JPH0899360A - Optically shaped body by powder-mixed resin - Google Patents

Optically shaped body by powder-mixed resin

Info

Publication number
JPH0899360A
JPH0899360A JP6261433A JP26143394A JPH0899360A JP H0899360 A JPH0899360 A JP H0899360A JP 6261433 A JP6261433 A JP 6261433A JP 26143394 A JP26143394 A JP 26143394A JP H0899360 A JPH0899360 A JP H0899360A
Authority
JP
Japan
Prior art keywords
resin
powder
mixed
stereolithography
mixed resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6261433A
Other languages
Japanese (ja)
Inventor
Shigeru Hagiwara
茂 萩原
Masahiko Hihara
政彦 日原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamanashi Prefecture
Original Assignee
Yamanashi Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamanashi Prefecture filed Critical Yamanashi Prefecture
Priority to JP6261433A priority Critical patent/JPH0899360A/en
Publication of JPH0899360A publication Critical patent/JPH0899360A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber

Abstract

PURPOSE: To add functional properties such as electric conductivity, thermal conductivity, rigidity, toughness, improvement of specific gravity, etc., to an optically shaped body by a method wherein resin in which powder is mixed is used to carry out optical shaping. CONSTITUTION: Ultraviolet beams outputted from an ultraviolet laser 1 are introduced onto a liquid surface of powder-mixed resin by an optical fiber. That is, the ultraviolet beams pass through a pun hole 2 and a shutter 3, passes through a condenser 4 controlled with an NC scanner 15 and converted. Thereafter, the powder-mixed resin stored in a container of which a bottom surface is made of a glass plate is irradiated therewith. The condenser 4 can move a focal point position by the NC scanner 15. The condenser 4 draws a contour of a cubic section on a surface of the resin by X-Y biaxial control, and cured resin is formed on a laminate table 22. Then, operation wherein the laminate table 22 is slightly sinked into liquid, and further irradiated with ultraviolet beams to execute lamination, is repeated a specific number of times, and thereby the cured resin is laminated to prepare a cubic model.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、光硬化性樹脂を用い
た光造形方法に関し、粉末を混入した樹脂を用いて光造
形を行うことにより、得られる光造形体を複合材料で構
成し、機能性を向上させるための、樹脂および光造形方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stereolithography method using a photocurable resin, wherein a stereolithography object obtained by performing stereolithography using a resin mixed with a powder is composed of a composite material. The present invention relates to a resin and a stereolithography method for improving functionality.

【0002】[0002]

【従来の技術】従来、各種デザインモデル、ワーキング
モデル、ロストワックス用の成形型等として、いわゆる
光重合により硬化して得られる樹脂を用いて形成した光
造形体が知られている。これらに用いられる光重合性お
よび/または架橋性の光硬化性化合物である単量体は、
紫外線や可視光線の照射により重合反応して硬化して所
定の形態を保持する樹脂を生成するものであり、一般
に、ラジカル重合型のポリエポキシアクリレート、ポリ
エーテルアクリレート、ポリエステルアクリレート、ウ
レタンアクリレート等のアクリル系樹脂や、カチオン重
合型のエポキシ樹脂を生成する化合物であるモノマーや
オリゴマーの樹脂成分が用いられている。これら樹脂成
分の粘性を調節し、光硬化して樹脂層を積層体として各
種モデル品、型等に形成して用いている。
2. Description of the Related Art Conventionally, as a design model, a working model, a molding die for lost wax, and the like, a stereolithography body formed by using a resin obtained by curing by so-called photopolymerization is known. The monomer that is a photopolymerizable and / or crosslinkable photocurable compound used for these is
It is a resin that undergoes a polymerization reaction and cures upon irradiation with ultraviolet rays or visible light to form a resin that retains a prescribed form. Generally, radical polymerization type polyepoxy acrylate, polyether acrylate, polyester acrylate, urethane acrylate, and other acrylics. A resin component such as a system resin or a monomer or oligomer that is a compound that produces a cationic polymerization type epoxy resin is used. The viscosity of these resin components is adjusted and photocured to form a resin layer as a laminate on various model products, molds and the like.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、光造形
用樹脂としては上記のような各種の光硬化性樹脂モノマ
ーが開発され用いられているが、これらの光造形用樹脂
は、通常用いられている汎用樹脂とは異なり、一般に引
っ張り強度や曲げ強さが低く、強度が要求される造形品
には使用し難い。また耐熱性が低く軟化しやすいため、
使用できる温度が制限され、高温となる部分には使用で
きない等の問題があった。
However, although various photo-curable resin monomers as described above have been developed and used as the resin for stereolithography, these resins for stereolithography are usually used. Unlike general-purpose resins, they generally have low tensile strength and bending strength, and are difficult to use for molded products that require strength. Also, since it has low heat resistance and tends to soften,
There is a problem that the temperature that can be used is limited and that it cannot be used in a high temperature part.

【0004】そのため、本発明者等は先に、シリカ粉末
を均一に分散したシリカ分散樹脂光造形体を得ることに
より、上記欠点を解消した発明を特願平6−18086
7号において提案した。
Therefore, the inventors of the present invention have previously proposed an invention in which the above-mentioned drawbacks are eliminated by obtaining a silica-dispersed resin stereolithography body in which silica powder is uniformly dispersed.
Proposed in No. 7.

【0005】しかしながら、上記発明においては強度
や、特に剛性の面でそれなりの改善は見られるものの、
靭性や熱伝導性その他の特性においては充分な効果を得
ることができなかった。
However, although some improvement can be seen in the above invention in terms of strength and rigidity,
In terms of toughness, thermal conductivity and other properties, sufficient effects could not be obtained.

【0006】そこで、この発明は、従来の光硬化性樹脂
に異種素材を混入することにより複合材料を形成し、造
形物に電気伝導性、熱伝導性、剛性、靭性、比重の改善
等の機能性を向上せしめ、造形物の適応分野を拡大する
ことを目的として発明されたものである。
Therefore, according to the present invention, a composite material is formed by mixing different kinds of materials into a conventional photocurable resin, and the molded article has functions such as electric conductivity, thermal conductivity, rigidity, toughness, and improvement of specific gravity. It was invented for the purpose of improving the property and expanding the applicable field of the molded article.

【0007】[0007]

【課題を解決するための手段】この発明の粉末混入樹脂
による光造形体は、次の各項からなることを特徴とする
ものである。 1)光造形用樹脂中に金属粉末もしくは特殊形状の金属
素材を均一に分散含有させた硬化層を積層形成されてな
ることを特徴とする粉末混入樹脂による光造形体。 2)前記金属−樹脂硬化層が金属粉末もしくは特殊形状
の金属素材を分散含有する光重合性および/または架橋
性の光硬化性樹脂成分からなる粉末混入樹脂を光照射す
ることにより形成される請求項1記載の粉末混入樹脂に
よる光造形体。 3)特殊形状の金属素材が針状のホイスカである請求項
1記載の粉末混入樹脂による光造形体。
A stereolithography body made of a powder-mixed resin of the present invention is characterized by comprising the following items. 1) A stereolithography body made of a powder-mixed resin, which is formed by laminating a cured layer in which a metal powder or a metal material having a special shape is uniformly dispersed and contained in a resin for stereolithography. 2) The metal-resin cured layer is formed by irradiating with light a powder-mixed resin composed of a photopolymerizable and / or crosslinkable photocurable resin component containing a metal powder or a metal material having a special shape dispersed therein. Item 3. A stereolithography object made of the powder-mixed resin. 3) The stereolithography body made of the powder-mixed resin according to claim 1, wherein the specially-shaped metal material is a needle-shaped whisker.

【0008】[0008]

【作用】粉末を混入した樹脂を用いて光造形を行うこと
により、その光造形体に電気伝導性、熱伝導性、剛性、
靭性、比重の改善などの機能性を付加することができ、
例えば、光造形で得られた光造形体をそのまま試作部品
として、あるいは数個どりの簡易型として使用すること
ができる。
[Function] By performing stereolithography using a resin mixed with powder, electrical conductivity, thermal conductivity, rigidity, and
Functionality such as improvement of toughness and specific gravity can be added,
For example, the stereolithography body obtained by stereolithography can be used as it is as a prototype part or as a simple mold of several pieces.

【0009】本発明の粉末混入樹脂による光造形体は、
光重合性および/または架橋性を有する樹脂成分と金属
粉末もしくは特殊形状の金属素材からなる粉末混入樹脂
を調製し、適宜光照射等により金属−樹脂硬化層を希望
する形状に形成し順次積層することにより得ることがで
き、粉末混入樹脂における金属粉末もしくは特殊形状の
金属素材の分散状態を均一にすることにより、光重合お
よび/または架橋して硬化した樹脂中に金属粉末もしく
は特殊形状の金属素材が均一に分散された金属−樹脂硬
化層となり、耐熱性、高強度な光造形体を得ることがで
きる。またホイスカ等の特殊形状の金属素材を使用する
ことにより、より耐熱性、高強度な優れた光造形体を得
ることができる。
The stereolithographic molding using the powder-mixed resin of the present invention is
Prepare a powder-mixed resin consisting of a resin component having photopolymerizable and / or crosslinkable properties and a metal powder or a metal material having a special shape, form a metal-resin cured layer in a desired shape by appropriate light irradiation, etc. Can be obtained by uniformizing the dispersion state of the metal powder or the special-shaped metal material in the powder-mixed resin, and thus the metal powder or the special-shaped metal material in the resin cured by photopolymerization and / or crosslinking. Is a metal-resin cured layer in which is uniformly dispersed, and a heat-resistant and high-strength stereolithography object can be obtained. Further, by using a metal material having a special shape such as whiskers, an excellent stereolithography object having higher heat resistance and higher strength can be obtained.

【0010】発明者等は、その理由は明らかではない
が、光硬化性樹脂単独よりも金属−樹脂複合材料の方が
光硬化性が向上すること、例えばレーザ照射による硬化
において、照射幅を高めても充分に硬化し、優れた特性
の光造形体が得られること、さらに、光照射による深さ
方向の硬化性も樹脂単独と同等、または、それ以上であ
ることを知見した。またこれらの特性は、ホイスカ等の
特殊形状の金属素材を使用しても変化することなく、光
硬化用原料粉末混入樹脂の粘性が低下し取扱いが容易と
なり好ましいことも知見された。
Although the reason for this is not clear, the inventors have found that the photocurability of the metal-resin composite material is higher than that of the photocurable resin alone. For example, in the case of curing by laser irradiation, the irradiation width is increased. However, it has been found that even if the resin is sufficiently cured, a stereolithographic object having excellent characteristics can be obtained, and that the curability in the depth direction by light irradiation is equal to or higher than that of the resin alone. It has also been found that these characteristics do not change even if a metal material having a special shape such as a whisker is used, and the viscosity of the resin mixed with the raw material powder for photocuring is lowered, and the handling is easy, which is preferable.

【0011】したがって、本発明の光造形体のメリット
は、金属−樹脂複合材料を用いることにより、造形体の
電気伝導性、熱伝導性、剛性、靭性、比重の改善等の機
能性を向上できることである。図8に針状酸化チタンを
用いた場合の表面抵抗値の変化を示す。
Therefore, the merit of the stereolithographic molding of the present invention is that the use of the metal-resin composite material can improve the functionality of the sculpture such as electric conductivity, thermal conductivity, rigidity, toughness, and improvement of specific gravity. Is. FIG. 8 shows the change in surface resistance value when acicular titanium oxide is used.

【0012】以下本発明について詳しく説明する。The present invention will be described in detail below.

【0013】本発明の金属粉末もしくは特殊形状の金属
素材からなる粉末混入樹脂による光造形体は、金属粉末
もしくは特殊形状の金属素材と光重合性および/または
架橋性を有する樹脂成分とからなる粉末混入樹脂を調製
し、調製した粉末混入樹脂を光照射、硬化することによ
り得ることができる。
The stereolithography product of the metal powder or the powder-mixed resin consisting of the metal material of the special shape of the present invention is a powder comprising the metal powder or the metal material of the special shape and a resin component having photopolymerization and / or crosslinkability. It can be obtained by preparing a mixed resin and irradiating and curing the prepared powdered mixed resin.

【0014】本発明の金属粉末もしくは特殊形状の金属
素材の使用金属としては、アルミニウムや銅、チタン、
黒鉛等が挙げられ、各種の合金および酸化物等も使用可
能である。またこれらの金属に加えてセラミックや顔料
その他の添加物を加えてもよい。
The metal used in the metal powder or the specially shaped metal material of the present invention includes aluminum, copper, titanium,
Examples thereof include graphite, and various alloys and oxides can also be used. In addition to these metals, ceramics, pigments and other additives may be added.

【0015】本発明で用いる上記金属粉末もしくは特殊
形状の金属素材の純度や粒度等は特に制限されないが、
粒子径が大きすぎると粉末混入樹脂中での安定性が低下
し沈降しやすくなるため、均一な粉末混入樹脂が得られ
ないおそれがあり、さらに粒径が大きいと精密な寸法を
要求される光造形体の造形が困難となる。このため、通
常用いる金属粉末もしくは特殊形状の金属素材の粒子径
は200μm以下、好ましくは100μm以下である。
The purity and particle size of the metal powder or the specially shaped metal material used in the present invention is not particularly limited,
If the particle size is too large, the stability in the powder-mixed resin will decrease and it will easily settle, so it may not be possible to obtain a uniform powder-mixed resin. It becomes difficult to form the molded body. Therefore, the particle diameter of the metal powder or the specially shaped metal material that is usually used is 200 μm or less, preferably 100 μm or less.

【0016】本発明の金属粉末もしくは特殊形状の金属
素材を分散含有する光重合性および/または架橋性の光
硬化性樹脂成分は、ラジカル重合型で、ポリエキシアク
リレート、ポリエーテルアクリレート、ポリエステルア
クリレート、ウレタンアクリレート等のアクリル系樹脂
を生成する成分や、カチオン重合型で、エポキシ樹脂等
を生成する成分であり、それぞれ樹脂原料成分のモノマ
ーおよび多官能性オリゴマーで構成される。
The photopolymerizable and / or crosslinkable photocurable resin component of the present invention containing the metal powder or the specially shaped metal material dispersed therein is a radical-polymerizable polyexiacrylate, polyether acrylate, polyester acrylate, It is a component that forms an acrylic resin such as urethane acrylate, or a component that forms a cationic polymerization type epoxy resin, and is composed of a monomer and a polyfunctional oligomer that are resin raw material components.

【0017】本発明の金属粉末もしくは特殊形状の金属
素材を分散含有する光重合性および/または架橋性の光
硬化性樹脂成分からなる粉末混入樹脂において、上記光
硬化性樹脂成分に対する金属粉末もしくは特殊形状の金
属素材の添加量は、体積濃度で50%以下であり、好ま
しくは20%以下である。金属粉末もしくは特殊形状の
金属素材の添加量が少ないと、得られる光造形体の特性
の改善が顕著でない。一方、金属粉末もしくは特殊形状
の金属素材の添加量が多くなると光硬化して形成される
粉末混入樹脂による光造形体の結合力が低下し強度が低
下するため好ましくない。さらに、金属粉末もしくは特
殊形状の金属素材の添加量が極めて多い粉末混入樹脂で
は、粉末混入樹脂の粘性が高くなるため、光造形が困難
となるおそれがあり好ましくない。
In the powder-mixed resin comprising the photopolymerizable and / or crosslinkable photocurable resin component containing the metal powder or the specially shaped metal material dispersed therein, the metal powder or the special powder for the photocurable resin component is used. The volumetric concentration of the metallic material added is 50% or less, preferably 20% or less. When the addition amount of the metal powder or the metal material having a special shape is small, the characteristics of the obtained stereolithography object are not significantly improved. On the other hand, if the addition amount of the metal powder or the metal material having a special shape is increased, the binding force of the photo-molded body by the powder-mixed resin formed by photocuring is lowered and the strength is lowered, which is not preferable. Further, in the case of a powder-mixed resin containing an extremely large amount of metal powder or a metal material having a special shape, the viscosity of the powder-mixed resin becomes high, which may cause difficulty in stereolithography, which is not preferable.

【0018】上記の金属粉末もしくは特殊形状の金属素
材を分散含有する光重合性および/または架橋性の光硬
化性樹脂成分からなる粉末混入樹脂は、光硬化させて造
形する。この場合、要すれば光重合等を促進するために
光硬化開始剤を用いることができる。
The powder-containing resin composed of the photopolymerizable and / or crosslinkable photocurable resin component containing the metal powder or the specially shaped metal material dispersed therein is photocured and shaped. In this case, if necessary, a photocuring initiator can be used to accelerate photopolymerization and the like.

【0019】さらに、本発明の粉末混入樹脂において、
要すれば分散剤を添加することができる。粉末混入樹脂
中で金属粉末もしくは特殊形状の金属素材を長時間安定
に分散を維持するためには、添加するのが好ましい。
Furthermore, in the powder-mixed resin of the present invention,
If necessary, a dispersant can be added. In order to maintain stable dispersion of the metal powder or the specially shaped metal material in the powder-mixed resin for a long time, it is preferable to add it.

【0020】本発明の粉末混入樹脂において、溶媒は必
ずしも必要ではない。しかし、一般に光造形に用いられ
る光重合性および/または架橋性の光硬化性樹脂成分は
粘性が高く、金属粉末もしくは特殊形状の金属素材を添
加することによりさらに粘度が高くなるため、光造形が
困難になる場合がある。このような場合においては、好
ましくは、重合開始剤および分散剤等の添加が可能であ
る。
A solvent is not always necessary in the powdered resin of the present invention. However, the photopolymerizable and / or crosslinkable photocurable resin component generally used for stereolithography has a high viscosity, and the addition of metal powder or a specially shaped metal material further increases the viscosity. It can be difficult. In such a case, it is possible to preferably add a polymerization initiator and a dispersant.

【0021】[0021]

【実施例】以下、この発明の一実施例を図面に基づき説
明する。図1ないし図3は、この発明の粉末混入樹脂に
よる光造形方法に使用される光造形装置を示すものであ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. 1 to 3 show a stereolithography apparatus used in a stereolithography method using a powder-mixed resin according to the present invention.

【0022】図1において、紫外線レーザ(ヘリウムカ
ドミウムレーザ)1から出力される紫外線ビームは、ピ
ンホール2とシャッタ3を通り、集光レンズ4を透過し
て集光された後、支持台5上にホルダ6で保持したガラ
ス板7を介して試料8に照射される。集光レンズ4は支
持台5に沿って昇降する微動装置9により焦点位置を移
動し、あらかじめガラス板7でのビーム直径をビームプ
ロファイラ装置により設定することができる。10はシ
ャッタ3から入射した紫外線ビームを集光レンズ4に送
る反射ミラーである。
In FIG. 1, an ultraviolet beam emitted from an ultraviolet laser (helium cadmium laser) 1 passes through a pinhole 2 and a shutter 3, passes through a condenser lens 4 and is condensed, and then on a support 5. The sample 8 is irradiated through the glass plate 7 held by the holder 6. The focus position of the condenser lens 4 is moved by a fine movement device 9 that moves up and down along the support table 5, and the beam diameter on the glass plate 7 can be set in advance by a beam profiler device. Reference numeral 10 is a reflection mirror that sends the ultraviolet beam incident from the shutter 3 to the condenser lens 4.

【0023】図2において紫外線レーザ1から出力され
る紫外線ビームは、光ファイバーにより粉末混入樹脂に
導かれる。すなわち、ピンホール2とシャッタ3を通
り、NC走査装置15で制御される集光レンズ4を透過
して集光された後、底面をガラス板7とした容器11内
に収納した粉末混入樹脂12に照射される。集光レンズ
4はNC走査装置15により焦点位置を移動することが
できる。このときのビーム直径は、集光レンズ4とガラ
ス板7との距離によって決定される。13は粉末混入樹
脂12の攪拌機、14は攪拌用プロペラである。
In FIG. 2, the ultraviolet beam output from the ultraviolet laser 1 is guided to the powder mixed resin by an optical fiber. That is, after passing through the pinhole 2 and the shutter 3 and passing through the condenser lens 4 controlled by the NC scanning device 15 to be condensed, the powder mixed resin 12 housed in the container 11 having the glass plate 7 as the bottom surface. Is irradiated. The focal point of the condenser lens 4 can be moved by the NC scanning device 15. The beam diameter at this time is determined by the distance between the condenser lens 4 and the glass plate 7. Reference numeral 13 is a stirrer for the powdered resin 12, and 14 is a stirring propeller.

【0024】上記装置において、レーザ照射により硬化
した樹脂はガラス板上に形成されるので、アルコール溶
液中で超音波洗浄をした後、顕微鏡で観察した。
In the above apparatus, since the resin cured by laser irradiation is formed on the glass plate, it was observed with a microscope after ultrasonic cleaning in an alcohol solution.

【0025】図3において紫外線レーザ1から出力され
る紫外線ビームは、光ファイバーにより粉末混入樹脂1
2の液表面上に導かれる。すなわち、ピンホール2とシ
ャッタ3を通り、NC走査装置15で制御される集光レ
ンズ4を透過して集光された後、底面をガラス板7とし
た容器11内に収納した粉末混入樹脂12に照射され
る。集光レンズ4はNC走査装置15により焦点位置を
移動することができる。このときのビーム直径は、集光
レンズ4と樹脂表面との距離を液面レベルセンサーで監
視しながら液面高さ調節用の昇降装置21により決定す
る。集光レンズ4は、X−Yの2軸制御によって樹脂表
面に立体断面の輪郭を描き、硬化した樹脂は積層テーブ
ル22上に形成される。次に積層テーブル22をわずか
に液中に沈め、さらに紫外線ビームを照射して積層を行
なう操作を所定回数繰り返すことにより、硬化した樹脂
が積層されて立体模型が作られる。なお、描画速度は、
常に紫外線の露光量が指定量になるように、微妙なレー
ザ出力の変動に合わせて調節される。
In FIG. 3, the ultraviolet beam output from the ultraviolet laser 1 is a powder mixed resin 1 by an optical fiber.
2 is directed onto the liquid surface. That is, after passing through the pinhole 2 and the shutter 3 and passing through the condenser lens 4 controlled by the NC scanning device 15 to be condensed, the powder mixed resin 12 housed in the container 11 having the glass plate 7 as the bottom surface. Is irradiated. The focal point of the condenser lens 4 can be moved by the NC scanning device 15. The beam diameter at this time is determined by the elevating device 21 for adjusting the liquid level while monitoring the distance between the condenser lens 4 and the resin surface with a liquid level sensor. The condenser lens 4 draws a three-dimensional outline on the resin surface by XY biaxial control, and the cured resin is formed on the laminated table 22. Next, the lamination table 22 is slightly submerged in the liquid, and the operation of irradiating with an ultraviolet beam to perform lamination is repeated a predetermined number of times, whereby the cured resin is laminated to form a three-dimensional model. The drawing speed is
It is adjusted according to the slight fluctuation of the laser output so that the exposure amount of ultraviolet rays is always the designated amount.

【0026】粉末混入樹脂12は、粉末が沈殿しないよ
うに攪拌機13により攪拌を行う。図4は、アルミニウ
ム粉末を混入して創製された立体形状である。
The powder-mixed resin 12 is stirred by a stirrer 13 so that the powder does not precipitate. FIG. 4 shows a three-dimensional shape created by mixing aluminum powder.

【0027】下記に実験条件および混入樹脂粉末の種類
を示す。 (実験条件) ビーム直径 0.1mm レンズ焦点距離 50mm 走査速度 3mm/sec レーザ発振波長 325nm 試料に照射される光強度 3.5mW (混入樹脂の種類) 素材 粒子大きさ 粒子形状 アルミニウム 100μm(平均) 球状 銅 100μm(平均) 樹枝状 黒鉛 〜50μm 結晶状 酸化チタン 短軸0.3μm・長軸6μm 針状 粉末を樹脂中に分散する方法としては以下の方法があ
る。
The experimental conditions and types of mixed resin powders are shown below. (Experimental conditions) Beam diameter 0.1 mm Lens focal length 50 mm Scanning speed 3 mm / sec Laser oscillation wavelength 325 nm Light intensity irradiated on sample 3.5 mW (kind of mixed resin) Material Particle size Particle shape Aluminum 100 μm (average) Spherical Copper 100 μm (average) Dendritic graphite to 50 μm Crystalline titanium oxide Short axis 0.3 μm / long axis 6 μm Needle-like powders can be dispersed in a resin by the following method.

【0028】(1)樹脂溶液中に粉末と樹脂を入れ、攪
拌して均一に分散する方法。
(1) A method in which a powder and a resin are put in a resin solution and stirred to uniformly disperse the resin.

【0029】(2)樹脂溶液中に粉末と樹脂を入れ、樹
脂を循環して均一に分散する方法。
(2) A method of putting powder and resin in a resin solution and circulating the resin to uniformly disperse the resin.

【0030】(3)分散剤を混入して均一に分散する方
法。
(3) A method in which a dispersant is mixed and uniformly dispersed.

【0031】(4)振動を加えて粉末と樹脂とを分散す
る方法。
(4) A method of dispersing powder and resin by applying vibration.

【0032】(5)自然放置により分散する方法。(5) A method of dispersing by leaving it to stand.

【0033】(6)(1)〜(5)の併用による方法。(6) A method in which (1) to (5) are used in combination.

【0034】立体造形の方法としては以下の方法があ
る。
The following methods are available as three-dimensional modeling methods.

【0035】(1)自由液面に立体断面の光照射を行
い、硬化した樹脂を積層する方法。
(1) A method of irradiating a free liquid surface with light having a three-dimensional cross section and laminating a cured resin.

【0036】(2)規制液面に立体断面の光照射を行
い、硬化した樹脂を積層する方法。
(2) A method of irradiating the regulated liquid surface with light in a three-dimensional cross section and laminating a cured resin.

【0037】(3)ノズルより吐出する粉末混入樹脂を
光硬化し、立体を造形する方法。
(3) A method in which a powder-mixed resin discharged from a nozzle is photocured to form a three-dimensional object.

【0038】粉末混入樹脂の供給方法には以下の方法が
ある。
There are the following methods for supplying the powdered resin.

【0039】(1)造形物を液中に移動する方法。(1) A method of moving a modeled object into a liquid.

【0040】(2)樹脂を覆いかぶせる方法。(2) A method of covering with a resin.

【0041】(3)ノズルから樹脂を供給する方法。(3) A method of supplying resin from a nozzle.

【0042】(4)刷毛で樹脂を供給する方法。(4) Method of supplying resin by brush.

【0043】(5)(1)〜(4)の併用による方法。(5) A method in which (1) to (4) are used in combination.

【0044】光照射の方法には以下の方法がある。There are the following methods of light irradiation.

【0045】(1)レーザビームの照射による方法。(1) Method by laser beam irradiation.

【0046】(2)平面波の投影による方法。(2) Method by projection of plane wave.

【0047】(3)マスキングによる方法。 〔実施例1〕図1に示す実験装置で下記条件により粉末
を混入した紫外線硬化樹脂にレーザ照射し、硬化範囲の
形状変化を工具顕微鏡により測定した。 表−1 実験条件 表−2 混入粉末の種類 素材の色(反射率)の違いによる硬化特性の変化を図5
および図6に示す。硬化深さおよび硬化幅ともにアルミ
ニウムが大きく、次いで銅、黒鉛となった。これは反射
率の小さい素材ほど硬化範囲が小さくなると考えられ
る。 〔実施例2〕次に図2のラスター走査を行なう実験装置
および図3の積層を行なう実験装置で走査平面および積
層する層間の密着性を観察した。実験条件を表−3に、
使用した粉末の種類を表−4に示す。 表−3 実験条件 表−4 混入粉末の種類 表面反射率の小さい黒鉛粉末は、レーザエネルギーの減
衰が大きく、樹脂の硬化する範囲が小さいことからラス
ター走査間隔が0.2mmでは密着しない。ラスター走
査間隔が0.1mmではレーザビームが重なり合い、硬
化物が密着したものとなった。表面反射率の大きいアル
ミニウム粉末は、光の拡散により幅広く硬化し、ラスタ
ー走査間隔が0.2mmでも密着している。 〔実施例3〕粉末混入樹脂により光造形を行ない、引っ
張り強さおよび軟化点を測定し、粉末混入樹脂により得
られる創製物の構造材料への適用を目的とした機能性・
機械的特性について実験を行ない、得られた結果を述べ
る。
(3) Method by masking. [Example 1] An ultraviolet curable resin mixed with powder was irradiated with laser in the experimental apparatus shown in Fig. 1 under the following conditions, and the change in shape in the curing range was measured by a tool microscope. Table-1 Experimental conditions Table-2 Types of mixed powder Fig. 5 shows changes in curing characteristics due to differences in material colors (reflectance).
And shown in FIG. Aluminum had a large hardening depth and hardening width, followed by copper and graphite. It is considered that this is because the material having a smaller reflectance has a smaller curing range. [Example 2] Next, the adhesion between the scanning plane and the layers to be laminated was observed with the experimental apparatus for raster scanning shown in FIG. 2 and the experimental apparatus for laminating shown in FIG. Table 3 shows the experimental conditions.
Table 4 shows the types of powder used. Table-3 Experimental conditions Table-4 Types of mixed powder Graphite powder having a small surface reflectance has a large attenuation of laser energy and a resin hardening range is small, so that it does not adhere when the raster scanning interval is 0.2 mm. When the raster scanning interval was 0.1 mm, the laser beams overlapped with each other, and the cured product was in close contact. The aluminum powder having a high surface reflectance is broadly hardened due to the diffusion of light, and adheres even if the raster scanning interval is 0.2 mm. [Example 3] Stereolithography using a powder-mixed resin, measuring tensile strength and softening point, and functionality for the purpose of applying a creation obtained by the powder-mixed resin to a structural material
Experiments on mechanical properties are conducted and the results obtained are described.

【0048】引張試験片の形状を図7に示す。引張試験
は、テンシロンTM−250型により、引張速度1mm
/minで行なった。試験片は、高さ方向と厚さ方向に
積層した2種類について各5個づつ造形した。
The shape of the tensile test piece is shown in FIG. Tensile test was performed using Tensilon TM-250 type and the pulling speed was 1 mm.
/ Min. Five test pieces were formed for each of the two kinds laminated in the height direction and the thickness direction.

【0049】線膨張率の測定は、直径5mm×高さ15
mmの円柱を造形し、垂直方向に100gfの圧縮荷重
をかけ、5℃/minの昇温速度でTMAによる寸法変
化を測定した。本実験による軟化点は、TMA測定で得
られたデータの勾配変化点の温度とした。
The linear expansion coefficient is measured by a diameter of 5 mm and a height of 15
A cylinder of mm was formed, a compressive load of 100 gf was applied in the vertical direction, and a dimensional change by TMA was measured at a temperature rising rate of 5 ° C./min. The softening point in this experiment was the temperature at the slope change point of the data obtained by TMA measurement.

【0050】実験に使用した粉末を表−5に、試験片の
造形条件を表−6に示す。光硬化樹脂は、サンノプコ
(株)SN5X1641を使用した。 表−5 混入粉末の種類 表−6 実験条件 実験装置は図3の装置とし、試験片の作成は紫外線ビー
ムをX−Y走査装置で自由液面から粉末混入樹脂に照射
した。
The powder used in the experiment is shown in Table-5, and the molding condition of the test piece is shown in Table-6. As the photocurable resin, SN5X1641 of San Nopco Ltd. was used. Table-5 Types of mixed powder Table-6 Experimental conditions The experimental apparatus was the apparatus shown in FIG. 3, and the test piece was prepared by irradiating the powder mixed resin with an ultraviolet beam from the free liquid surface using an XY scanning device.

【0051】引張試験の測定結果を表−7に示す。アル
ミニウムおよび銅を素材とする粉末混入樹脂は引張強度
が向上し、特に樹枝状の銅粉末混入樹脂は大きく向上し
た。 表−7 引張強さ 軟化点の測定結果を表−8に示す。粉末混入樹脂の軟化
点は向上し、特に黒鉛粉末混入樹脂の軟化点は大きく向
上した。 表−8 線膨張係数と軟化点 *2℃/minの測定、他は5℃/min
The measurement results of the tensile test are shown in Table-7. The tensile strength of the powder-mixed resin made of aluminum and copper was improved, and the dendritic copper powder-mixed resin was greatly improved. Table-7 Tensile strength The measurement results of the softening point are shown in Table-8. The softening point of the powdered resin was improved, and especially the softening point of the graphite powdered resin was greatly improved. Table-8 Linear expansion coefficient and softening point * 2 ℃ / min measurement, other 5 ℃ / min

【0052】[0052]

【発明の効果】粉末を混入した樹脂を用いて光造形を行
うことにより、その光造形体に電気伝導性、熱伝導性、
剛性、靭性、比重の改善などの機能性を付加することが
でき、例えば、光造形で得られた光造形体をそのまま試
作部品として、あるいは数個どりの簡易型として使用す
ることができる。
[Effects of the Invention] By carrying out stereolithography using a resin mixed with powder, electrical conductivity, thermal conductivity,
Functionality such as rigidity, toughness, and improvement of specific gravity can be added. For example, a stereolithography body obtained by stereolithography can be used as it is as a prototype part or as a simple mold of several pieces.

【0053】具体的には、人骨、歯などの生体材料や、
ダイカスト、放電加工の型、プロトタイプ試作部品また
は製品としてそのまま使用する部品等に利用可能であ
る。
Specifically, biomaterials such as human bones and teeth,
It can be used for die-casting, electrical discharge machining molds, prototype prototype parts or parts used as is as a product.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の粉末混入樹脂による光造形方法に使
用される光造形装置の1例を示す概略図である。
FIG. 1 is a schematic view showing an example of a stereolithography apparatus used in a stereolithography method using a powdered resin of the present invention.

【図2】この発明の粉末混入樹脂による光造形方法に使
用される光造形装置の他の例を示す概略図である。
FIG. 2 is a schematic view showing another example of a stereolithography apparatus used in the stereolithography method using the powdered resin of the present invention.

【図3】この発明の粉末混入樹脂による光造形方法に使
用される光造形装置の別の例を示す概略図である。
FIG. 3 is a schematic view showing another example of a stereolithography apparatus used in the stereolithography method using the powdered resin of the present invention.

【図4】アルミニウム粉末を混入して創製された立体造
形物の1例を示す斜視図である。
FIG. 4 is a perspective view showing an example of a three-dimensional object created by mixing aluminum powder.

【図5】粉末混入樹脂の体積濃度と硬化深さを示すグラ
フである。
FIG. 5 is a graph showing a volume concentration of a resin mixed with powder and a curing depth.

【図6】粉末混入樹脂の体積濃度と硬化幅を示すグラフ
である。
FIG. 6 is a graph showing a volume concentration of a resin mixed with powder and a curing width.

【図7】(イ)は引張試験を行なった試験片形状を示す
平面図、(ロ)はその側面図である。
7A is a plan view showing the shape of a test piece subjected to a tensile test, and FIG. 7B is a side view thereof.

【図8】針状導電性酸化チタンの含有量と表面抵抗値を
示すグラフである。
FIG. 8 is a graph showing the content of needle-shaped conductive titanium oxide and the surface resistance value.

【符号の説明】[Explanation of symbols]

1 紫外線レーザ 2 ピンホール 3 シャッタ 4 集光レンズ 5 支持台 6 ホルダ 7 ガラス板 8 試料 9 微動装置 10 反射ミラー 11 容器 12 粉末混入樹脂 13 攪拌機 14 攪拌用プロペラ 15 NC走査装置 21 液面高さ調節台 22 積層テーブル 1 Ultraviolet Laser 2 Pinhole 3 Shutter 4 Condenser Lens 5 Support 6 Holder 7 Glass Plate 8 Sample 9 Fine Adjustment Device 10 Reflection Mirror 11 Container 12 Powder Mixing Resin 13 Stirrer 14 Stirring Propeller 15 NC Scanning Device 21 Liquid Level Height Adjustment Stand 22 Stacked table

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年4月3日[Submission date] April 3, 1995

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図7[Name of item to be corrected] Figure 7

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図7】引張試験を行なった試験片形状を示す平面図お
よびその側面図である。
7A and 7B are a plan view and a side view showing a shape of a test piece subjected to a tensile test.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光造形用樹脂中に金属粉末もしくは特殊
形状の金属素材を均一に分散含有させた硬化層を積層形
成されてなることを特徴とする粉末混入樹脂による光造
形体。
1. A stereolithography body made of a powder-mixed resin, which is formed by laminating a cured layer in which metal powder or a metal material having a special shape is uniformly dispersed and contained in a stereolithography resin.
【請求項2】 前記金属−樹脂硬化層が金属粉末もしく
は特殊形状の金属素材を分散含有する光重合性および/
または架橋性の光硬化性樹脂成分からなる粉末混入樹脂
を光照射することにより形成される請求項1記載の粉末
混入樹脂による光造形体。
2. The photopolymerizable and / or metal-resin cured layer containing a metal powder or a metal material having a special shape dispersed therein.
Alternatively, the stereolithography body made of the powder-mixed resin according to claim 1, which is formed by irradiating the powder-mixed resin made of a crosslinkable photocurable resin component.
【請求項3】 特殊形状の金属素材が針状のホイスカで
ある請求項1記載の粉末混入樹脂による光造形体。
3. A stereolithography body made of a powder-mixed resin according to claim 1, wherein the specially shaped metal material is a needle-shaped whisker.
JP6261433A 1994-09-29 1994-09-29 Optically shaped body by powder-mixed resin Pending JPH0899360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6261433A JPH0899360A (en) 1994-09-29 1994-09-29 Optically shaped body by powder-mixed resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6261433A JPH0899360A (en) 1994-09-29 1994-09-29 Optically shaped body by powder-mixed resin

Publications (1)

Publication Number Publication Date
JPH0899360A true JPH0899360A (en) 1996-04-16

Family

ID=17361822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6261433A Pending JPH0899360A (en) 1994-09-29 1994-09-29 Optically shaped body by powder-mixed resin

Country Status (1)

Country Link
JP (1) JPH0899360A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09150459A (en) * 1995-11-30 1997-06-10 Nec Corp Photo-set shaped article and method and apparatus for shaping the same
WO1997023342A1 (en) * 1995-12-22 1997-07-03 Ciba Specialty Chemicals Holding Inc. Process for the stereolithographic preparation of three-dimensional objects using a radiation-curable liquid formulation which contains fillers
EP1029651A1 (en) * 1999-02-17 2000-08-23 Klaus-Jürgen Prof. Dr.-Ing. Peschges Method to produce three dimensional objects by stereolithography
KR100805674B1 (en) * 2006-04-18 2008-02-21 이인환 Micro-stereolithography apparatus and method thereof
EP3530438A1 (en) * 2018-02-23 2019-08-28 XYZprinting, Inc. Three-dimensional printer
EP3650202A1 (en) * 2018-11-12 2020-05-13 XYZprinting, Inc. Three-dimensional printing device with stirring mechanism

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09150459A (en) * 1995-11-30 1997-06-10 Nec Corp Photo-set shaped article and method and apparatus for shaping the same
WO1997023342A1 (en) * 1995-12-22 1997-07-03 Ciba Specialty Chemicals Holding Inc. Process for the stereolithographic preparation of three-dimensional objects using a radiation-curable liquid formulation which contains fillers
EP1029651A1 (en) * 1999-02-17 2000-08-23 Klaus-Jürgen Prof. Dr.-Ing. Peschges Method to produce three dimensional objects by stereolithography
KR100805674B1 (en) * 2006-04-18 2008-02-21 이인환 Micro-stereolithography apparatus and method thereof
EP3530438A1 (en) * 2018-02-23 2019-08-28 XYZprinting, Inc. Three-dimensional printer
EP3650202A1 (en) * 2018-11-12 2020-05-13 XYZprinting, Inc. Three-dimensional printing device with stirring mechanism

Similar Documents

Publication Publication Date Title
Zakeri et al. A comprehensive review of the photopolymerization of ceramic resins used in stereolithography
Zhang et al. Additive manufacturing processes and equipment
US6243616B1 (en) Method and device for producing three-dimensional objects
Hinczewski et al. Ceramic suspensions suitable for stereolithography
KR100869536B1 (en) Three-dimensional structured printing
TW214584B (en)
Deshmukh et al. Fundamentals and applications of 3D and 4D printing of polymers: challenges in polymer processing and prospects of future research
US5679722A (en) Resin composition for production of a three-dimensional object by curing
JPH0760844A (en) Manufacture of three-dimensional structure
JPH0899360A (en) Optically shaped body by powder-mixed resin
JPH09277384A (en) Manufacture of three dimensional structure and apparatus therefor
Godec et al. Introduction to additive manufacturing
CN109382514A (en) The continuous increasing material manufacturing of high-pressure turbine
JPH0224127A (en) Optical shaping method
Liao Stereolithography using compositions containing ceramic powders.
Baumgartner et al. Comparison of dynamic mask‐and vector‐based ceramic stereolithography
KR20040102531A (en) Micro-stereolithography method and apparatus
Bifano Digital light processing: A review on the printing resolution and the materials options
Brady et al. Solid freeform fabrication of ceramics by stereolithography
JP2022541148A (en) process
JP7180068B2 (en) Curable liquid composition, cured product, method for producing cured product, and apparatus for producing cured product
JP2001328175A (en) Stereo lithography capable of reducing warp and resin mold for molding
Adake et al. Effect of Curing Protocol on Mechanical Behavior of Green Ceramic Bodies Fabricated in Ceramic Microstereolithography
JP7423745B2 (en) Method for digitally generating optical elements with integrated functionality and optical elements generated by the method
Ostendorf et al. Micro-and nano-parts generated by laser-based solid freeform fabrication

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040402