JPH0897450A - Thin film solar cell manufacturing method - Google Patents

Thin film solar cell manufacturing method

Info

Publication number
JPH0897450A
JPH0897450A JP6229516A JP22951694A JPH0897450A JP H0897450 A JPH0897450 A JP H0897450A JP 6229516 A JP6229516 A JP 6229516A JP 22951694 A JP22951694 A JP 22951694A JP H0897450 A JPH0897450 A JP H0897450A
Authority
JP
Japan
Prior art keywords
film
heat treatment
group
solar cell
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6229516A
Other languages
Japanese (ja)
Inventor
Takeshi Iketani
剛 池谷
Kazuhiro Takada
和弘 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP6229516A priority Critical patent/JPH0897450A/en
Publication of JPH0897450A publication Critical patent/JPH0897450A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE: To obtain an alloy film having a uniform distribution in compsn. by a film contg. elements of groups 1B, 3B and 6B through alloying to convert it to a light absorbing film. CONSTITUTION: A Mo film 2 is formed on a glass substrate 1 by sputtering. A Cu-In/Se dispersed plated film 3 is formed thereon. The temp. is raised from room temp. to 157-190 deg.C at the rate of 30 deg.C/min in a vacuum heat-treating furnace and the temperature is held at the final value for about 30-60min to diffuse In into Cu, thereby uniformly distributing In and Cu in the film. Then, a gas contg. Se is introduced and held at 200-250 deg.C for about 30-60min and then 400-450 deg.C for about 2-4hrs to alloy them, thereby forming an InSe2 film 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、周期律表の1B族、3
B族、及び6B族の元素からなる化合物半導体を用いて
形成された薄膜太陽電池の製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to 1B group of the periodic table, 3
The present invention relates to a method for manufacturing a thin-film solar cell formed by using a compound semiconductor composed of Group B and Group 6B elements.

【0002】[0002]

【従来の技術】最近、優れた光電変換効率を有し、大面
積の薄膜太陽電池を低コストで製造できるものとして周
期律表の1B族−3B族−6B族の元素からなる化合物
半導体が注目されており、特にCuInSe2 は、
(1)吸収係数αが105 /cm程度と高く、2μm程
度の薄膜でも十分に太陽光を吸収できること、(2)禁
止帯幅が1.1eVであり、太陽光の光電変換に適して
いること、(3)光劣化がアモルファス・シリコンと比
べて著しく小さいこと等の特徴を有していることから最
も注目されている。大面積の薄膜太陽電池を低コストで
製造するため、特開平5−267704号公報、特表平
5−506334号(国際公開WO92/05586
号)公報に開示されているように、分散めっき法を利用
した太陽電池の製造方法が提案されている。CuInS
e三元合金膜を製造する方法が提案されている。
2. Description of the Related Art Recently, a compound semiconductor composed of an element of Group 1B-3B-6B of the periodic table has attracted attention as a thin-film solar cell having a large photoelectric conversion efficiency and a large area, which can be manufactured at low cost. In particular, CuInSe 2 is
(1) Absorption coefficient α is as high as about 10 5 / cm, and even a thin film of about 2 μm can sufficiently absorb sunlight. (2) Forbidden band width is 1.1 eV, which is suitable for photoelectric conversion of sunlight. In particular, (3) photodegradation has the feature that it is significantly smaller than that of amorphous silicon, and therefore, it is most noticed. In order to manufacture a large-area thin film solar cell at low cost, JP-A-5-267704 and JP-A-5-506334 (International Publication WO92 / 05586).
As disclosed in Japanese Laid-Open Patent Publication No. 1989-163, a method of manufacturing a solar cell using a dispersion plating method has been proposed. CuInS
A method for producing a ternary alloy film has been proposed.

【0003】図6は従来の化合物半導体を用いた薄膜太
陽電池の製造方法の第1の例を説明するための工程順に
示した断面図である。この製造方法は、前記特開平5−
267704号公報に開示された方法である。
6A to 6C are sectional views showing a first example of a method of manufacturing a conventional thin film solar cell using a compound semiconductor in the order of steps for explaining. This manufacturing method is described in the above-mentioned JP-A-5-
This is the method disclosed in Japanese Patent No. 267704.

【0004】まず、図6(a)に示すように、Ti板4
1の上に電着法によりCu膜42、In膜43をCu/
Inのモル比が1となるように、そして膜厚が約1μm
になるように形成する。
First, as shown in FIG. 6 (a), a Ti plate 4
Cu film 42 and In film 43 on top of No. 1 by Cu /
The molar ratio of In is 1 and the film thickness is about 1 μm
To be formed.

【0005】次に、図7に示すような温度プロファイル
で熱処理を行う。まず、N2 +H2混合ガス中で室温か
ら5℃/分の速度で300℃まで上げ、この温度に約3
0分保持した後、Seガスを導入して2時間保持し、次
にSeガスを停止してさらに1時間保持して残留Seガ
スを除去する。次いで、5℃/分の速度で500℃まで
上げ、この温度に1時間保持した後、冷却する。この熱
処理により図6(b)に示すようなCuInSe2 膜4
4を得る。
Next, heat treatment is performed with a temperature profile as shown in FIG. First, the temperature was raised from room temperature to 300 ° C. at a rate of 5 ° C./min in a mixed gas of N 2 + H 2 and the temperature was raised to about 3
After holding for 0 minutes, Se gas is introduced and held for 2 hours, then Se gas is stopped and held for another hour to remove residual Se gas. Then, the temperature is raised to 500 ° C. at a rate of 5 ° C./minute, and this temperature is maintained for 1 hour, and then cooled. By this heat treatment, the CuInSe 2 film 4 as shown in FIG.
Get 4.

【0006】図8は従来の化合物半導体を用いた薄膜太
陽電池の製造方法の第2の例を説明するための工程順に
示した断面図である。この製造方法は、前記特表平5−
506334号公報に開示された方法である。
FIG. 8 is a sectional view showing the order of steps for explaining a second example of a conventional method for manufacturing a thin film solar cell using a compound semiconductor. This manufacturing method is based on
This is the method disclosed in Japanese Patent No. 506334.

【0007】まず、図8(a)に示すように、ガラス基
板51の上に蒸着、スパッタなどの方法によりMo膜5
2を形成したものを用意する。
First, as shown in FIG. 8A, a Mo film 5 is formed on a glass substrate 51 by a method such as vapor deposition or sputtering.
Prepare what formed 2.

【0008】めっき液は、次の割合で調合する。 スルファミン酸銅 0.01 M スルファミン酸インジウム 0.5 M スルファミン酸 0.104M Se粉末 50g/l(0.633M) ここで、Mはモル/リットルを示す。このめっき液を用
い、Mo膜52を陰極として電流密度3A/dm2 で電
着を行なってCu−In/Se分散めっき膜53を形成
する。特表平5−506334号公報に開示されている
データによれば、このめっき膜の組成は、重量比(wt
%)で、 Cu:In:Se=20.5:44.1:35.4 である。原子比(at%)に直して示すと、 Cu:In:Se=28.0:33.2:38.8 となる。
The plating solution is prepared in the following ratio. Copper sulfamate 0.01 M Indium sulfamate 0.5 M Sulfamic acid 0.104 M Se powder 50 g / l (0.633 M) Here, M represents mol / liter. Using this plating solution, electrodeposition is performed at a current density of 3 A / dm 2 using the Mo film 52 as a cathode to form a Cu-In / Se dispersed plating film 53. According to the data disclosed in Japanese Laid-Open Patent Publication No. 5-506334, the composition of this plating film has a weight ratio (wt).
%), Cu: In: Se = 20.5: 44.1: 35.4. When converted to the atomic ratio (at%), it becomes Cu: In: Se = 28.0: 33.2: 38.8.

【0009】次に、図8(b)に示すように、Seを含
むガス雰囲気中で熱処理してCuInSe2 膜54を得
る。特表平5−506334号公報には熱処理について
開示されていないが、熱処理は、通常、図9に示すよう
に、ArガスとH2 Seガスを混合したAr+H2 Se
ガス雰囲気中またはArガスとSe蒸気を混合したAr
+Seガス雰囲気中で室温から30℃/分の速度で20
0℃〜250℃に上げ、この温度に約30分〜60分保
持し、次に30℃/分の速度で400℃〜450℃に上
げ、この温度に約2〜4時間保持し、次に室温まで冷却
する条件で行われる。200℃〜250℃の温度は合金
化が始まる温度、400℃〜450℃はCuInSe2
の結晶が成長する温度といわれている。
Next, as shown in FIG. 8B, heat treatment is performed in a gas atmosphere containing Se to obtain a CuInSe 2 film 54. Although the heat treatment is not disclosed in JP-A-5-506334, the heat treatment is usually performed by mixing Ar gas and H 2 Se gas with Ar + H 2 Se as shown in FIG. 9.
Ar in gas atmosphere or mixed Ar gas and Se vapor
20 at room temperature + 30 ° C / min in + Se gas atmosphere
Raise to 0 ° C-250 ° C, hold at this temperature for about 30-60 minutes, then raise to 400 ° C-450 ° C at a rate of 30 ° C / min, hold at this temperature for about 2-4 hours, then It is performed under the condition of cooling to room temperature. The temperature of 200 ° C. to 250 ° C. is the temperature at which alloying begins, and the temperature of 400 ° C. to 450 ° C. is CuInSe 2
Is said to be the temperature at which the crystals grow.

【0010】[0010]

【発明が解決しようとする課題】上記第1の例ではCu
膜とIn膜を別々にを形成した後に、第2の例ではCu
−In/Se分散めっき膜を形成した後に、Seを含む
ガス雰囲気中で熱処理してCuInSe2 膜を得ている
が、この熱処理では、図10に示すように、Cu−In
合金化は均一に行われていない。図10は第2の例のC
uInSe2 膜54をオージェ電子分光器でCuInS
2 膜を深さ方向に濃度測定をしたもので、横軸に深さ
を、縦軸に相対濃度をとっている。図10から分かるよ
うに、下地(Mo膜52)付近にInが多く、膜表面付
近はInが少ないという組成勾配がついてしまう。さら
にCuは下地に近づくに従って濃度が減少している。こ
のようにCuとInの濃度分布が均一でないと良好なカ
ルコパイライト型のCuInSe2 結晶が得られず、C
uInSe2 膜の上に形成されるCdSとの間に良好な
p−n接合が形成されず、従って光電変換効率が低下
し、製造歩留りが低下するという問題があった。
In the above first example, Cu is used.
After forming the film and the In film separately, in the second example, Cu
After forming the -In / Se dispersed plating film, a CuInSe 2 film is obtained by heat treatment in a gas atmosphere containing Se. In this heat treatment, as shown in FIG.
The alloying is not uniform. FIG. 10 shows C of the second example.
The uInSe 2 film 54 is CuInS by Auger electron spectroscopy.
The concentration of the e 2 film was measured in the depth direction, where the horizontal axis represents the depth and the vertical axis represents the relative concentration. As can be seen from FIG. 10, there is a composition gradient in which a large amount of In is present near the base (Mo film 52) and a small amount of In is present near the film surface. Further, the concentration of Cu decreases as it gets closer to the base. If the concentration distribution of Cu and In is not uniform in this way, a good chalcopyrite type CuInSe 2 crystal cannot be obtained, and C
There is a problem that a good pn junction is not formed with CdS formed on the uInSe 2 film, so that the photoelectric conversion efficiency is lowered and the manufacturing yield is lowered.

【0011】本発明の目的は、周期律表の1B族、3B
族、及び6B族の元素を含む膜を熱処理により合金化し
て光吸収膜とする薄膜太陽電池の製造において、均一組
成の合金膜が得られ、高光電変換効率を有する薄膜太陽
電池を高い製造歩留りで製造することのできる薄膜太陽
電池の製造方法を提供することにある。
An object of the present invention is to provide a group 1B, 3B of the periodic table.
In the manufacture of a thin film solar cell in which a film containing a Group 6 element and a Group 6B element is alloyed by heat treatment to form a light absorbing film, an alloy film having a uniform composition is obtained, and a thin film solar cell having high photoelectric conversion efficiency is manufactured at a high yield Another object of the present invention is to provide a method for manufacturing a thin-film solar cell that can be manufactured by.

【0012】[0012]

【課題を解決するための手段】本発明は、表面に導電膜
を有する基板の上に周期律表の1B族、3B族、及び6
B族の元素を含む膜を形成する工程と、前記膜を6B族
元素を含むガス雰囲気中で熱処理して1B族−3B族−
6B族元素の合金膜に転換する合金化熱処理工程とを有
する薄膜太陽電池の製造方法において、前記合金化熱処
理を行う前に前記膜に含まれる1B族−3B族元素の均
一分布化熱処理を行うことを特徴とする。
According to the present invention, a 1B group, 3B group, and 6 group of the periodic table are provided on a substrate having a conductive film on its surface.
Forming a film containing a group B element, and subjecting the film to heat treatment in a gas atmosphere containing a group 6B element to form a group 1B-3B group-
In the method for manufacturing a thin-film solar cell, which comprises a step of alloying heat treatment for converting to an alloy film of a group 6B element, a heat treatment for uniform distribution of the group 1B-3B elements contained in the film is performed before the alloying heat treatment. It is characterized by

【0013】本発明は、前記均一分布化熱処理が非酸化
雰囲気中で行われることを特徴とする。
The present invention is characterized in that the uniform distribution heat treatment is performed in a non-oxidizing atmosphere.

【0014】本発明は、前記均一分布化熱処理が真空中
で行われることを特徴とする。
The present invention is characterized in that the heat treatment for uniform distribution is performed in a vacuum.

【0015】本発明は、前記均一分布化熱処理が前記膜
を構成している元素の融点の内最も低い融点以上で、か
つ前記合金化熱処理の最低温度よりも10℃低い温度以
下の範囲内で行われることを特徴とする。
According to the present invention, the uniform distribution heat treatment is performed within a range of the lowest melting point of the elements constituting the film or higher, and 10 ° C. or lower than the lowest temperature of the alloying heat treatment. It is characterized by being performed.

【0016】本発明は、前記1B族、3B族、及び6B
族の元素を含む膜が銅−インジウム−セレンを含む膜で
あることを特徴とする。
The present invention provides the above-mentioned 1B group, 3B group, and 6B
The film containing a group element is a film containing copper-indium-selenium.

【0017】本発明は、前記均一分布化熱処理が157
℃以上で、かつ190℃以下の温度範囲内で行われるこ
とを特徴とする。
In the present invention, the uniform heat treatment for distribution is 157.
It is characterized in that it is carried out within a temperature range of not lower than 0 ° C and not higher than 190 ° C.

【0018】[0018]

【作用】薄膜太陽電池の光吸収膜としての1B族、3B
族、及び6B族の元素を含む膜をめっき法で形成し、熱
処理してこの膜を合金膜に変換すると、膜の深さ方向の
組成分布が均一にならない。これは、いきなり高温熱処
理すると膜の組成元素が拡散する暇がなく、その場で合
金を作ってしまうためと考えられる。それ故、高温で合
金化熱処理する前にこの温度より低い温度で均一分布化
熱処理を行い、膜の組成元素が十分に拡散して均一に分
布するようにする。
[Function] Group 1B, 3B as a light absorbing film of a thin film solar cell
When a film containing a Group 6 element and a Group 6B element is formed by a plating method and heat treated to convert the film into an alloy film, the composition distribution in the depth direction of the film is not uniform. It is considered that this is because when the high temperature heat treatment is suddenly performed, the composition elements of the film do not have time to diffuse and an alloy is formed on the spot. Therefore, before the alloying heat treatment at a high temperature, the uniform distribution heat treatment is performed at a temperature lower than this temperature so that the composition elements of the film are sufficiently diffused and uniformly distributed.

【0019】この均一分布化熱処理において、1B族、
3B族、及び6B族の元素を含む膜が酸化してはいけな
いので、均一分布化熱処理は非酸化雰囲気中で行う。
In this uniform distribution heat treatment, 1B group,
Since the film containing the 3B group and 6B group elements should not be oxidized, the uniform distribution heat treatment is performed in a non-oxidizing atmosphere.

【0020】この均一分布化熱処理は、真空中で行うと
効率がよい。
This uniform distribution heat treatment is efficient when performed in a vacuum.

【0021】均一分布化熱処理は、膜の組成元素が十分
に拡散して均一に分布するようにする熱処理であるか
ら、膜を構成している元素の融点の内最も低い融点以上
の温度で熱処理すると効率がよい。また、合金化が始ま
ると溶融している元素が余り拡散しなくなるので、合金
化処理の最低温度より10℃低い温度以下で行うのがよ
い。
Since the uniform distribution heat treatment is a heat treatment for sufficiently diffusing the constituent elements of the film so that the constituent elements are uniformly distributed, the heat treatment is performed at a temperature equal to or higher than the lowest melting point of the melting points of the elements constituting the film. Then it is efficient. Further, when alloying starts, molten elements do not diffuse much, so it is preferable to carry out at a temperature 10 ° C. lower than the lowest temperature of alloying treatment.

【0022】本発明の方法は、周期律表の1B族、3B
族、及び6B族の元素を含む膜をめっき法を利用して作
ったすべての薄膜太陽電池に適用されるのであるが、そ
の中でもCu−In−Se三元合金が優れた光電変換効
率を有するので、特にCu−In−Seを含む膜に適用
すると効果的である。
The method of the present invention is carried out according to the groups 1B and 3B of the periodic table.
It is applied to all thin-film solar cells prepared by using a plating method to form a film containing a Group 6 element and a Group 6B element. Among them, a Cu-In-Se ternary alloy has excellent photoelectric conversion efficiency. Therefore, it is particularly effective when applied to a film containing Cu-In-Se.

【0023】光電変換性半導体膜がCu−In−Seを
含む膜である場合、最も融点が低いのはInであり、そ
の融点は156.6℃であるので、均一分布化熱処理
は、157℃室温以上で、かつ合金化処理の最低温度2
00℃より10℃低い190℃以下で行うのがよい。
When the photoelectric conversion semiconductor film is a film containing Cu—In—Se, In has the lowest melting point and its melting point is 156.6 ° C., so the uniform distribution heat treatment is 157 ° C. At room temperature or above and minimum temperature of alloying process 2
It is preferable to carry out at 190 ° C or lower, which is 10 ° C lower than 00 ° C.

【0024】[0024]

【実施例】図1は本発明の一実施例を説明するための工
程順に示した断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1A to 1D are sectional views showing steps in order to explain one embodiment of the present invention.

【0025】まず、図1(a)に示すように、ガラス基
板1の上に蒸着、スパッタなどの方法によりMo膜2を
形成したものを用意する。
First, as shown in FIG. 1A, a glass substrate 1 having a Mo film 2 formed thereon by a method such as vapor deposition and sputtering is prepared.

【0026】分散めっき液は下記組成で調合した。 スルファミン酸銅 0.01 M スルファミン酸インジウム 0.5 M スルファミン酸 0.104M Se粉末 50g/l(0.633M) ここで、Mはモル/リットルを示す。The dispersion plating solution was prepared with the following composition. Copper sulfamate 0.01 M Indium sulfamate 0.5 M Sulfamic acid 0.104 M Se powder 50 g / l (0.633 M) Here, M represents mol / liter.

【0027】このめっき液を用い、Mo膜2を陰極とし
て電流密度2A/dm2 で2分間分散めっきを行って、
図1(a)に示すように、厚さ約2μmのCu−In/
Se分散めっき膜3を形成する。
Using this plating solution, dispersion plating was performed at a current density of 2 A / dm 2 for 2 minutes with the Mo film 2 as a cathode,
As shown in FIG. 1A, Cu-In / having a thickness of about 2 μm is used.
The Se dispersed plating film 3 is formed.

【0028】図4は図1(a)に示すCu−In/Se
分散めっき膜の深さ方向の相対濃度分布図である。
FIG. 4 shows the Cu-In / Se shown in FIG.
FIG. 5 is a relative concentration distribution diagram in the depth direction of the dispersion plated film.

【0029】図1(a)のCu−In/Se分散めっき
膜3の深さ方向の組成分布をオージェ電子分析器で調べ
た。図4に示されるように、Inは膜表面付近で少な
く、下地(Mo膜2)に近づくに従って多くなってい
る。これに対してCuは膜表面付近でInより多く、下
地に近づくに従ってInより少なくなっている。
The composition distribution in the depth direction of the Cu-In / Se dispersed plating film 3 of FIG. 1 (a) was examined by an Auger electron analyzer. As shown in FIG. 4, In is small in the vicinity of the film surface and increases as it approaches the base (Mo film 2). On the other hand, Cu is larger than In in the vicinity of the film surface and is smaller than In as it gets closer to the base.

【0030】CuとInを同時にめっきするとき、この
ような現象が起こるのはCuとInの還元電位が離れて
いてInがCuよりも析出しにくいことに起因すると考
えられる。CuとInの還元反応は次式で表される。 Cu++ +2e- → Cu(還元電位V=+0.337V) …(1) In+++ +3e- → In(還元電位V=−0.338V) …(2) ここで、還元電位Vは、NHE(Normal Hyd
rogen Electrode、標準水素電極)を基
準として、これに対する電位で示されている。
When Cu and In are plated at the same time, it is considered that such a phenomenon occurs because the reduction potentials of Cu and In are apart from each other and In is less likely to precipitate than Cu. The reduction reaction of Cu and In is represented by the following equation. Cu ++ + 2e → Cu (reduction potential V = + 0.337V) (1) In +++ + 3e → In (reduction potential V = −0.338V) (2) Here, the reduction potential V is NHE (Normal Hyd
Rogen Electrode (standard hydrogen electrode) is used as a reference, and the potential is shown.

【0031】このようにInの還元電位はCuよりも
0.675Vも低いので、同時めっきではInはCuよ
りも析出しにくいことになる。これを補うために、めっ
き液ではInイオンをCuイオンの50倍も多く加えて
In析出量がCu析出量とほぼ同じになるようにしてい
る。しかし、平均値ではCuとInとがほぼ同量に析出
するようにしても、深さ方向に均一に析出する訳ではな
い。それは、めっき初期にはInイオン濃度が高く、I
nが多く析出するが、Inの析出に伴ってめっき液中の
Inイオン濃度が段々低くなり、In析出量が段々減っ
てくるからである。In析出量の減少に伴って相対的に
Cu析出量が増加する。図4はこのことを示している。
Since the reduction potential of In is 0.675 V lower than that of Cu, In is less likely to precipitate than Cu in simultaneous plating. In order to compensate for this, the plating solution is added with 50 times more In ions than Cu ions so that the In precipitation amount becomes substantially the same as the Cu precipitation amount. However, even if Cu and In are deposited in the same amount in the average value, they are not uniformly deposited in the depth direction. At the beginning of plating, the In ion concentration is high and I
Although a large amount of n is deposited, the concentration of In ions in the plating solution is gradually lowered as the In is deposited, and the amount of In deposited is gradually reduced. The Cu precipitation amount relatively increases as the In precipitation amount decreases. FIG. 4 illustrates this.

【0032】図4に示す組成分布をもったまま、図9で
説明した合金化熱処理を行うと、Inが余り拡散するこ
となくその場でCuと合金を作るので、図10に示した
ような組成分布となる。そこで、本発明では、合金化熱
処理を行う前に、InがCuの中に拡散して均一組成と
なるように均一分布化熱処理を行う。均一分布化熱処理
は、拡散を効率良く行わせるため、化合物半導体膜を構
成している元素の融点の内最も低い融点以上で、かつ合
金化熱処理の最低温度よりも10℃低い温度以下の範囲
内で行う。拡散は融点より低い温度でも行われるが、温
度が低いと拡散に時間がかかり、効率がよくない。膜組
成元素の一つが溶融状態にあるとき、拡散が効率良く行
われるので、熱処理温度は、膜組成元素の内最も低い融
点以上にする。また、合金化が始まると溶融した組成元
素が余り拡散しない内に合金を作ってしまうので、熱処
理温度は合金化熱処理温度より低くしなければならな
い。拡散が効率良く行われためには合金化熱処理温度よ
りも10℃低い温度が上限となる。このような理由か
ら、均一分布化熱処理の温度範囲を、化合物半導体膜を
構成している元素の融点の内最も低い融点以上で、かつ
合金化熱処理の最低温度よりも10℃低い温度以下と定
める。
When the alloying heat treatment described with reference to FIG. 9 is performed with the composition distribution shown in FIG. 4 being formed, an alloy is formed with Cu on the spot without much diffusion of In. Therefore, as shown in FIG. It has a composition distribution. Therefore, in the present invention, prior to the alloying heat treatment, the uniform distribution heat treatment is performed so that In diffuses into Cu and has a uniform composition. The uniform distribution heat treatment is performed in a range of not less than the lowest melting point of the elements constituting the compound semiconductor film and not more than 10 ° C. lower than the lowest temperature of the alloying heat treatment in order to efficiently perform the diffusion. Done in. Diffusion occurs even at a temperature lower than the melting point, but if the temperature is low, the diffusion takes time and is not efficient. When one of the film composition elements is in a molten state, the diffusion is efficiently performed, and therefore the heat treatment temperature is set to be the lowest melting point or higher of the film composition elements. Further, when alloying starts, a molten composition element forms an alloy before being diffused so much, so the heat treatment temperature must be lower than the alloying heat treatment temperature. For efficient diffusion, the upper limit is a temperature 10 ° C. lower than the alloying heat treatment temperature. For this reason, the temperature range of the uniform distribution heat treatment is set to a temperature that is equal to or higher than the lowest melting point of the melting points of the elements forming the compound semiconductor film and is 10 ° C. or lower than the lowest temperature of the alloying heat treatment. .

【0033】この熱処理において、膜組成物が酸化して
はいけないので、熱処理は非酸化雰囲気中で行う。非酸
化雰囲気として真空、H2 、H2 +N2 等を用いること
ができるが、均一分布化熱処理の後で行われる合金化熱
処理との関連から、真空が最も好ましい。
Since the film composition should not be oxidized in this heat treatment, the heat treatment is performed in a non-oxidizing atmosphere. As the non-oxidizing atmosphere, vacuum, H 2 , H 2 + N 2 or the like can be used, but vacuum is most preferable in relation to the alloying heat treatment performed after the uniform distribution heat treatment.

【0034】図2は本発明の実施例で行う均一分布化熱
処理の条件を説明する温度プロファィル図である。
FIG. 2 is a temperature profile diagram for explaining the conditions of the uniform distribution heat treatment performed in the embodiment of the present invention.

【0035】均一分布化熱処理する対象物がCu−In
/Se分散めっき膜である場合、最も融点が低いのはI
nであり、その融点は156.6℃であるので、均一分
布化熱処理の下限温度を157℃に設定し、上限温度を
合金化熱処理の最低温度200℃よりも10℃低い19
0℃に設定する。室温から30℃/分の速度で157℃
〜190℃に上げ、この温度に約30〜60分保持して
InをCu中に拡散させる。
The object of the uniform heat treatment is Cu-In.
/ Se dispersed plating film has the lowest melting point I
n and its melting point is 156.6 ° C., so the lower limit temperature of the uniform distribution heat treatment is set to 157 ° C. and the upper limit temperature is 10 ° C. lower than the minimum temperature 200 ° C. of the alloying heat treatment.
Set to 0 ° C. 157 ° C at a rate of 30 ° C / min from room temperature
Raise to 190 ° C. and hold at this temperature for about 30 to 60 minutes to diffuse In into Cu.

【0036】以上の均一分布化熱処理が終了すると、従
来と同じ合金化処理を続けて行う。すなわち、Arガス
とH2 Seガスを混合したAr+H2 Seガス雰囲気中
またはArガスとSe蒸気を混合したAr+Seガスを
導入して、この雰囲気中で30℃/分の速度で200℃
〜250℃に上げ、この温度に約30〜60分保持し、
次に30℃/分の速度で400℃〜450℃に上げ、こ
の温度に約2〜4時間保持して合金化処理を行い、その
後室温まで冷却する。以上の熱処理を行うには真空加熱
がてきる熱処理炉が最も好ましい。
When the above uniform distribution heat treatment is completed, the same alloying treatment as the conventional one is continuously performed. That is, an Ar + H 2 Se gas atmosphere in which Ar gas and H 2 Se gas are mixed or an Ar + Se gas in which Ar gas and Se vapor are mixed are introduced, and 200 ° C. at a rate of 30 ° C./min in this atmosphere.
Up to 250 ° C and hold at this temperature for about 30-60 minutes,
Next, the temperature is raised to 400 ° C. to 450 ° C. at a rate of 30 ° C./minute, and this temperature is maintained for about 2 to 4 hours for alloying treatment, and then cooled to room temperature. In order to carry out the above heat treatment, a heat treatment furnace capable of vacuum heating is most preferable.

【0037】図3は本発明の実施例で使用する熱処理炉
の構成図である。
FIG. 3 is a block diagram of a heat treatment furnace used in the embodiment of the present invention.

【0038】めっきで形成された膜を有するガラス基板
1(これをサンプル11と称する)を炉室21に入れ、
リーク弁24、主弁27、ガス導入弁28を閉じ、弁2
9を開け、三方弁25を炉室21側に切替え、油回転ポ
ンプ22を起動させる。炉室21内の気圧が約1Pa以
下になったら三方弁25を油拡散ポンプ23側に切替
え、油拡散ポンプ23を起動させ、主弁27を開く。ヒ
ータ30に通電してサンプル11を加熱する。サンプル
11の加熱温度の制御は温度センサ32と温度制御装置
33を用いて行う。
A glass substrate 1 having a film formed by plating (this is referred to as sample 11) is placed in a furnace chamber 21,
The leak valve 24, the main valve 27, and the gas introduction valve 28 are closed, and the valve 2
9, the three-way valve 25 is switched to the furnace chamber 21 side, and the oil rotary pump 22 is started. When the atmospheric pressure in the furnace chamber 21 becomes about 1 Pa or less, the three-way valve 25 is switched to the oil diffusion pump 23 side, the oil diffusion pump 23 is activated, and the main valve 27 is opened. The heater 30 is energized to heat the sample 11. The heating temperature of the sample 11 is controlled by using the temperature sensor 32 and the temperature control device 33.

【0039】均一分布化熱処理が終了したら、主弁27
を閉じ、ガス導入弁28を開き、ArガスとH2 Seガ
スを混合したAr+H2 Seガス雰囲気中またはArガ
スとSe蒸気を混合したAr+Seガスを導入して、こ
の雰囲気中で30℃/分の速度で200℃〜250℃に
上げ、この温度に約30〜60分保持し、次に30℃/
分の速度で400℃〜450℃に上げ、この温度に約2
〜4時間保持して合金化処理を行う。ヒータ30の通電
を停止し、ガス導入弁28を閉じ、主弁27を開いてS
eを含むガスを排気する。サンプル11が室温まで冷却
したら弁29を閉じ、炉室21からサンプル11を取り
出す。
When the uniform distribution heat treatment is completed, the main valve 27
Closed, the gas introduction valve 28 is opened, and an Ar + H 2 Se gas atmosphere in which Ar gas and H 2 Se gas are mixed or an Ar + Se gas in which Ar gas and Se vapor are mixed are introduced and 30 ° C./min in this atmosphere. At a rate of 200 ° C to 250 ° C, hold at this temperature for about 30 to 60 minutes, then at 30 ° C /
Raise to 400-450 ℃ at the speed of a minute, and at this temperature about 2
Hold for 4 hours to perform alloying treatment. The heater 30 is de-energized, the gas introduction valve 28 is closed, the main valve 27 is opened and S
The gas containing e is exhausted. When the sample 11 is cooled to room temperature, the valve 29 is closed and the sample 11 is taken out from the furnace chamber 21.

【0040】以上説明した均一分布化熱処理およびそれ
に続く合金化処理を行って、図1(b)に示すCuIn
Se2 膜4を形成した。
The uniform distribution heat treatment described above and the subsequent alloying treatment are performed to obtain CuIn shown in FIG. 1 (b).
The Se 2 film 4 was formed.

【0041】図5は均一分布化熱処理したCu−In/
Se分散めっき膜の深さ方向の相対濃度分布図である。
FIG. 5 shows Cu-In / which has been heat-treated for uniform distribution.
FIG. 6 is a relative concentration distribution diagram in the depth direction of the Se-dispersed plating film.

【0042】温度190℃で30分の均一分布化熱処理
したCu−In/Se分散めっき膜の深さ方向の組成分
布をオージェ電子分析器で調べ。図5に示されるよう
に、Inは膜全体に均一に分布しており、均一分布化熱
処理が組成の均一化に非常に有効であることが証明され
た。なお、Seの相対濃度が低いのは、この試料がSe
ガス雰囲気中での合金化熱処理を行う前の試料だからで
ある。
The composition distribution in the depth direction of the Cu-In / Se dispersion-plated film which was heat-treated for uniform distribution for 30 minutes at a temperature of 190 ° C. was examined by an Auger electron analyzer. As shown in FIG. 5, In was uniformly distributed throughout the film, and it was proved that the heat treatment for uniform distribution was very effective for uniforming the composition. The relative concentration of Se is low because this sample is Se
This is because it is a sample before alloying heat treatment in a gas atmosphere.

【0043】上記実施例はCu−In−Seを含む膜に
ついて行ったが、本発明はこれに限定されず、周期律表
の1B族、3B族、及び6B族の元素を含む膜をめっき
法で作ったすべての薄膜太陽電池に適用されるものであ
る。
Although the above embodiment was carried out on a film containing Cu-In-Se, the present invention is not limited to this, and a film containing elements of 1B group, 3B group and 6B group of the periodic table is plated. It is applied to all thin-film solar cells made in.

【0044】[0044]

【発明の効果】以上説明したように、本発明では、めっ
き法で形成されている光電変換性半導体の先駆生成物膜
を合金膜に変換して光電変換性半導体膜とする合金化熱
処理を行う前に膜組成元素を均一に分布させる均一分布
化熱処理を行うようにしたので、CuとInとが膜全体
に均一に分布し、良好なカルコパイライト型の結晶が形
成され、良好なp−n接合が形成されることによって光
電変換効率が向上し、高い製造歩留りと低コストで薄膜
太陽電池を製造することができる。
As described above, in the present invention, alloying heat treatment is performed to convert a precursor product film of a photoelectric conversion semiconductor formed by a plating method into an alloy film to form a photoelectric conversion semiconductor film. Since the uniform distribution heat treatment for uniformly distributing the film composition elements is performed before, Cu and In are uniformly distributed in the entire film, and a good chalcopyrite type crystal is formed, and a good pn By forming the junction, the photoelectric conversion efficiency is improved, and the thin film solar cell can be manufactured with high manufacturing yield and low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の薄膜太陽電池の製造方法の一実施例を
説明するための工程順に示した断面図である。
1A to 1D are cross-sectional views showing a process sequence for explaining an example of a method for manufacturing a thin-film solar cell of the present invention.

【図2】本発明の実施例で行う均一分布化熱処理の条件
を説明する温度プロファィル図である。
FIG. 2 is a temperature profile diagram for explaining conditions of uniform distribution heat treatment performed in an example of the present invention.

【図3】本発明の実施例で使用する熱処理炉の構成図で
ある。
FIG. 3 is a configuration diagram of a heat treatment furnace used in an example of the present invention.

【図4】図1(a)に示すCu−In/Se分散めっき
膜の深さ方向の相対濃度分布図である。
FIG. 4 is a relative concentration distribution diagram in the depth direction of the Cu—In / Se dispersed plating film shown in FIG.

【図5】均一分布化熱処理したCu−In/Se分散め
っき膜の深さ方向の相対濃度分布図である。
FIG. 5 is a relative concentration distribution diagram in the depth direction of a Cu—In / Se dispersed plating film subjected to uniform distribution heat treatment.

【図6】従来の化合物半導体を用いた薄膜太陽電池の製
造方法の第1の例を説明するための工程順に示した断面
図である。
FIG. 6 is a cross-sectional view showing the order of steps for explaining a first example of a method for manufacturing a thin-film solar cell using a conventional compound semiconductor.

【図7】従来の第1の例の薄膜太陽電池の製造において
実施する熱処理の条件を説明する温度プロファィル図で
ある。
FIG. 7 is a temperature profile diagram for explaining the conditions of heat treatment performed in the manufacture of the conventional first example thin-film solar cell.

【図8】従来の化合物半導体を用いた薄膜太陽電池の製
造方法の第2の例を説明するための工程順に示した断面
図である。
FIG. 8 is a cross-sectional view showing the order of steps for explaining a second example of a method for manufacturing a thin-film solar cell using a conventional compound semiconductor.

【図9】従来の第2の例の薄膜太陽電池の製造において
実施する熱処理の条件を説明する温度プロファィル図で
ある。
FIG. 9 is a temperature profile diagram for explaining conditions of heat treatment carried out in the production of the conventional thin-film solar cell of the second example.

【図10】従来の第2の例のCuInSe2 膜の深さ方
向の相対濃度分布図である。
FIG. 10 is a relative concentration distribution diagram in the depth direction of a CuInSe 2 film of a second conventional example.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 Mo膜 3 Cu−In/Se分散めっき膜 4 CuInSe2 1 Glass substrate 2 Mo film 3 Cu-In / Se dispersed plating film 4 CuInSe 2 film

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 表面に導電膜を有する基板の上に周期律
表の1B族、3B族、及び6B族の元素を含む膜を形成
する工程と、前記膜を6B族元素を含むガス雰囲気中で
熱処理して1B族−3B族−6B族元素の合金膜に転換
する合金化熱処理工程とを有する薄膜太陽電池の製造方
法において、 前記合金化熱処理を行う前に前記膜に含まれる1B族−
3B族元素の均一分布化熱処理を行うことを特徴とする
薄膜太陽電池の製造方法。
1. A step of forming a film containing elements of the 1B group, 3B group and 6B group of the periodic table on a substrate having a conductive film on the surface thereof, and the film in a gas atmosphere containing the 6B group element. In the method for manufacturing a thin film solar cell, the method comprises: an alloying heat treatment step of converting the alloy film of a 1B group-3B group-6B group element by heat treatment at 1B-group contained in the film before the alloying heat treatment.
A method for manufacturing a thin-film solar cell, characterized by performing heat treatment for uniform distribution of a Group 3B element.
【請求項2】 前記均一分布化熱処理が非酸化雰囲気中
で行われることを特徴とする請求項1記載の薄膜太陽電
池の製造方法。
2. The method for manufacturing a thin film solar cell according to claim 1, wherein the uniform distribution heat treatment is performed in a non-oxidizing atmosphere.
【請求項3】 前記均一分布化熱処理が真空中で行われ
ることを特徴とする請求項1または請求項2記載の薄膜
太陽電池の製造方法。
3. The method for manufacturing a thin film solar cell according to claim 1, wherein the heat treatment for uniform distribution is performed in a vacuum.
【請求項4】 前記均一分布化熱処理が前記膜を構成し
ている元素の融点の内最も低い融点以上で、かつ前記合
金化熱処理の最低温度よりも10℃低い温度以下の範囲
内で行われることを特徴とする請求項1または請求項2
または請求項3記載の薄膜太陽電池の製造方法。
4. The uniform distribution heat treatment is performed within a range of the lowest melting point of the elements constituting the film or higher and 10 ° C. or lower than the lowest temperature of the alloying heat treatment. Claim 1 or claim 2 characterized in that
Or the manufacturing method of the thin film solar cell of Claim 3.
【請求項5】 前記1B族、3B族、及び6B族の元素
を含む膜が銅−インジウム−セレンを含む膜であること
を特徴とする請求項1記載の薄膜太陽電池の製造方法。
5. The method for manufacturing a thin-film solar cell according to claim 1, wherein the film containing the elements of 1B group, 3B group, and 6B group is a film containing copper-indium-selenium.
【請求項6】 前記均一分布化熱処理が157℃以上
で、かつ190℃以下の温度範囲内で行われることを特
徴とする請求項1または請求項2または請求項3または
請求項4記載の薄膜太陽電池の製造方法。
6. The thin film according to claim 1, wherein the heat treatment for uniform distribution is performed within a temperature range of 157 ° C. or higher and 190 ° C. or lower. Method for manufacturing solar cell.
JP6229516A 1994-09-26 1994-09-26 Thin film solar cell manufacturing method Pending JPH0897450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6229516A JPH0897450A (en) 1994-09-26 1994-09-26 Thin film solar cell manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6229516A JPH0897450A (en) 1994-09-26 1994-09-26 Thin film solar cell manufacturing method

Publications (1)

Publication Number Publication Date
JPH0897450A true JPH0897450A (en) 1996-04-12

Family

ID=16893403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6229516A Pending JPH0897450A (en) 1994-09-26 1994-09-26 Thin film solar cell manufacturing method

Country Status (1)

Country Link
JP (1) JPH0897450A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109559A (en) * 2010-10-29 2012-06-07 Kyocera Corp Photoelectric conversion device
JP2014022562A (en) * 2012-07-18 2014-02-03 Kyocera Corp Method for manufacturing photoelectric conversion device
WO2017187871A1 (en) * 2016-04-28 2017-11-02 国立研究開発法人産業技術総合研究所 High power generation efficiency compound semiconductor thin-film solar cell, and method for manufacturing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109559A (en) * 2010-10-29 2012-06-07 Kyocera Corp Photoelectric conversion device
JP2014022562A (en) * 2012-07-18 2014-02-03 Kyocera Corp Method for manufacturing photoelectric conversion device
WO2017187871A1 (en) * 2016-04-28 2017-11-02 国立研究開発法人産業技術総合研究所 High power generation efficiency compound semiconductor thin-film solar cell, and method for manufacturing same

Similar Documents

Publication Publication Date Title
US4581108A (en) Process of forming a compound semiconductive material
US6258620B1 (en) Method of manufacturing CIGS photovoltaic devices
US8192594B2 (en) Technique and apparatus for depositing thin layers of semiconductors for solar cell fabrication
Basol et al. Deposition of CuInSe/sub 2/films by a two-stage process utilizing E-beam evaporation
Ganchev et al. Preparation of cu (in, Ga) Se2 layers by selenization of electrodeposited cu–in–Ga precursors
US20030230338A1 (en) Thin film solar cell configuration and fabrication method
WO1990015445A1 (en) Improved group i-iii-vi2 semiconductor films for solar cell application
JP2008543038A (en) Sulfidation and selenization of electrodeposited CIGS films by thermal annealing
KR20080009346A (en) Process of preparing buffer layer of solar cell
CN103733320A (en) Capping layers for improved crystallization
US20040131792A1 (en) Electroless deposition of cu-in-ga-se film
US8409418B2 (en) Enhanced plating chemistries and methods for preparation of group IBIIIAVIA thin film solar cell absorbers
JP3519543B2 (en) Precursor for forming semiconductor thin film and method for producing semiconductor thin film
JPH08102546A (en) Manufacture of semiconductor thin film
EP0195152B1 (en) Process of forming a compound semiconductive material
JP2004047917A (en) Thin film solar battery and its manufacturing method
WO2011075561A1 (en) Plating chemistries of group ib /iiia / via thin film solar absorbers
JPH06120545A (en) Manufacture of thin film solar cell
CN103469170B (en) A kind of sputtering target for thin-film solar cells
JPH0897450A (en) Thin film solar cell manufacturing method
JP3408618B2 (en) Solar cell manufacturing method
JPH10150212A (en) Precursor for semiconductor thin film formation use and manufacture of semiconductor thin film
JPH07258881A (en) Production of cuinse2 film
CN112736150B (en) Copper indium gallium selenide thin-film solar cell and preparation method thereof
KR101646556B1 (en) Method of manufacturimg of CZTS-based thin film solar cell and CZTS-based thin film solar cell thereby