JPH09102411A - Magnetic responsive material - Google Patents

Magnetic responsive material

Info

Publication number
JPH09102411A
JPH09102411A JP27990595A JP27990595A JPH09102411A JP H09102411 A JPH09102411 A JP H09102411A JP 27990595 A JP27990595 A JP 27990595A JP 27990595 A JP27990595 A JP 27990595A JP H09102411 A JPH09102411 A JP H09102411A
Authority
JP
Japan
Prior art keywords
particles
magnetically responsive
responsive material
foaming
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27990595A
Other languages
Japanese (ja)
Inventor
Takashi Yonezawa
隆 米澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP27990595A priority Critical patent/JPH09102411A/en
Publication of JPH09102411A publication Critical patent/JPH09102411A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/44Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • H01F1/37Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent
    • H01F1/375Flexible bodies

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flexible, high-responsiveness material which is unnecessary to be stored in a container, etc., for keeping its shape by dispersing particles in a foaming material that the polarized de to action of magnetic field. SOLUTION: A particle 1 is dispersed as a material foams, and it is held within a partition 4 of a foaming material blocking a pore 2 which is generated through foaming. In addition, the particle 1 is almost positioned at a separating point, that is, at such a point that the deformation is small during foaming. Thus, an external magnetic field is applied to a magnetic responsive material while is placed between electrodes, so that the dispersed particles 1 are polarized by magnetic and attracting force due to mutual magnetic action is generated among the particle 1 in a magnetic field direction. The generated attracting force allows the particles 1 to be close to each other, pressing the pore 2 and bending the partition 4. As a result, the material is entirely deformed in a magnetic field direction. Therefore, a magnetic responsive material having a large contraction rate and excellent responsive property during contraception can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、磁場内に置かれ
ることによって変形する磁気応答材料に関するものであ
る。
TECHNICAL FIELD The present invention relates to a magnetically responsive material that deforms when placed in a magnetic field.

【0002】[0002]

【従来の技術】近年、磁気エネルギを力学的エネルギに
変換する機能を有する高分子材料が種々考案されてお
り、例えば、特開平5−25316号公報には、可撓性
を有する高分子材料に、磁場の作用により磁気分極する
粒子が分散していることを特徴とする磁気応答性材料が
開示されている。
2. Description of the Related Art In recent years, various polymer materials having a function of converting magnetic energy into mechanical energy have been devised. For example, Japanese Patent Application Laid-Open No. 5-25316 discloses a polymer material having flexibility. A magnetically responsive material is disclosed in which particles that are magnetically polarized by the action of a magnetic field are dispersed.

【0003】この磁気応答性材料は、例えばシリコンゴ
ムに電解鉄粉を単純混合して硬化させたものであり、外
部磁場を作用させることによって分散粒子を磁気的に分
極させることによりこの粒子間に連鎖的な磁気的結合力
を生じさせ、これによって材料の弾性率や形態を可逆的
かつ連続的に変化させるものである。
This magnetically responsive material is, for example, silicon rubber in which electrolytic iron powder is simply mixed and hardened, and dispersed particles are magnetically polarized by the action of an external magnetic field, whereby the dispersed particles are magnetically dispersed between the particles. A chain-like magnetic coupling force is generated, whereby the elastic modulus and morphology of the material are reversibly and continuously changed.

【0004】この磁気応答性材料によれば、粒子の担体
が可撓性を有する固体であるために、自動車のショック
アブソ−バや人工筋肉等のマニュピレ−タへの適用が容
易であり、外部磁場を制御することで所望の機能を奏さ
せることができる。
According to this magnetically responsive material, since the carrier of particles is a flexible solid, it can be easily applied to a shock absorber of an automobile, a manipulator such as an artificial muscle, and the like. A desired function can be achieved by controlling the magnetic field.

【0005】[0005]

【発明が解決しようとする課題】ところで、上述した従
来の磁気応答性材料には、以下のような解決すべき課題
がある。
The conventional magnetically responsive material described above has the following problems to be solved.

【0006】第1に、上記磁気応答性材料をマニュピレ
−タとして使用する場合、反応が遅く、また、その変位
量をさほど大きくすることができないということがあ
る。
First, when the above magnetically responsive material is used as a manipulator, the reaction is slow and the amount of displacement cannot be increased so much.

【0007】すなわち、上記磁気応答性材料では、シリ
コンゴムのような高分子材料内に上記粒子を分散させて
いるため、粒子間に上記高分子材料が密に介在してい
る。したがって、この材料の収縮は、上記粒子間に生じ
る吸引力が上記高分子材料の弾性力に抗してこの高分子
材料を変形させることによって達成される。
That is, in the magnetically responsive material, the particles are dispersed in a polymer material such as silicon rubber, so that the polymer material is closely interposed between the particles. Therefore, the contraction of the material is achieved by the attraction force generated between the particles deforming the polymer material against the elastic force of the polymer material.

【0008】このため、固体状態の高分子材料では、材
料の硬さに応じて収縮量が小さくなったり反応が遅くな
ったりするということがある。一方、有効な収縮を得る
には、半流動体状(ゲル状)の高分子材料を採用する必
要があるが、この場合、容器に収納してその形態を規制
(保持)しなければ、アクチュエ−タとして採用するこ
とはできない等、取扱いに一定の制限が生じることとな
る。
For this reason, in a solid polymer material, the amount of shrinkage may be small or the reaction may be delayed depending on the hardness of the material. On the other hand, in order to obtain effective contraction, it is necessary to adopt a semi-fluid (gel-like) polymer material. In this case, unless it is stored in a container and its form is regulated (retained), the actuator -There will be certain restrictions on handling, such as the fact that it cannot be adopted as

【0009】第2に、上記磁気応答性材料によれば、収
縮前と収縮後で高分子材料の体積に変化がないというこ
とがある。例えば、この材料を一方向に収縮させた場合
には、それと直交する方向に伸長することとなる。一
方、この材料を容器等に収納することによって収縮方向
と直交する方向の変形を規制すると、この材料を収縮さ
せるにしたがって内部に圧縮応力が生じ、収縮させるこ
とが困難になるということがある。
Secondly, according to the magnetically responsive material, the volume of the polymer material does not change before and after the contraction. For example, if this material is contracted in one direction, it will expand in a direction orthogonal to it. On the other hand, if the material is housed in a container or the like to restrict the deformation in the direction orthogonal to the shrinking direction, compressive stress may be generated inside the material as it shrinks, and it may be difficult to shrink the material.

【0010】この発明は、このような事情に鑑みてなさ
れたもので、柔軟で応答性が良く変形量が大きいと共
に、容器等に収納して形状を維持しなくても良い磁気応
答性材料を提供することを目的とするものである。
The present invention has been made in view of the above circumstances, and provides a magnetically responsive material which is flexible and has good responsiveness and a large amount of deformation, and which does not need to be stored in a container or the like to maintain its shape. It is intended to be provided.

【0011】[0011]

【課題を解決するための手段】この発明によれば、請求
項1に記載したように、発泡体材料に磁場の作用により
磁気分極する粒子が分散されていることを特徴とする磁
気応答性材料を提供する。
According to the present invention, as described in claim 1, the magnetically responsive material is characterized in that particles which are magnetically polarized by the action of a magnetic field are dispersed in the foam material. I will provide a.

【0012】このような構成によれば、この磁気応答性
材料を磁場内に位置させることによって、内部に分散さ
れた粒子を磁気的に分極させ、この粒子間に磁気相互作
用による吸引力を働かせることによってこの磁気応答性
材料を収縮させることができる。
According to this structure, by positioning the magnetically responsive material in the magnetic field, the particles dispersed inside are magnetically polarized, and an attractive force due to magnetic interaction is exerted between the particles. This allows the magnetically responsive material to shrink.

【0013】また、前記粒子は、請求項2に記載されて
いるように、上記発泡体材料の気孔を区画する隔壁内に
保持されていることが好ましい。
Further, as described in claim 2, it is preferable that the particles are held in partition walls that define the pores of the foam material.

【0014】この場合には、上記粒子が気孔を囲む状態
に位置し、粒子間には気体と隔壁とが存在するのみであ
るから、各粒子が近接することが非常に容易になる。し
たがって、大きな収縮量を得ることができると共に反応
も良くなる。なお、上記気孔は連続気孔であっても良い
し独立気孔であっても良い。
In this case, the particles are located in a state of surrounding the pores, and only the gas and the partition wall are present between the particles, so that the particles are very close to each other. Therefore, a large amount of shrinkage can be obtained and the reaction is improved. The pores may be continuous pores or independent pores.

【0015】さらに、請求項3に記載されているよう
に、上記粒子は、上記発泡体材料の発泡原料に混合され
た後この発泡原料を発泡させることで発泡体材料に分散
させるようにすることが好ましい。
Further, as described in claim 3, the particles are dispersed in the foam material by being mixed with the foam material of the foam material and then foaming the foam material. Is preferred.

【0016】このようにすれば、この粒子は上記発泡体
材料中に均一に分散されかつ、各粒子は上記発泡体材料
の気孔を区画する隔壁内に保持されることとなる。
In this way, the particles are uniformly dispersed in the foam material, and each particle is held in the partition walls that define the pores of the foam material.

【0017】なお、高い収縮率を得るためには、請求項
4に記載したように、上記発泡体の発泡倍率は5倍〜1
5倍の範囲内にあることが好ましく、7〜12倍の範囲
内にあればより良好な収縮率を実現することができる。
In order to obtain a high shrinkage ratio, the expansion ratio of the foam is 5 to 1 as described in claim 4.
It is preferably in the range of 5 times, and if it is in the range of 7 to 12 times, a better shrinkage ratio can be realized.

【0018】また、この磁気応答性材料に対する粒子の
含有率は、請求項5に記載されているように、60重量
%〜90重量%であることが好ましく、少なすぎると良
好な収縮率が得られず、多すぎると発泡が妨げられたり
発泡体材料の柔軟性が失われてやはり収縮率が低下する
こととなる。
The content of particles in the magnetically responsive material is preferably 60% by weight to 90% by weight, as described in claim 5, and when it is too small, a good shrinkage rate is obtained. If the amount is too large, the foaming is hindered or the flexibility of the foam material is lost, so that the shrinkage rate is lowered.

【0019】さらに、上記粒子の粒径は、請求項6に記
載されているように、10μm〜500μmの範囲内に
あることが好ましく、あまり大きすぎると材料の柔軟性
が失われ、良好な収縮率を得られない。一方大きすぎる
と粒子間の距離が大きくなり収縮率が小さくなる。
Further, the particle size of the above particles is preferably in the range of 10 μm to 500 μm as described in claim 6, and if it is too large, the flexibility of the material is lost and good shrinkage occurs. I can't get a rate. On the other hand, if it is too large, the distance between particles increases and the shrinkage rate decreases.

【0020】[0020]

【発明の実施の形態】以下、この発明の実施の形態につ
いて、適宜図1〜図4を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to FIGS.

【0021】この発明は、外部磁場により磁気分極する
微粒子を、発泡体材料中に分散することにより、収縮
性、形状復元性等に優れた磁気応答性材料を得ようとす
るものである。
The present invention is intended to obtain a magnetically responsive material having excellent shrinkability and shape recovery by dispersing fine particles magnetically polarized by an external magnetic field in a foam material.

【0022】この発明では、上記発泡体材料(発泡原
料)の種類は特に限定されないが、例えば、ポリウレタ
ン、シリコ−ンゴム、ポリイミドのような熱硬化性樹脂
や、ポリエチレン、ポリプロピレン、ポリスチレン、ポ
リエステル、ポリブタジエン等の熱可塑性樹脂が挙げら
れる。
In the present invention, the kind of the foam material (foaming raw material) is not particularly limited, but examples thereof include thermosetting resins such as polyurethane, silicone rubber and polyimide, polyethylene, polypropylene, polystyrene, polyester and polybutadiene. And the like.

【0023】また、前記粒子は、磁場の作用により磁気
分極を生じさせるものであれば良く、例えば、準鉄、電
磁軟鉄、珪素鋼、フェライト、マグネタイト、コバル
ト、ニッケル、ネオジウム等の無機磁性材料、ポリトリ
アミノベンゼン等の有機磁性材料、有機無機複合体磁性
材料または、これらの2種以上の混合材料からなるもの
が挙げられる。
The particles may be any particles that cause magnetic polarization by the action of a magnetic field, and examples thereof include inorganic magnetic materials such as quasi iron, electromagnetic soft iron, silicon steel, ferrite, magnetite, cobalt, nickel and neodymium. Examples thereof include organic magnetic materials such as polytriaminobenzene, organic-inorganic composite magnetic materials, and mixed materials of two or more kinds thereof.

【0024】この磁気応答性材料の製造方法、すなわち
材料の発泡方法は、特に限定されるものではないが、例
えば、上記粒子を混入した樹脂材料に加圧下でガスやガ
ス化可能な液体を混入した後、加熱したり常圧に戻した
りして発泡させる方法、上記粒子を混入した樹脂材料に
分解型の発泡材を混入しておき加熱分解させることで発
泡させる方法、重合反応時に発生するガスを利用して発
泡させる方法等を採用することができる。
The method for producing the magnetically responsive material, that is, the method for foaming the material is not particularly limited. For example, a resin material containing the above particles is mixed with a gas or a gasifiable liquid under pressure. After that, a method of foaming by heating or returning to normal pressure, a method of foaming by decomposing and thermally decomposing a decomposing type foaming material in the resin material mixed with the particles, a gas generated during the polymerization reaction It is possible to employ a method of foaming by utilizing.

【0025】いずれの方法をとる場合も、上記粒子は、
原料が発泡するに従って分散し、図1に1(黒丸)で示
すように、発泡により生じた気孔2を区画する発泡体材
料の隔壁4内に保持されることとなる。しかも、ほとん
どの粒子1は、隔壁3の分岐点、すなわち発泡時におけ
る変形が小さい部位に位置すると考えられる。
In either case, the above-mentioned particles are
The raw material is dispersed as it foams, and as shown by 1 (black circle) in FIG. 1, it is held in the partition wall 4 of the foam material that defines the pores 2 generated by foaming. Moreover, it is considered that most of the particles 1 are located at the branch points of the partition walls 3, that is, at the portions where the deformation during foaming is small.

【0026】このような磁気応答性材料を磁極間に位置
させて、外部磁場を印加すると、前述したように、分散
された各粒子は磁気分極し、各粒子間には磁場の方向に
磁気相互作用による吸引力が生じる。この吸引力によっ
て上記各粒子は気孔を押し潰すかたちで上記隔壁を撓ま
せつつ互いに近付こうとするから、この材料は全体とし
て磁場方向に変形することとなる。
When such a magnetically responsive material is placed between magnetic poles and an external magnetic field is applied, as described above, the dispersed particles are magnetically polarized, and the particles are magnetically coupled to each other in the direction of the magnetic field. A suction force is generated by the action. Due to this suction force, the particles try to approach each other while bending the partition walls by crushing the pores, so that the material as a whole is deformed in the magnetic field direction.

【0027】外部磁場の印加方法としては、例えば、こ
の磁気応答性材料を、U字磁石(電磁石でも良い)のN
極とS極間に位置させるようにしても良いし、N極とS
極とを有する磁石上にこの磁気応答性材料片を置くよう
にしても良い。
As a method of applying an external magnetic field, for example, this magnetically responsive material is used as an N-shaped U-shaped magnet (or an electromagnet).
It may be positioned between the pole and the S pole, or the N pole and the S pole.
The piece of magnetically responsive material may be placed on a magnet having poles.

【0028】ここで、上記発泡体材料中に形成された気
孔は、連続気孔であっても独立気孔であっても良い。た
だし、上記気孔が連続気孔の場合には、この気孔内の空
気が外部に押し出されつつ変形するから、独立気孔の場
合よりも収縮率が大きくなる。また、材料の体積が収縮
に応じて小さくなる。
Here, the pores formed in the foam material may be continuous pores or independent pores. However, when the pores are continuous pores, the air in the pores is deformed while being pushed out to the outside, so that the contraction rate becomes larger than that in the case of independent pores. Also, the volume of the material decreases as it shrinks.

【0029】一方、独立気孔の場合には、気孔内の気体
が圧縮されつつ変形することになるから、連続気孔の場
合に比べると一般に収縮率は小さくなる。また、この独
立気孔の場合には、収縮時の体積変化が小さいから、一
方向に収縮するとそれと直交する方向に伸長することと
なる。しかし、クッション性が高いという利点がある。
On the other hand, in the case of the independent pores, the gas in the pores is deformed while being compressed, so that the shrinkage rate is generally smaller than that in the case of the continuous pores. Further, in the case of the independent pores, since the volume change during contraction is small, when contracted in one direction, it expands in the direction orthogonal to it. However, there is an advantage that the cushioning property is high.

【0030】なお、好ましい変形を行わせるためには、
上記粒子の間隔を、磁気分極の相互作用による吸引力が
有効に働く程度の寸法に維持すること、粒子過剰による
発泡体材料の柔軟性の低下を防止すること等が重要にな
る。このためには、以下に説明する3つの事項が重要と
なる。
In order to carry out a preferable deformation,
It is important to maintain the distance between the particles to a size such that the attractive force due to the interaction of magnetic polarization works effectively and to prevent the flexibility of the foam material from being deteriorated due to excess particles. To this end, the following three items are important.

【0031】まず発泡体材料の発泡倍率が重要である。First, the expansion ratio of the foam material is important.

【0032】すなわち、発泡倍率が小さいときには柔軟
性が低いので収縮率が小さい、また、発泡倍率が大きす
ぎる場合には、上記粒子間の間隔が離れ過ぎて吸引力が
弱くなり収縮率が小さくなる。
That is, when the expansion ratio is low, the flexibility is low and the shrinkage ratio is small. On the other hand, when the expansion ratio is too large, the intervals between the particles are too large and the suction force is weakened to decrease the shrinkage ratio. .

【0033】図2に示すグラフは、発泡倍率と収縮率の
関係を示すグラフである。なお、この実験では、発泡体
材料としてウレタンフォ−ムを採用し、分散粒子として
平均粒径約180μmの鉄粉(Fe)を成形後の磁気反
応性材料に対する含有量が80重量%となるように混合
して発泡させた。なお、発泡体材料中に生じた気孔は連
続気孔である。
The graph shown in FIG. 2 is a graph showing the relationship between the expansion ratio and the shrinkage ratio. In this experiment, urethane foam was used as the foam material, and the content of the iron powder (Fe) having an average particle size of about 180 μm as the dispersed particles was 80% by weight with respect to the magnetically reactive material after molding. And foamed. The pores formed in the foam material are continuous pores.

【0034】このグラフによれば、収縮率のピ−クが得
られる範囲は、発泡倍率3倍〜15倍であり、2.5%
以上の収縮率を得ることができる。ただし、柔軟性を考
慮すると発泡倍率5倍以上が実用範囲であると考えられ
る。したがって、好ましい発泡倍率は5倍〜15倍とな
る。
According to this graph, the range in which the peak of the shrinkage ratio can be obtained is the expansion ratio of 3 to 15 times, and 2.5%.
The above shrinkage ratio can be obtained. However, considering flexibility, it is considered that the expansion ratio of 5 times or more is within the practical range. Therefore, the preferable expansion ratio is 5 to 15 times.

【0035】また、このグラフによれば、発泡倍率6.
5倍〜12倍の範囲で10%以上、発泡倍率7.5〜1
1.75倍で15%以上、発泡倍率8.75倍〜11.
5倍で20%以上、発泡倍率9.25倍〜11倍で25
%以上、そして発泡倍率約10倍で最大の27.5%の
収縮率を得ることができる。
Further, according to this graph, the expansion ratio is 6.
10% or more in the range of 5 to 12 times, the expansion ratio of 7.5 to 1
15% or more at 1.75 times, expansion ratio 8.75 times to 11.
20% or more at 5 times, 25 at an expansion ratio of 9.25 to 11 times
%, And a maximum shrinkage ratio of 27.5% can be obtained at an expansion ratio of about 10 times.

【0036】次に、この磁気反応性材料中の分散粒子の
含有量が重要である。
Next, the content of dispersed particles in the magnetically responsive material is important.

【0037】すなわち、理論的には分散粒子含有量が多
いほど収縮率は増すのであるが、分散粒子の量が多すぎ
ると発泡体材料の柔軟性が失われ反対に収縮率は減少す
る。
That is, theoretically, the higher the content of dispersed particles, the higher the shrinkage, but if the amount of dispersed particles is too large, the flexibility of the foam material is lost and the shrinkage decreases.

【0038】図3に示すグラフは、この磁気反応性材料
中の分散粒子の含有量(分散粒子の質量/分散粒子を含
む磁気反応性材料の質量 ×100[重量%])と収縮
率の関係を示すグラフである。
The graph shown in FIG. 3 shows the relationship between the content of dispersed particles in the magnetically responsive material (mass of dispersed particles / mass of magnetically reactive material containing dispersed particles × 100 [wt%]) and shrinkage ratio. It is a graph which shows.

【0039】なお、この収縮率の測定に用いた磁気反応
性材料は、前記と同じ発泡体材料(ウレタン)と分散粒
子(Fe)を用い、この発泡体材料を約10倍に発泡さ
せて得られたものである。
The magnetically responsive material used to measure the shrinkage ratio was obtained by using the same foam material (urethane) and dispersed particles (Fe) as described above, and foaming this foam material about 10 times. It has been done.

【0040】このグラフによれば、含有率60重量%〜
90重量%の間でピ−ク的効果を得られ、2.5%以上
の収縮率を得ることができる。また、含有率73〜86
重量%で10%以上の収縮率が得られ、75〜85重量
%で15%以上の収縮率が得られる。また、含有率78
〜84重量%で20%以上の収縮率の収縮率、80〜8
3重量%で25%以上の収縮率が得られ、約82重量%
で25%と最高の収縮率が得られた。
According to this graph, the content ratio is 60% by weight to
A peak effect can be obtained between 90% by weight, and a shrinkage of 2.5% or more can be obtained. In addition, the content rate 73 to 86
A shrinkage of 10% or more is obtained at a weight percentage, and a shrinkage of 15% or more is obtained at 75 to 85 wt%. Also, the content rate is 78
~ 84 wt% shrinkage of 20% or more, 80-8
Shrinkage rate of more than 25% is obtained at 3% by weight, about 82% by weight
The highest shrinkage rate of 25% was obtained.

【0041】さらに、分散粒子の粒径も収縮率に大きな
影響を及ぼす。すなわち、磁気分極により粒子に生じる
ポテンシャルエネルギ−は粒径に比例する。また、粒子
の含有量が同一で、粒子径が小さい場合は、材料中の粒
子の間隔が小さくなり、発泡材料の柔軟性が失われる。
したがって収縮率が小さくなる。
Further, the particle size of the dispersed particles also has a great influence on the shrinkage rate. That is, the potential energy generated in the particles by magnetic polarization is proportional to the particle size. Further, when the content of particles is the same and the particle size is small, the spacing between particles in the material becomes small, and the flexibility of the foam material is lost.
Therefore, the shrinkage rate becomes small.

【0042】一方、粒径が大きすぎると材料中の粒子間
の間隔が大きくなり、粒子間吸引力がそれに応じて小さ
くなる。したがって収縮率が小さくなる。
On the other hand, if the particle size is too large, the spacing between particles in the material becomes large, and the attraction force between particles becomes small accordingly. Therefore, the shrinkage rate becomes small.

【0043】図4に示すグラフは、磁気応答性材料中の
分散粒子の粒径と収縮率の関係を示すグラフである。こ
のグラフによれば、ピ−ク範囲は10μm〜500μm
であり、この範囲で約2.5%以上の収縮率を得ること
ができる。そして、粒径100μmの場合に最大収縮量
約40%をとっている。
The graph shown in FIG. 4 is a graph showing the relationship between the particle size of the dispersed particles in the magnetically responsive material and the shrinkage ratio. According to this graph, the peak range is 10 μm to 500 μm
In this range, a shrinkage factor of about 2.5% or more can be obtained. The maximum shrinkage amount is about 40% when the particle diameter is 100 μm.

【0044】このような構成によれば、以下の効果を得
ることができる。
According to this structure, the following effects can be obtained.

【0045】第1に、収縮率が大きくかつ収縮時の反応
が良い磁気応答性材料を得ることができる。
First, it is possible to obtain a magnetically responsive material having a large shrinkage factor and a good reaction during shrinkage.

【0046】すなわち、従来の磁気応答性材料では、粒
子間に高分子材料が密に介在しているから、この高分子
材料の弾性によって粒子の近接が制限される。しかし、
この発明の磁気応答性材料によれば、粒子間にあるのは
気孔であるから、粒子どうしの近接があまり制限されな
い。このことにより、収縮量を大きくすることができる
と共に、収縮時の反応も良くなる。
That is, in the conventional magnetically responsive material, since the polymer material is closely interposed between the particles, the elasticity of the polymer material limits the proximity of the particles. But,
According to the magnetically responsive material of the present invention, pores are present between particles, so that the proximity of particles to each other is not so limited. This makes it possible to increase the amount of shrinkage and also improve the reaction during shrinkage.

【0047】第2に、この磁気応答性材料は、従来の磁
気応答性材料と比較してその取扱いが非常に容易であ
る。
Second, the magnetically responsive material is extremely easy to handle as compared with the conventional magnetically responsive material.

【0048】すなわち、粒子の担体としては、粒子の移
動により破壊されない程度の機械的な強度を有すると共
に粒子が自由に近接することができる程度の柔らかさを
有することが必要となる。
That is, the carrier for the particles is required to have such mechanical strength as not to be destroyed by the movement of the particles and softness for allowing the particles to freely approach each other.

【0049】従来の高分子材料に粒子を分散させた材料
では、この条件を満たすためには、ゲル状(半流動状)
の高分子材料を採用する必要があるから、この材料のみ
では自立性が得られず形態が維持できない。このため、
この材料をアクチュエ−タとして用いるには、この高分
子材料を容器等に入れて保持等することが必要であり、
取扱いが困難である。
In order to satisfy this condition, a conventional polymer material in which particles are dispersed is in a gel (semi-fluid) state.
Since it is necessary to use the polymer material of No. 3, it is not possible to obtain the self-sustainability and maintain the morphology only with this material. For this reason,
In order to use this material as an actuator, it is necessary to put this polymeric material in a container or the like and hold it.
Difficult to handle.

【0050】しかし、この発明の場合には、粒子の担体
として、発泡体材料を用いたことにより、柔軟で収縮率
が高いにもかかわらず、自立性が高くそれのみで形態を
維持できるから、取扱いが非常に容易である。
However, in the case of the present invention, since the foam material is used as the carrier for the particles, it is highly self-supporting and can maintain the shape by itself, even though it is flexible and has a high shrinkage ratio. Very easy to handle.

【0051】第3に、この発明の磁気反応性材料を収縮
させた場合、その体積は収縮量に応じて変化させること
ができる。
Third, when the magnetically responsive material of the present invention is contracted, its volume can be changed according to the amount of contraction.

【0052】すなわち、従来の磁気応答性材料は、高分
子材料を使用しているため、位置方向に収縮させた場合
でもそれと直交する方向に伸長し、結果として体積は変
わらない。一方、前述したようにアクチュエ−タとして
使用する場合に、容器で伸縮方向と直交する方向の伸長
を規制すると、収縮させるにしたがって材料内に相当の
圧力がかかり、これが材料の収縮を妨げるということが
ある。
That is, since the conventional magnetically responsive material uses a polymer material, even if it is contracted in the position direction, it expands in the direction orthogonal to it, and as a result, the volume does not change. On the other hand, as described above, when used as an actuator, if the expansion of the container in the direction orthogonal to the expansion / contraction direction is restricted, a considerable pressure is applied to the material as it contracts, which impedes the contraction of the material. There is.

【0053】しかし、この発明によれば、気孔が押し潰
されることにより、容積を自由に変化させることがで
き、この場合でも内部圧力が高まることはない。したが
って、良好な作動を維持できる。
According to the present invention, however, the volume can be freely changed by crushing the pores, and even in this case, the internal pressure does not increase. Therefore, good operation can be maintained.

【0054】第4に、この発明によれば、内部の気孔に
液体等を収納できるため、例えば、ドラッグデリバリ用
のアクチュエ−タとして使用した場合に、特に顕著な効
果を得ることができる。
Fourthly, according to the present invention, since a liquid or the like can be stored in the internal pores, particularly remarkable effects can be obtained when used as an actuator for drug delivery, for example.

【0055】すなわち、上記材料によれば、収縮させた
後伸長させることにより内部に試薬等の液体を取り込
め、再び収縮させることによりこの液体を外部に放出で
きる。そして、これが、遠隔操作により行えるから、非
常に取扱いがしやすい。
That is, according to the above material, a liquid such as a reagent can be taken into the inside by contracting and then expanding, and the liquid can be released to the outside by contracting again. And since this can be done by remote control, it is very easy to handle.

【0056】なお、このような構成を有する磁力応答性
材料の用途としては、このドラッグデリバリ用に限定さ
れるものではなく、他の種々の用途が考えられる。
The magnetic responsive material having such a structure is not limited to this drug delivery application, but various other applications can be considered.

【0057】例えば、ロボットハンドの掴み部に適用す
る場合には、柔軟でクッション性に優れるため、対象物
に傷等をつけることなく掴むことが容易になる。また、
人工筋肉に用いる場合には、やはりクッション性に優れ
るため、従来のマニュピレ−タと比較してソフトな動き
を実現できる。
For example, when applied to a gripping part of a robot hand, it is easy to grip an object without damaging it because it is flexible and has excellent cushioning properties. Also,
When used for artificial muscles, it also has excellent cushioning properties, so that it can achieve softer movements than conventional manipulators.

【0058】[0058]

【実施例】ポリエ−テルポリオ−ル(武田薬品工業製、
商品名GS−92)100重量部に、平均粒径180μ
mのマトマイズ鉄粉(和光純薬工業製)600重量部お
よびシリコ−ン界面活性剤を混ぜ、ミキサ−で十分に混
合した。
Example: Polyetherpolyol (manufactured by Takeda Pharmaceutical Co., Ltd.,
Product name GS-92) 100 parts by weight, average particle size 180μ
600 parts by weight of m-atomized iron powder (manufactured by Wako Pure Chemical Industries, Ltd.) and a silicone surfactant were mixed and thoroughly mixed with a mixer.

【0059】その後、イソシアネ−ト(日本ポリウレタ
ン製、商品名TDI−DF)23重量部、水2.2重量
部を、触媒と共に上記混合物に加えて混合し、9.8倍
に発泡させた後、100℃で30分間加熱することで硬
化させた。
Thereafter, 23 parts by weight of isocyanate (manufactured by Nippon Polyurethane, trade name TDI-DF) and 2.2 parts by weight of water were added to the above mixture together with the catalyst and mixed, and after foaming to 9.8 times. It was cured by heating at 100 ° C. for 30 minutes.

【0060】このことにより、上記鉄粉を82.5重量
%含む磁気応答性材料を得ることができる。この磁気応
答性材料を顕微鏡で72倍に拡大して撮影したのが図6
に示す写真である。なお、図5は、粒子を含まない発泡
体材料の顕微鏡写真である。図6の写真に示すように、
上記分散した鉄粉は上記気孔を区画する隔壁に保持され
ている。
As a result, a magnetically responsive material containing 82.5% by weight of the iron powder can be obtained. This magnetically responsive material was magnified 72 times with a microscope and photographed as shown in FIG.
Is a photograph shown in. Note that FIG. 5 is a micrograph of a foam material that does not contain particles. As shown in the photograph in Figure 6,
The dispersed iron powder is held by the partition wall that defines the pores.

【0061】また、この材料から14mm×14mm×15
mmの立方体を試料として切出し、残留磁束密度1.2T
[ステラ]の永久磁石による外部磁場を印加すると、磁
場方向に速やかに31%の収縮を示した。一方、永久磁
石を除去すると速やかに元の形状寸法に復帰した。
Also, from this material, 14 mm × 14 mm × 15
mm cube is cut out as a sample and the residual magnetic flux density is 1.2T
When an external magnetic field was applied by the [Stella] permanent magnet, it rapidly contracted 31% in the magnetic field direction. On the other hand, when the permanent magnet was removed, the original shape and size were quickly restored.

【0062】また、この発泡体材料をドラッグデリバリ
材料として用いることによりその特性を評価した。それ
によると、上記発泡体材料を、収縮した状態から元の状
態に復帰させることで水分を吸収でき、上記永久磁石に
よって外部磁場を印加すると速やかに水分を放出した。
The characteristics of this foam material were evaluated by using it as a drug delivery material. According to this, moisture can be absorbed by returning the foam material from the contracted state to the original state, and the moisture was promptly released when the external magnetic field was applied by the permanent magnet.

【0063】なお、この場合、水分吸収量は、1.0cm
3 あたり0.91gであり、一方、一回の収縮による水
分放出量は1.0cm3 あたり0.35gであった。
In this case, the water absorption amount is 1.0 cm.
It was 0.91 g per 3 while the amount of water released by one contraction was 0.35 g per 1.0 cm 3 .

【0064】[0064]

【発明の効果】以上述べた構成によれば、以下の効果を
得ることができる。
According to the configuration described above, the following effects can be obtained.

【0065】第1に、収縮率が大きくかつ収縮時の反応
が良い磁気応答性材料を得ることができる。
First, it is possible to obtain a magnetically responsive material having a large shrinkage factor and a good reaction during shrinkage.

【0066】すなわち、この発明の磁気応答性材料によ
れば、粒子間にあるのは気孔であるから、粒子どうしが
この気孔を押し潰すようにして近接でき、大きな収縮量
を得ることができると共に収縮時の反応も良くなる。
That is, according to the magnetically responsive material of the present invention, since the pores are between the particles, the particles can come close to each other by crushing the pores, and a large shrinkage amount can be obtained. The reaction during contraction also improves.

【0067】第2に、この磁気応答性材料は、従来の磁
気応答性材料と比較してその取扱いが非常に容易であ
る。
Secondly, the magnetically responsive material is very easy to handle as compared with the conventional magnetically responsive material.

【0068】すなわち、粒子の担体として、発泡体材料
を用いたことにより、柔軟で収縮率が高いにもかかわら
ず、自立性が高くそれのみで形態を維持できるから、取
扱いが非常に容易である。
That is, since the foam material is used as the carrier for the particles, it is flexible and has a high shrinkage ratio, but it has a high self-supporting property and can maintain the shape by itself, so that it is very easy to handle. .

【0069】第3に、この発明の磁気反応性材料を収縮
させた場合、その体積は収縮量に応じて変化させること
ができ、かつこのとき内部圧力が高まることはない。し
たがって、良好な作動を維持できる。
Third, when the magnetically responsive material of the present invention is contracted, its volume can be changed according to the amount of contraction, and the internal pressure does not increase at this time. Therefore, good operation can be maintained.

【0070】第4に、この発明によれば、内部の気孔に
液体等を収納できるため、例えば、ドラッグデリバリ用
のアクチュエ−タとして使用した場合に、遠隔操作で液
体の吸収および放出が行え、特に顕著な効果を得ること
ができる。
Fourthly, according to the present invention, since the liquid or the like can be stored in the internal pores, for example, when used as an actuator for drug delivery, the liquid can be absorbed and released by remote control. Particularly remarkable effects can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施形態を示す拡大模式図。FIG. 1 is an enlarged schematic view showing an embodiment of the present invention.

【図2】同じく、発泡倍率と収縮量の関係を示すグラ
フ。
FIG. 2 is a graph showing the relationship between expansion ratio and shrinkage amount.

【図3】同じく、粒子の含有率と収縮量の関係を示すグ
ラフ。
FIG. 3 is a graph showing the relationship between particle content and shrinkage.

【図4】同じく、粒子の粒径と収縮量の関係を示すグラ
フ。
FIG. 4 is a graph showing the relationship between particle size and shrinkage amount.

【図5】粒子を含有しない発泡体材料を72倍に拡大し
て示す顕微鏡写真。
FIG. 5 is a photomicrograph at 72X magnification of a particle-free foam material.

【図6】この発明の磁気反応性材料を72倍に拡大して
示す顕微鏡写真。
FIG. 6 is a micrograph showing the magnetically responsive material of the present invention magnified 72 times.

【符号の説明】[Explanation of symbols]

1…粒子、2…気孔、4…隔壁 1 ... Particles, 2 ... Pores, 4 ... Partition walls

【手続補正書】[Procedure amendment]

【提出日】平成7年11月13日[Submission date] November 13, 1995

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の名称[Correction target item name] Name of invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【発明の名称】 磁気応答性材料Title: Magnetically responsive material

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0033[Correction target item name] 0033

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0033】図2に示すグラフは、発泡倍率と収縮率の
関係を示すグラフである。なお、この実験では、発泡体
材料としてウレタンフォ−ムを採用し、分散粒子として
平均粒径約180μmの鉄粉(Fe)を成形後の磁気
答性材料に対する含有量が80重量%となるように混合
して発泡させた。なお、発泡体材料中に生じた気孔は連
続気孔である。
The graph shown in FIG. 2 is a graph showing the relationship between the expansion ratio and the shrinkage ratio. In this experiment, urethane follower as a foam material - adopted beam, magnetic response after molding iron powder having an average particle size of about 180μm to (Fe) as the dispersed particles
It was mixed and foamed so that the content of the responsive material was 80% by weight. The pores formed in the foam material are continuous pores.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0036[Correction target item name] 0036

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0036】次に、この磁気応答性材料中の分散粒子の
含有量が重要である。
Next, the content of dispersed particles in this magnetically responsive material is important.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0038[Correction target item name] 0038

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0038】図3に示すグラフは、この磁気応答性材料
中の分散粒子の含有量(分散粒子の質量/分散粒子を含
む磁気応答性材料の質量 ×100[重量%])と収縮
率の関係を示すグラフである。
The graph shown in FIG. 3 shows the relationship between the content of dispersed particles in the magnetically responsive material (mass of dispersed particles / mass of magnetically responsive material containing dispersed particles × 100 [wt%]) and shrinkage ratio. It is a graph which shows.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0039[Correction target item name] 0039

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0039】なお、この収縮率の測定に用いた磁気応答
材料は、前記と同じ発泡体材料(ウレタン)と分散粒
子(Fe)を用い、この発泡体材料を約10倍に発泡さ
せて得られたものである。
The magnetic response used to measure the shrinkage ratio
The elastic material is obtained by using the same foam material (urethane) and dispersed particles (Fe) as described above and foaming the foam material about 10 times.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0051[Correction target item name] 0051

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0051】第3に、この発明の磁気応答性材料を収縮
させた場合、その体積は収縮量に応じて変化させること
ができる。
Third, when the magnetically responsive material of the present invention is contracted, its volume can be changed according to the amount of contraction.

【手続補正7】[Procedure amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0069[Correction target item name] 0069

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0069】第3に、この発明の磁気応答性材料を収縮
させた場合、その体積は収縮量に応じて変化させること
ができ、かつこのとき内部圧力が高まることはない。し
たがって、良好な作動を維持できる。
Third, when the magnetically responsive material of the present invention is contracted, its volume can be changed according to the amount of contraction, and the internal pressure does not increase at this time. Therefore, good operation can be maintained.

【手続補正8】[Procedure amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図6[Correction target item name] Fig. 6

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図6】この発明の磁気応答性材料を72倍に拡大して
示す顕微鏡写真。
FIG. 6 is a micrograph showing the magnetically responsive material of the present invention magnified 72 times.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 発泡体材料に、磁場の作用により磁気分
極する粒子が分散されていることを特徴とする磁気応答
性材料。
1. A magnetically responsive material, wherein particles that are magnetically polarized by the action of a magnetic field are dispersed in a foam material.
【請求項2】 請求項1記載の磁気応答性材料におい
て、 前記粒子は、上記発泡体材料の気孔を区画する隔壁内に
保持されていることを特徴とする磁気応答性材料。
2. The magnetically responsive material according to claim 1, wherein the particles are held in partition walls that define pores of the foam material.
【請求項3】 請求項1記載の磁気応答性材料におい
て、 上記粒子は、上記発泡体材料の発泡原料に混合され、こ
の発泡原料を発泡させることで発泡体材料に分散された
ものであることを特徴とする磁気応答性材料。
3. The magnetically responsive material according to claim 1, wherein the particles are mixed with a foaming raw material of the foam material and dispersed in the foam material by foaming the foaming raw material. A magnetically responsive material characterized by.
【請求項4】 請求項1記載の磁気応答性材料におい
て、 上記発泡体材料の発泡倍率は、5倍〜15倍であること
を特徴とする磁気応答性材料。
4. The magnetically responsive material according to claim 1, wherein the foam material has a foaming ratio of 5 to 15 times.
【請求項5】 請求項1記載の磁気応答性材料におい
て、 この磁気応答性材料に対する粒子の含有率は、60重量
%〜90重量%であることを特徴とする磁気応答性材
料。
5. The magnetically responsive material according to claim 1, wherein the content of particles in the magnetically responsive material is 60% by weight to 90% by weight.
【請求項6】 請求項1記載の磁気応答性材料におい
て、 上記粒子の粒径は、10μm〜500μmであることを
特徴とする磁気応答性材料。
6. The magnetically responsive material according to claim 1, wherein the particle size of the particles is 10 μm to 500 μm.
JP27990595A 1995-10-04 1995-10-04 Magnetic responsive material Pending JPH09102411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27990595A JPH09102411A (en) 1995-10-04 1995-10-04 Magnetic responsive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27990595A JPH09102411A (en) 1995-10-04 1995-10-04 Magnetic responsive material

Publications (1)

Publication Number Publication Date
JPH09102411A true JPH09102411A (en) 1997-04-15

Family

ID=17617558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27990595A Pending JPH09102411A (en) 1995-10-04 1995-10-04 Magnetic responsive material

Country Status (1)

Country Link
JP (1) JPH09102411A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6673258B2 (en) * 2001-10-11 2004-01-06 Tmp Technologies, Inc. Magnetically responsive foam and manufacturing process therefor
JP2012227411A (en) * 2011-04-21 2012-11-15 Panasonic Corp Magnetic elastic body and method of manufacturing the same
JP2013169432A (en) * 2012-02-23 2013-09-02 Bioserentack Co Ltd Frequently and easily detachable microneedle base
JP2015227020A (en) * 2014-06-02 2015-12-17 本田技研工業株式会社 Elastic modulus variable material and production method thereof
JP2016112664A (en) * 2014-12-17 2016-06-23 豊田合成株式会社 Article gripping tool

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6673258B2 (en) * 2001-10-11 2004-01-06 Tmp Technologies, Inc. Magnetically responsive foam and manufacturing process therefor
JP2012227411A (en) * 2011-04-21 2012-11-15 Panasonic Corp Magnetic elastic body and method of manufacturing the same
JP2013169432A (en) * 2012-02-23 2013-09-02 Bioserentack Co Ltd Frequently and easily detachable microneedle base
JP2015227020A (en) * 2014-06-02 2015-12-17 本田技研工業株式会社 Elastic modulus variable material and production method thereof
JP2016112664A (en) * 2014-12-17 2016-06-23 豊田合成株式会社 Article gripping tool

Similar Documents

Publication Publication Date Title
Manti et al. Stiffening in soft robotics: A review of the state of the art
Zhang et al. Pneumatically actuated soft gripper with bistable structures
Friis et al. Negative Poisson's ratio polymeric and metallic foams
Yang et al. Buckling pneumatic linear actuators inspired by muscle
EP0328518B1 (en) Polyhedron cell structure and method of making same
Hsu et al. Stimuli-responsive, mechanically-adaptive polymer nanocomposites
Hornbogen Comparison of shape memory metals and polymers
US8502635B2 (en) Magnetostrictive element and use thereof
US11833766B2 (en) Expandable tooling systems and methods
WO2019195417A1 (en) Programmable soft materials containing ferromagnetic domains and methods of making
WO2002003472A3 (en) Aerosol silicon nanoparticles for use in semiconductor device fabrication
Clark High power rare earth magnetostrictive materials
JPH09102411A (en) Magnetic responsive material
Li et al. Programmable ultralight magnets via orientational arrangement of ferromagnetic nanoparticles within aerogel hosts
Lalegani Dezaki et al. Soft magneto‐responsive shape memory foam composite actuators
Hartzell et al. Performance of a magnetorheological fluid-based robotic end effector
JPH0525316A (en) Material having magnetic response
Liu et al. A bio-inspired soft-rigid hybrid actuator made of electroactive dielectric elastomers
O’Donnell et al. Influence of nitrogen content on coercivity in remanence‐enhanced mechanically alloyed Sm‐Fe‐N
Shu et al. High performance magnetorheological elastomers strengthened by perpendicularly interacted flax fiber and carbonyl iron chains
Han et al. A novel magneto-mechanical metamaterial cell structure with large, reversible and rapid two-way shape alteration
Wang et al. A bio-inspired novel active elastic component based on negative Poisson’s ratio structure and dielectric elastomer
Bira et al. Tuning the grasping strength of soft actuators with magnetic elastomer fingertips
CN112250809A (en) Shape memory hydrogel responding to multiple stimuli of magnetism, light and heat, preparation method thereof and shape memory mode
Chen et al. Reprogrammable Magnetic Soft Robots Based on Low Melting Alloys