膜厚の積が3×10-4emu/
cm2 以上、1×10-3emu/cm2 以下であり、か
つNiを2原子%以上、8原子%以下含有する請求項1
の特徴とする磁気記録媒体。
2. The product of residual magnetization and film thickness is 3 × 10 −4 emu /
cm 2 or more and 1 × 10 −3 emu / cm 2 or less, and Ni is contained in an amount of 2 atomic% or more and 8 atomic% or less.
A magnetic recording medium characterized by.
【請求項3】前記Co系磁性薄膜の組成がCo
100-a-b-c-d Nia Crb Ptcd と表されることを
特徴とする請求項1記載の磁気記録媒体。ただしここで
Mは非強磁性非金属元素またはその化合物であり、各組
成は原子パーセントを表し、1≦a≦15、0<b≦1
5、0<c≦20、0<d≦20である。
3. The composition of the Co-based magnetic thin film is Co.
The magnetic recording medium according to claim 1, which is represented by 100-abcd Ni a Cr b Pt c M d . Here, M is a non-ferromagnetic non-metallic element or a compound thereof, and each composition represents an atomic percentage, 1 ≦ a ≦ 15, 0 <b ≦ 1.
5, 0 <c ≦ 20 and 0 <d ≦ 20.
【請求項4】前記Co系磁性薄膜の組成がCo
100-a-b-c-d Nia Crb Ptcd と表されることを
特徴とする請求項2記載の磁気記録媒体。ただしここで
Mは非強磁性非金属元素またはその化合物であり、各組
成は原子パーセントを表し、2≦a≦8、0<b≦1
5、0<c≦20、0<d≦20である。
4. The composition of the Co-based magnetic thin film is Co.
The magnetic recording medium according to claim 2, which is represented by 100-abcd Ni a Cr b Pt c M d . Here, M is a non-ferromagnetic non-metallic element or a compound thereof, and each composition represents atomic percentage, and 2 ≦ a ≦ 8 and 0 <b ≦ 1.
5, 0 <c ≦ 20 and 0 <d ≦ 20.
【請求項5】前記Co系磁性薄膜の磁気レマネンス曲線
上の保磁力が2000 Oe以上、かつ保磁力角型比が
0.8以上であることを特徴とする請求項1または2記
載の磁気記録媒体。
5. The magnetic recording according to claim 1, wherein the Co-based magnetic thin film has a coercive force of 2000 Oe or more on a magnetic remanence curve and a coercive force squareness ratio of 0.8 or more. Medium.
【請求項6】前記Co系磁性薄膜中の非強磁性非金属相
が酸化物であることを特徴とする請求項1または2記載
の磁気記録媒体。
6. The magnetic recording medium according to claim 1, wherein the non-ferromagnetic non-metal phase in the Co type magnetic thin film is an oxide.
【請求項7】前記Co系磁性薄膜中の酸化物がSiO
2 、Al23 、TiO2 、及びZrO2 から選ばれる
1種以上であることを特徴とする請求項1または2記載
の磁気記録媒体。
7. The oxide in the Co-based magnetic thin film is SiO 2.
The magnetic recording medium according to claim 1 or 2, wherein the magnetic recording medium is one or more selected from the group consisting of 2 , Al 2 O 3 , TiO 2 , and ZrO 2 .
【請求項8】前記Co系磁性薄膜がNiPスパッター下
地膜上またはNiBスパッター下地膜上に形成されてい
ることを特徴とする請求項1〜7のいずれか1項記載の
磁気記録媒体。
8. The magnetic recording medium according to claim 1, wherein the Co-based magnetic thin film is formed on a NiP sputtered base film or a NiB sputtered base film.
【請求項9】残留磁化と膜厚の積が1×10-3emu/
cm2 以下であり、かつNiを含有するCo系磁性薄膜
を、成膜前の到達真空度が5×10-6Torr以下の雰
囲気で、酸素、水蒸気、及び窒素から選ばれる1種以上
のガスを0.01体積%以上10体積%以下含有するA
rガスを導入したスパッター法により作成することを特
徴とするCo系磁性薄膜を用いた磁気記録媒体の製造方
法。
9. The product of remanent magnetization and film thickness is 1 × 10 −3 emu /
One or more gases selected from oxygen, water vapor, and nitrogen in an atmosphere in which the ultimate vacuum before film formation is 5 × 10 −6 Torr or less for a Co-based magnetic thin film having a density of cm 2 or less and Ni. Containing 0.01% by volume or more and 10% by volume or less
A method of manufacturing a magnetic recording medium using a Co-based magnetic thin film, which is characterized in that it is formed by a sputtering method in which r gas is introduced.
【請求項10】残留磁化と膜厚の積が3×10-4emu
/cm2 以上、1×10-3emu/cm2 以下であり、
かつNiを2原子%以上、8原子%以下含有するCo系
磁性薄膜を、成膜前の到達真空度が5×10-6Torr
以下の雰囲気で、酸素、水蒸気、及び窒素から選ばれる
1種以上のガスを0.01体積%以上10体積%以下含
有するArガスを導入したスパッター法により作成する
ことを特徴とするCo系磁性薄膜を用いた磁気記録媒体
の製造方法。
10. The product of remanent magnetization and film thickness is 3 × 10 −4 emu.
/ Cm 2 or more and 1 × 10 −3 emu / cm 2 or less,
In addition, a Co-based magnetic thin film containing Ni of 2 atomic% or more and 8 atomic% or less has an ultimate vacuum of 5 × 10 −6 Torr before film formation.
Co-based magnetism produced by a sputtering method in which Ar gas containing 0.01 vol% or more and 10 vol% or less of one or more gases selected from oxygen, water vapor, and nitrogen is introduced in the following atmosphere. Method of manufacturing magnetic recording medium using thin film.
JP25653795A 1995-10-03 1995-10-03 Magnetic recording medium and manufacture thereof Pending JPH09102419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25653795A JPH09102419A (en) 1995-10-03 1995-10-03 Magnetic recording medium and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25653795A JPH09102419A (en) 1995-10-03 1995-10-03 Magnetic recording medium and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH09102419A true JPH09102419A (en) 1997-04-15

Family

ID=17294010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25653795A Pending JPH09102419A (en) 1995-10-03 1995-10-03 Magnetic recording medium and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH09102419A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005064597A1 (en) * 2003-12-26 2005-07-14 Kabushiki Kaisha Toshiba Magnetic recording medium, manufacturing method for the magnetic recording medium, and magnetic read/write apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005064597A1 (en) * 2003-12-26 2005-07-14 Kabushiki Kaisha Toshiba Magnetic recording medium, manufacturing method for the magnetic recording medium, and magnetic read/write apparatus
US7781081B2 (en) 2003-12-26 2010-08-24 Showa Denko K.K. Magnetic recording medium, manufacturing method for the magnetic recording medium, and magnetic read/write apparatus

Similar Documents

Publication Publication Date Title
US6713197B2 (en) Perpendicular magnetic recording medium and magnetic recording apparatus
US5679473A (en) Magnetic recording medium and method for its production
US6157526A (en) Magnetoresistive head and magnetic disk apparatus
JP3385004B2 (en) Magnetic recording media
US20020132140A1 (en) Magnetic recording medium
US9734857B2 (en) Stack including a magnetic zero layer
US20020064689A1 (en) Magnetic recording medium and magnetic recording apparatus
US5478661A (en) Magnetic recording medium and method for its production
JPH0573880A (en) Magnetic recording medium and manufacture thereof
JPH07311929A (en) Magnetic recording medium and its manufacture
JP4515690B2 (en) Perpendicular multilayer magnetic recording medium
US6777077B2 (en) Perpendicular magnetic thin film for ultrahigh density recording
JP4570599B2 (en) Perpendicular magnetic recording media with antiferromagnetically coupled soft magnetic base layer
JP3359706B2 (en) Magnetic recording media
JPH09102419A (en) Magnetic recording medium and manufacture thereof
JP3274615B2 (en) Perpendicular magnetic recording medium and magnetic recording device using the same
JP2001093139A (en) Magnetic recording medium and magnetic recording and reproducing device
JPH05197944A (en) Magnetic recording medium and its production
JP2003162811A (en) Magnetic recording medium and method for manufacturing the same
JP2002324313A (en) Manufacturing method of magnetic recording medium
JPWO2003096359A1 (en) High saturation magnetic flux density soft magnetic material
JP2000339657A (en) Magnetic recording medium
KR20050073175A (en) Co-based perpendicular magnetic recording media
JPH0831639A (en) Vertical magnetic recording medium
JP3880000B2 (en) High saturation magnetic flux density soft magnetic material