JPH09101335A - Current route searching method for wire - Google Patents

Current route searching method for wire

Info

Publication number
JPH09101335A
JPH09101335A JP25853495A JP25853495A JPH09101335A JP H09101335 A JPH09101335 A JP H09101335A JP 25853495 A JP25853495 A JP 25853495A JP 25853495 A JP25853495 A JP 25853495A JP H09101335 A JPH09101335 A JP H09101335A
Authority
JP
Japan
Prior art keywords
current
signal
wire
route
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25853495A
Other languages
Japanese (ja)
Other versions
JP3097896B2 (en
Inventor
Fusaji Takemoto
房司 竹本
Mitsuo Hattori
光男 服部
Shoichi Kuramoto
昇一 倉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP25853495A priority Critical patent/JP3097896B2/en
Publication of JPH09101335A publication Critical patent/JPH09101335A/en
Application granted granted Critical
Publication of JP3097896B2 publication Critical patent/JP3097896B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable searching of a current route of a wire accurately without affecting various devices connected to the wire by detecting the size and the phase of a sinusoidal signal current flowing through the wire with a lockin amplifier. SOLUTION: A sinusoidal signal of a signal generator 1 is applied to a grounding wire 2 for searching a current route while a signal current is divided by a divider 14 to be transmitted to a lockin amplifier 12 with a reference signal line 15. The signal current flowing through the grounding wire 2 is measured in non-contact by a current probe 11, the lock-in amplifier 12 and an oscilloscope 13. In other words, the size and phase of the sinusoidal current flowing through the wire are detected by the lockin amplifier 12 with the sinusoidal signal from the signal generator 1 as reference to track a path through which the sinusoidal current flows. A measurement with a current probe 11 is performed simultaneously or sequentially along an assumed route like current probes 11' and 11" and the current route of a desired grounding wire 2 (wire) can be searched.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、配線に微弱な信号
電流を流し、配線の信号電流が流れるルート上で信号電
流の電流値と位相を測り、それぞれの測定場所で信号電
流の流れる方向を知ったり信号電流が流れる配線ルート
の終端条件が容量成分又はインダクタンス成分や抵抗成
分であるかを知ることにより、目的の配線の電流ルート
や接続状態を調査することができる電流ルート探索方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention applies a weak signal current to a wiring, measures the current value and phase of the signal current on the route where the signal current of the wiring flows, and determines the direction in which the signal current flows at each measurement location. The present invention relates to a current route search method capable of investigating the current route or connection state of a target wiring by knowing or knowing whether the termination condition of the wiring route through which the signal current flows is a capacitance component, an inductance component or a resistance component. is there.

【0002】[0002]

【従来の技術】従来の配線の電流ルート探索方法を図4
に示す。図4において、1は信号発生器、2は接地線も
しくは通信ケーブル,電源ケーブル等のケーブル、3は
接地線電極、4は大地帰路、5は電流帰路用接地電極、
6は帰路用リード線、7は信号受信器である。
2. Description of the Related Art A conventional wiring current route search method is shown in FIG.
Shown in In FIG. 4, 1 is a signal generator, 2 is a cable such as a ground wire or a communication cable, a power cable, 3 is a ground wire electrode, 4 is a ground return path, 5 is a current return ground electrode,
Reference numeral 6 is a return lead wire, and 7 is a signal receiver.

【0003】従来の配線の電流ルート探索方法は、図4
に示すように、信号発生器に2個の端子があり、一方を
探索する接地線もしくは通信ケーブル,電源ケーブル等
のケーブル2に接続し、他方を電流帰路用の接地電極の
帰路用リード線6に接続し大地を介したループ回路を構
成する。ループ回路に流れる信号電流により、接地線の
周囲に磁界が発生し、この磁界に信号受信器7が同調反
応し、その反応の大きさを検出することにより、配線の
電流ルートの探索をしていた。
A conventional method for searching a current route for wiring is shown in FIG.
As shown in FIG. 2, the signal generator has two terminals, one of which is connected to a ground wire for searching or a cable 2 such as a communication cable or a power cable, and the other is connected to a return lead wire 6 of a ground electrode for current return. To form a loop circuit through the ground. A magnetic field is generated around the ground line due to the signal current flowing in the loop circuit, and the signal receiver 7 tunes to this magnetic field, and the magnitude of the reaction is detected to search for the current route of the wiring. It was

【0004】[0004]

【発明が解決しようとする課題】本発明者は、前記従来
技術を検討した結果、以下の問題点を見いだした。
SUMMARY OF THE INVENTION As a result of studying the above prior art, the present inventor has found the following problems.

【0005】前記の従来の探索方法においては、信号発
生器からの電流の大きさは分かるが位相が分からないた
め、信号電流の流れる方向を知ることができないという
問題があった。
In the above conventional search method, there is a problem that the magnitude of the current from the signal generator is known but the phase is not known, so that the direction in which the signal current flows cannot be known.

【0006】また、接地線等に接続される電子機器へ影
響を与えないようにするためには、これに流す探索用信
号電流を小さくすることが必要であるが、接地線等に流
れるノイズ電流によって探査が不可能になる場合が多い
という問題があった。
Further, in order not to affect the electronic equipment connected to the ground line or the like, it is necessary to reduce the search signal current flowing through this, but noise current flowing through the ground line or the like is required. There was a problem that exploration would be impossible in many cases.

【0007】また、ビルの接地線に電流を流す場合に接
地線に印加した電流が信号発生器に戻る帰路として遠方
に接地電極を設けてこれから信号発生器まで導線を布設
して行うのが理想的であるが、実際の調査時に導線を遠
方から布設することは難しいという問題があった。
Further, when a current is applied to the ground line of a building, it is ideal that a ground electrode is provided at a distant place as a return path for the current applied to the ground line to return to the signal generator, and a conductor is laid from this to the signal generator. However, there was a problem that it was difficult to lay the conductor from a distance during the actual survey.

【0008】本発明の目的は、配線に接続された各種装
置に影響を与えずに正確に配線ルートを探索することが
可能な技術を提供することにある。
An object of the present invention is to provide a technique capable of accurately searching a wiring route without affecting various devices connected to the wiring.

【0009】本発明の他の目的は、配線の電流ルートを
探索する帰路を設けるための労力を低減することが可能
な技術を提供することにある。
Another object of the present invention is to provide a technique capable of reducing the labor for providing a return path for searching a current route of wiring.

【0010】本発明の前記ならびにその他の目的と新規
な特徴は、本明細書の記述及び添付図面によって明らか
にする。
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

【0011】[0011]

【課題を解決するための手段】本願において開示される
発明のうち代表的なものの概略構成を簡単に説明すると
以下のとおりである。
The following is a brief description of the schematic structure of a typical one of the inventions disclosed in the present application.

【0012】(1)信号発生器からの正弦波信号を配線
と接地端子間に印加し、前記配線に流れる正弦波信号電
流の大きさ及び位相を前記信号発生器からの前記正弦波
信号をレファレンスとしたロックインアンプで検出し、
前記正弦波信号電流の流れる経路を追跡する配線の電流
ルート探索方法である。
(1) A sine wave signal from a signal generator is applied between a wire and a ground terminal, and the magnitude and phase of a sine wave signal current flowing through the wire is referenced to the sine wave signal from the signal generator. Detected with the lock-in amplifier
It is a method for searching a current route of a wiring for tracing a route in which the sine wave signal current flows.

【0013】(2)前記(1)の配線の電流ルート探索
方法において、前記配線の電流の帰路を電源コンセント
の接地側電極とし、前記接地側電極へ直接又は容量を通
して前記信号発生器へ接続するものである。
(2) In the wiring current route searching method of (1), the return path of the current of the wiring is used as a ground side electrode of a power outlet, and is connected to the signal generator directly or through a capacitance to the ground side electrode. It is a thing.

【0014】(3)前記(1)の配線の電流ルート探索
方法において、前記配線の電流の帰路をビル鉄筋等の建
物金属体とするものである。
(3) In the wiring current route searching method of (1), the return path of the wiring current is a building metal body such as a building rebar.

【0015】(4)前記(3)の配線の電流ルート探索
方法において、前記建物金属体との接続を1m2程度の
金属板と前記建物金属体との静電容量結合を介して行う
ものである。
(4) In the wiring current route searching method of (3) above, the connection with the building metal body is performed through capacitive coupling between the metal plate of about 1 m 2 and the building metal body. is there.

【0016】(5)前記(1)〜(4)のうちいずれか
1つの配線の電流ルート探索方法において、前記レファ
レンスとする正弦波信号を無線電波で無線受信装置を介
してロックインアンプまで伝送するものである。
(5) In the method for searching the current route of any one of the wirings (1) to (4), the sinusoidal signal serving as the reference is transmitted by radio waves to a lock-in amplifier via a radio receiver. To do.

【0017】前述の手段によれば、接地線に流れる電流
を検出するときに印加信号と同一の信号をレファレンス
としたロックインアンプを使用することによって、10
0μA程度の微少信号電流を接地線の雑音電流の中から
正確に検出できるようにするとともに、印加電流の位相
と測定電流の位相の測定により、接地線等に流れる信号
電流の、測定点での電流の流れる方向を知ることができ
る。これによって接地線に接続された各種装置に影響を
与えずに正確に配線の電流ルートを探索することができ
る。
According to the above-mentioned means, by using the lock-in amplifier whose reference is the same signal as the applied signal when detecting the current flowing through the ground line, 10
A small signal current of about 0 μA can be accurately detected from the noise current of the ground line, and the phase of the applied current and the phase of the measured current are measured to measure the signal current flowing through the ground line at the measurement point. You can know the direction of current flow. As a result, the current route of the wiring can be accurately searched without affecting various devices connected to the ground line.

【0018】次に、信号電流の帰路として遠方接地極か
らの導線の代わりに電源コンセントの接地側電極を使用
したり、ビル鉄筋に直接接続するか、ビル鉄筋と1m2
程度の金属板による静電容量を介して電流を流すことに
よって帰路を設けるための労力を低減できる。
Next, as the return path of the signal current, the ground side electrode of the power outlet is used instead of the conductor from the distant ground electrode, or it is directly connected to the building rebar or 1 m 2 with the building rebar.
The labor for providing a return path can be reduced by passing a current through the electrostatic capacity of a metal plate.

【0019】さらに、ロックインアンプにレファレンス
信号を送るため、ケーブルではなく無線電波を使用する
ことによって配線の電流ルート探索を容易にすることが
できる。
Further, since the reference signal is sent to the lock-in amplifier, it is possible to easily search the current route of the wiring by using the radio wave instead of the cable.

【0020】[0020]

【発明の実施の形態】以下、本発明についてその実施の
形態(実施例)とともに図面を参照して詳細に説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to the drawings along with its embodiments (examples).

【0021】なお、実施例を説明するための全図におい
て、同一機能を有するものは同一符号を付け、その繰り
返しの説明は省略する。
In all the drawings for explaining the embodiments, parts having the same function are designated by the same reference numerals, and the repeated description thereof will be omitted.

【0022】図1は本発明の電源コンセントの接地側電
極を使用した一実施形態(実施例1)を説明する回路構
成図であり、1は信号発生器、2は接地線、3は接地線
電極、4は大地帰路、8は低圧配電系統の2次側接地電
極(第2種接地)、9は配電用変圧器、10は電源コン
セント、11,11’,11”は分割可能な非接触の電
流プローブ、12はロックインアンプ、13はオシロス
コープ、14はデバイダ、15はレファレンス信号線、
16はコンデンサである。
FIG. 1 is a circuit configuration diagram for explaining an embodiment (embodiment 1) using a ground side electrode of a power outlet of the present invention. 1 is a signal generator, 2 is a ground wire, and 3 is a ground wire. Electrodes, 4 earth return path, 8 secondary side ground electrode (second type ground) of low voltage distribution system, 9 distribution transformer, 10 power outlet, 11, 11 ', 11 "separable non-contact Current probe, 12 is a lock-in amplifier, 13 is an oscilloscope, 14 is a divider, 15 is a reference signal line,
Reference numeral 16 is a capacitor.

【0023】本実施形態の接地線の電流ルート探索方法
は、図1に示すように、信号発生器1の一端子と電源コ
ンセントの接地側電極の導線をコンデンサ16で結合さ
せて、信号発生器1から接地線2、接地線電極3、大地
帰路4、低圧配電系統の2次側接地電極8、電源コンセ
ント10、コンデンサ16を通るループ回路を構成す
る。電流ルートを探索する接地線2に信号発生器1の信
号電流を印加するとともに信号電流をデバイダ14で分
配し、レファレンス信号線15を使ってロックインアン
プ12に伝送する。接地線2に流れる信号電流を電流プ
ローブ11及びロックインアンプ12、オシロスコープ
13により非接触の状態で測定し、信号電流が大きいも
のを探し出すとともに電流方向を検出し、電流プローブ
11を電流プローブ11’,11”の様に想定されるル
ートに沿って同時又は順次測定することにより目的の接
地線(配線)の電流ルートが探索できる。
As shown in FIG. 1, the method of searching the current route of the ground line of the present embodiment is such that one terminal of the signal generator 1 and the lead wire of the ground side electrode of the power outlet are coupled by the capacitor 16 and the signal generator is connected. 1 to the ground wire 2, the ground wire electrode 3, the earth return path 4, the secondary side ground electrode 8 of the low voltage distribution system, the power outlet 10 and the capacitor 16 to form a loop circuit. The signal current of the signal generator 1 is applied to the ground line 2 for searching the current route, and the signal current is distributed by the divider 14 and transmitted to the lock-in amplifier 12 using the reference signal line 15. The signal current flowing through the ground line 2 is measured by the current probe 11, the lock-in amplifier 12, and the oscilloscope 13 in a non-contact state, the one with a large signal current is searched for, and the current direction is detected. , 11 ", the current route of the intended ground line (wiring) can be searched by simultaneously or sequentially measuring along the assumed route.

【0024】なお、コンデンサ16を省いて直接印加す
ることも可能であるが、接続する線に電圧が出ていない
ことを接続前に確認する必要がある。
It is possible to omit the capacitor 16 and directly apply it, but it is necessary to confirm before connection that no voltage is present on the connecting line.

【0025】[0025]

【表1】 [Table 1]

【0026】測定結果の例として、表1に示すように、
コンデンサ16として100nFのコンデンサを使用し
た場合、発信器出力15ボルト(v)で123Hzの信
号を印加したときに電流プローブ11で0.685m
A、233Hzの信号を印加したときに電流プローブ1
1で0.768mA、673Hzの信号を印加したとき
に電流プローブ11で2.84mA、1017Hzの信
号を印加したときに電流プローブ11で4.19mA、
2017Hzの信号を印加したときに電流プローブ11
で8.06mA、4017Hzの信号を印加したときに
電流プローブ11で15.8mA、10017Hzの信
号を印加したときに電流プローブ11で37.3mA、
20017Hzの信号を印加したときに電流プローブ1
1で64.9mAの信号電流の測定が可能であった。な
お、静電結合によらず直接接続すれば、電流はさらに多
く印加することが可能であり検出も容易となる。
As an example of the measurement result, as shown in Table 1,
When a 100 nF capacitor is used as the capacitor 16, the current probe 11 outputs 0.685 m when a signal of 123 Hz is applied with the oscillator output of 15 volts (v).
A current probe 1 when a signal of 233 Hz is applied
When the signal of 0.768 mA and 673 Hz is applied at 1, the current probe 11 is 2.84 mA and when the signal of 1017 Hz is applied, the current probe 11 is 4.19 mA,
Current probe 11 when a 2017 Hz signal is applied
When applying a signal of 8.06 mA and 4017 Hz, the current probe 11 is 15.8 mA, and when applying a signal of 10017 Hz, the current probe 11 is 37.3 mA,
Current probe 1 when a signal of 20017 Hz is applied
1, it was possible to measure a signal current of 64.9 mA. Note that if a direct connection is made without using electrostatic coupling, a larger amount of current can be applied and detection becomes easier.

【0027】また、図2は本発明の建物金属体を電流帰
路とした他の実施形態(実施例2)を説明するための図
であり、17は建物金属体と静電結合させる金属板、1
8は金属板と建物金属体の間の静電容量、19は鉄骨等
の建物金属体、20は建物構造体の接地である。
FIG. 2 is a view for explaining another embodiment (Example 2) in which the building metal body of the present invention is used as a current return path, and 17 is a metal plate for electrostatically coupling with the building metal body, 1
8 is the electrostatic capacitance between the metal plate and the building metal body, 19 is the building metal body such as a steel frame, and 20 is the grounding of the building structure.

【0028】本実施形態(実施例2)の電流ルート探索
方法は、図2に示すように、信号発生器1の一端子と鉄
骨等の建物金属体19を接続するために、金属板17を
床等に設置することで金属板17と建物金属体19の間
の静電容量18による結合により建物金属体19と金属
板17を電気的に結合させ、信号発生器1から接地線
2、接地線電極3、大地帰路4、建物構造体の接地2
0、建物金属体19、金属板17を通るループ回路を構
成する。
As shown in FIG. 2, the current route searching method of this embodiment (Example 2) uses a metal plate 17 to connect one terminal of the signal generator 1 and a building metal body 19 such as a steel frame. When installed on the floor or the like, the building metal body 19 and the metal plate 17 are electrically coupled by the coupling by the capacitance 18 between the metal plate 17 and the building metal body 19, and the signal generator 1 is grounded to the ground wire 2 and grounded. Wire electrode 3, earth return 4, ground 2 of building structure
0, the building metal body 19, and the metal plate 17 to form a loop circuit.

【0029】図1の実施形態(実施例1)の方法と同様
に、ルートを探索する接地線2に信号発生器の信号電流
を印加し、接地線に流れる信号電流を電流プローブ11
及びロックインアンプ12、オシロスコープ13により
非接触の状態で測定することにより目的の接地線を探し
出し、電流プローブ11を電流プローブ11’,11”
の様に想定されるルートに沿って同時又は順次測定する
ことにより目的の接地線の電流ルートを探索することが
できる。
Similar to the method of the embodiment (embodiment 1) of FIG. 1, the signal current of the signal generator is applied to the ground line 2 for searching the route, and the signal current flowing through the ground line is detected by the current probe 11.
Also, the target ground wire is found by measuring in a non-contact state with the lock-in amplifier 12 and the oscilloscope 13, and the current probe 11 is replaced with the current probes 11 ', 11 ".
As described above, the current route of the target ground line can be searched by simultaneously or sequentially measuring along the assumed route.

【0030】[0030]

【表2】 [Table 2]

【0031】測定結果の例として、表2に示すように、
1m2の金属板を使用したとき、信号発生器出力20ボ
ルト(v)で123Hzの信号を印加したときに電流プ
ローブ11で21μA、233Hzの信号を印加したと
きに電流プローブ11で31μA、673Hzの信号を
印加したときに電流プローブ11で90μA、1017
Hzの信号を印加したときに電流プローブ11で133
μA、2017Hzの信号を印加したときに電流プロー
ブ11で252μA、4017Hzの信号を印加したと
きに電流プローブ11で485μA、10017Hzの
信号を印加したときに電流プローブ11で1150μ
A、20017Hzの信号を印加したときに電流プロー
ブ11で2130μAの信号電流の測定が可能であっ
た。
As an example of the measurement result, as shown in Table 2,
When a metal plate of 1 m 2 was used, a signal generator output of 20 V (v) applied a signal of 123 Hz and a current probe 11 of 21 μA, and a signal of 233 Hz applied a current probe 11 of 31 μA and 673 Hz. 90 μA, 1017 with current probe 11 when a signal is applied
133 with the current probe 11 when applying a signal of Hz
When the signal of μA, 2017 Hz is applied, the current probe 11 is 252 μA, when the signal of 4017 Hz is applied, the current probe 11 is 485 μA, and when the signal of 10017 Hz is applied, the current probe 11 is 1150 μ
A, when a signal of 20017 Hz was applied, it was possible to measure a signal current of 2130 μA with the current probe 11.

【0032】また、図3は本発明による実施形態(実施
例)における電流値と位相から、配線に分岐があること
や、信号電流の流れる方向を知ったり配線ルート中のイ
ンピーダンス推定の可能性を検討した例であり、抵抗
R,インダクタンスL,容量Cを含んだ接地配線系で、
100nFの容量結合を介して発振器へ戻るループ回路
を構成した図である。図3で内部インピーダンス1kΩ
の発振器から接地線に電流を印加し、印加した接地線の
電流をプローブ1で、ルート2の電流をプローブ2で、
ルート3の電流をプローブ3で測定している。ルート2
は300Ωと10mHの直列インピーダンスを介し30
0Ωの接地抵抗で接地されている。ルート3は直接15
0Ωの接地抵抗で接地されている。帰路は100nFを
通して戻している。なお、プローブの所に付した矢印は
プローブの極性を示す。測定結果は表3の通りである。
FIG. 3 shows the possibility that the wiring has a branch, the direction of the signal current flows, and the impedance estimation in the wiring route can be estimated from the current value and phase in the embodiment (example) according to the present invention. It is an example studied, and in a ground wiring system including a resistance R, an inductance L, and a capacitance C,
It is the figure which constituted the loop circuit which returns to an oscillator via 100 nF capacitive coupling. Internal impedance 1kΩ in Fig. 3
Current is applied from the oscillator to the ground wire, the applied ground wire current is probe 1, the root 2 current is probe 2,
The current of the route 3 is measured by the probe 3. Route 2
Is 30 through a series impedance of 300Ω and 10mH.
It is grounded with a grounding resistance of 0Ω. Route 3 is direct 15
It is grounded with a grounding resistance of 0Ω. The return route is through 100nF. The arrow attached to the probe indicates the polarity of the probe. The measurement results are shown in Table 3.

【0033】[0033]

【表3】 [Table 3]

【0034】プローブ1の次にプローブ2で測定した
場合、プローブ1の電流値≠プローブ2電流値より、両
プローブ間に分岐があることがわかる。
When the measurement is performed by the probe 2 after the probe 1, it can be seen from the current value of the probe 1 ≠ the current value of the probe 2 that there is a branch between the two probes.

【0035】次にプローブ3で測定すると、プローブ
1の電流値≒プローブ2+プローブ3の電流値より、分
岐はプローブ3のルートだけであることがわかる。
Next, measurement with the probe 3 reveals that the current value of the probe 1≈probe 2 + current value of the probe 3 indicates that the branch is only the route of the probe 3.

【0036】プローブ1の位相≒プローブ2の位相よ
り、両測定点での電流の流れる向きが同じことからプロ
ーブの極性を示す矢印と同じ方向に電流が流れているこ
とがわかる。
From the phase of the probe 1 ≈ the phase of the probe 2, it can be seen that the current flows in the same direction as the arrow indicating the polarity of the probe since the directions of current flow at both measurement points are the same.

【0037】プローブ1の位相≒プローブ3の位相よ
り、プローブ3のルートも矢印方向であることがわか
る。
From the phase of the probe 1≈the phase of the probe 3, it can be seen that the route of the probe 3 is also in the arrow direction.

【0038】また、ルート2にはインダクタンス成分が
入っているが、測定周波数において抵抗成分に比べて小
さく、測定に影響を与えていないことがわかる。さら
に、測定電流も最低で30μA程度しか流れていない
が、位相まで安定に精度よく測定できることが確かめら
れた。
Further, it can be seen that although the route 2 has an inductance component, it is smaller than the resistance component at the measurement frequency and does not affect the measurement. Furthermore, it was confirmed that the measurement current can flow stably and accurately up to the phase, even though the measurement current is only about 30 μA at minimum.

【0039】以上、本発明を、前記実施形態(実施例
1,2)に基づき具体的に説明したが、本発明は、前記
実施形態(実施例1,2)に限定されるものではなく、
その要旨を逸脱しない範囲において種々変更可能である
ことは勿論である。
Although the present invention has been specifically described based on the above-described embodiment (Examples 1 and 2), the present invention is not limited to the above-described embodiment (Examples 1 and 2).
Of course, various changes can be made without departing from the scope of the invention.

【0040】[0040]

【発明の効果】本願において開示される発明のうち代表
的なものによって得られる効果を簡単に説明すれば以下
のとおりである。
The effects obtained by the typical ones of the inventions disclosed in the present application will be briefly described as follows.

【0041】信号発生器からの信号をレファレンスとし
たロックインアンプで検出させることにより、微弱な信
号電流であっても信号電流の電流値と位相を検出できる
ので、探索する配線に微弱な信号電流を流すことで目的
の配線の電流ルート探索を容易に行うことができる。
By detecting the signal from the signal generator with the lock-in amplifier that uses the reference, the current value and phase of the signal current can be detected even if the signal current is weak, so that the signal current that is weak in the wiring to be searched. The current route of the target wiring can be easily searched by passing the current.

【0042】また、電源コンセントの接地側電極や建物
金属体を電流帰路として使うことにより、遠方に接地極
を設けて、信号発生器までの導線の布設を必要とせずに
配線の電流ルートの探索ができ、かつ、ルート探索作業
時間を短縮することができる。これらにより、配線の電
流ルートを探索する帰路を設けるための労力を低減する
ことができる。
Further, by using the grounding side electrode of the power outlet or the building metal body as a current return path, a grounding electrode is provided at a distant place, and the current route of the wiring is searched for without the need for laying a conducting wire to the signal generator. It is possible to shorten the route search work time. With these, it is possible to reduce the labor for providing a return route for searching the current route of the wiring.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による配線の電流ルート探索方法の一実
施形態(実施例1)を説明するための回路構成図であ
る。
FIG. 1 is a circuit configuration diagram for explaining an embodiment (Example 1) of a method for searching a current route of a wiring according to the present invention.

【図2】本発明による配線の電流ルート探索方法の他の
実施形態(実施例2)を説明するための回路構成図であ
る。
FIG. 2 is a circuit configuration diagram for explaining another embodiment (embodiment 2) of the method for searching the current route of the wiring according to the present invention.

【図3】本発明による実施形態の配線の電流ルート探索
方法における電流値と位相から配線に分岐があること
や、信号電流の流れる方向を知ったり、配線ルート中の
インピーダンス推定の可能性を検討した例を説明するた
めの図である。
FIG. 3 examines the possibility of branching a wiring from the current value and phase, knowing the direction in which a signal current flows, and estimating the impedance in the wiring route in the method for searching the current route of a wiring according to the embodiment of the present invention. It is a figure for explaining the example which did.

【図4】従来のルート探索方法を説明するための図であ
る。
FIG. 4 is a diagram for explaining a conventional route search method.

【符号の説明】[Explanation of symbols]

1…信号発生器、2…接地線、3…接地線電極、4…大
地帰路、5…電流帰路用接地電極、6…帰路用リード
線、7…信号受信器、8…低圧配電系統の2次側接地電
極、9…配電用変圧器、10…電源コンセント、11,
11’11”…電流プローブ、12…ロックインアン
プ、13…オシロスコープ、14…デバイダ、15…レ
ファレンス信号線、16…コンデンサ、17…金属板、
18…金属板と建物金属体間の静電容量、19…建物金
属体、20…建物構造体の接地、G…信号発生器1の接
地側端子。
DESCRIPTION OF SYMBOLS 1 ... Signal generator, 2 ... Ground wire, 3 ... Ground wire electrode, 4 ... Ground return path, 5 ... Current return ground electrode, 6 ... Return lead wire, 7 ... Signal receiver, 8 ... 2 of low voltage distribution system Secondary side ground electrode, 9 ... Distribution transformer, 10 ... Power outlet, 11,
11'11 "... Current probe, 12 ... Lock-in amplifier, 13 ... Oscilloscope, 14 ... Divider, 15 ... Reference signal line, 16 ... Capacitor, 17 ... Metal plate,
18 ... Capacitance between metal plate and building metal body, 19 ... Building metal body, 20 ... Grounding of building structure, G ... Grounding side terminal of signal generator 1.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 信号発生器からの正弦波信号を配線(接
地線もしくは通信ケーブル、電力ケーブル等のケーブ
ル)と接地端子間に印加し、前記配線に流れる正弦波信
号電流の大きさ及び位相を前記信号発生器からの前記正
弦波信号をレファレンスとしたロックインアンプで検出
し、前記正弦波信号電流の流れる経路を追跡することを
特徴とする配線の電流ルート探索方法。
1. A sine wave signal from a signal generator is applied between a wire (a ground wire or a cable such as a communication cable or a power cable) and a ground terminal to determine the magnitude and phase of a sine wave signal current flowing through the wire. A method for searching a current route of a wiring, characterized by detecting the sine wave signal from the signal generator by a lock-in amplifier using the reference as a reference and tracing a path through which the sine wave signal current flows.
【請求項2】 前記配線への電流の帰路を電源コンセン
トの接地側電極とし、前記接地側電極へ直接又は容量を
通して前記信号発生器へ接続することを特徴とする前記
請求項1記載の配線の電流ルート探索方法。
2. The wiring according to claim 1, wherein a return path of a current to the wiring is a ground side electrode of a power outlet and is connected to the signal generator directly or through a capacitance to the ground side electrode. Current route search method.
【請求項3】 前記配線への電流の帰路をビル鉄筋等の
建物金属体とすることを特徴とする前記請求項1記載の
配線の電流ルート探索方法。
3. The method of claim 1, wherein the return path of the current to the wiring is a building metal body such as a building rebar.
【請求項4】 前記建物金属体との接続を1m2程度の
金属板と建物金属体との静電容量結合を介して行うこと
を特徴とする前記請求項3記載の配線の電流ルート探索
方法。
4. The method for searching a current route of a wiring according to claim 3, wherein the connection with the building metal body is performed through capacitive coupling between a metal plate of about 1 m 2 and the building metal body. .
【請求項5】 前記レファレンスとする正弦波信号を無
線電波で無線受信装置を介してロックインアンプまで伝
送することを特徴とする請求項1〜4のうちいずれか1
項に記載の配線の電流ルート探索方法。
5. The sine wave signal serving as the reference is transmitted to a lock-in amplifier via a radio receiver as radio waves.
A method for searching a current route of wiring according to the item.
JP25853495A 1995-10-05 1995-10-05 Wiring current route search method Expired - Lifetime JP3097896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25853495A JP3097896B2 (en) 1995-10-05 1995-10-05 Wiring current route search method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25853495A JP3097896B2 (en) 1995-10-05 1995-10-05 Wiring current route search method

Publications (2)

Publication Number Publication Date
JPH09101335A true JPH09101335A (en) 1997-04-15
JP3097896B2 JP3097896B2 (en) 2000-10-10

Family

ID=17321564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25853495A Expired - Lifetime JP3097896B2 (en) 1995-10-05 1995-10-05 Wiring current route search method

Country Status (1)

Country Link
JP (1) JP3097896B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102520453A (en) * 2011-12-15 2012-06-27 西安四方机电有限责任公司 Method used for searching path of live power cable
CN103728525A (en) * 2012-10-11 2014-04-16 特克特朗尼克公司 Automatic probe ground connection checking techniques
CN104007474A (en) * 2014-06-16 2014-08-27 欧阳庆丰 High-sensitivity line tracking method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102520453A (en) * 2011-12-15 2012-06-27 西安四方机电有限责任公司 Method used for searching path of live power cable
CN103728525A (en) * 2012-10-11 2014-04-16 特克特朗尼克公司 Automatic probe ground connection checking techniques
US10041975B2 (en) 2012-10-11 2018-08-07 Tektronix, Inc. Automatic probe ground connection checking techniques
CN104007474A (en) * 2014-06-16 2014-08-27 欧阳庆丰 High-sensitivity line tracking method

Also Published As

Publication number Publication date
JP3097896B2 (en) 2000-10-10

Similar Documents

Publication Publication Date Title
US10996285B2 (en) Method of detecting earth leaking point without interrupting a power supply
US5828219A (en) Method of detecting faults in the insulation layer of an insulated concealed conductor
US4438389A (en) Method for utilizing three-dimensional radiated magnetic field gradients for detecting serving faults in buried cables
US5977773A (en) Non-intrusive impedance-based cable tester
EP1072897B1 (en) Method and apparatus for searching electromagnetic disturbing source and noncontact voltage probe therefor
JP2002525635A (en) Method and apparatus for locating insulation faults in electrical cables
WO1993023759A1 (en) Method of discriminating discrimination ojbect, detector therefor and input circuit of the detector
JP3169921B2 (en) Ground resistance measuring method and ground resistance measuring system
JP2002522775A (en) Apparatus with capacitive electrodes for measuring underground electrical properties
JP3167016B2 (en) Ground resistance measuring device and measuring method thereof
JP3097896B2 (en) Wiring current route search method
GB2227845A (en) Loop-impedance-tester
JP2003098194A (en) Noncontact type voltage probe device
GB2057147A (en) Detecting Faults in Buried Cables
JPH09222442A (en) Specifying method of electronmagnetic interference entering route, electromagnetic interference search device, and non-contact voltage probe device
JPH08248092A (en) High-pressure overhead distribution line ground fault locator system and transmitter
US7024320B2 (en) Method and system for determining the position of a short circuit in a branched wiring system
US1808397A (en) Method of and apparatus for locating deposits of oil, gas and other dielectric subterranean bodies
JP2003227878A (en) Object search method
SU970278A1 (en) Method of locating short-circuiting to shell in cable lines
JP3183450B2 (en) Wiring current route search method
JP2868786B2 (en) Method and apparatus for searching for accident points in indoor wiring
JPH09281175A (en) Apparatus for searching cable
JPH06222093A (en) Method for measuring grounding resistance
JP4351985B2 (en) Underground pipe exploration equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070811

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080811

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080811

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term