JPH0896328A - Magnetoresistive effect thin film magnetic head and its production - Google Patents

Magnetoresistive effect thin film magnetic head and its production

Info

Publication number
JPH0896328A
JPH0896328A JP6228501A JP22850194A JPH0896328A JP H0896328 A JPH0896328 A JP H0896328A JP 6228501 A JP6228501 A JP 6228501A JP 22850194 A JP22850194 A JP 22850194A JP H0896328 A JPH0896328 A JP H0896328A
Authority
JP
Japan
Prior art keywords
film
magnetoresistive
magnetoresistive effect
ferromagnetic
magnetic head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6228501A
Other languages
Japanese (ja)
Inventor
Hideyasu Nagai
秀康 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6228501A priority Critical patent/JPH0896328A/en
Publication of JPH0896328A publication Critical patent/JPH0896328A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PURPOSE: To obtain a magnetoresistive effect thin film magnetic head with which an improvement in S/N and reduction of electrical shortening are possible and a process for production of this head. CONSTITUTION: A three-layered MR film 13 including a soft bias film 5 (0.02μm), a nonmagnetic separating film 6 (0.01μm) and an MR film 7 (0.02μm) is laminated on a lower electromagnetical insulating film 4. Ferromagnetic films 8, 8 (0.05μm) are formed on both sides thereof. Both ends of the three-layered MR film 13 are tapered and the ends of the ferromagnetic films 8, 8 in contact with the three-layered MR film 13 are reversely tapered. Electrodes 9, 9 are formed in the state of covering the ferromagnetic films 8, 8 exclusive of the central part of the three-layered MR film 13 and an upper shielding film 11 in formed thereon via an upper electromagnetical insulating film 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ハードディスクドライ
ブに使用される磁気抵抗効果型薄膜磁気ヘッドに関し、
詳しくは磁気抵抗効果膜(以下MR膜という)及び縦バ
イアス磁場用の強磁性膜の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive thin film magnetic head used in a hard disk drive,
Specifically, it relates to the structures of a magnetoresistive effect film (hereinafter referred to as an MR film) and a ferromagnetic film for a longitudinal bias magnetic field.

【0002】[0002]

【従来の技術】コンピュータの補助記憶装置であるハー
ドディスクの小型化に伴い、磁気誘導起電力を用いる磁
気ヘッドに変わって、磁気抵抗効果を使用する磁気抵抗
効果型薄膜磁気ヘッドの検討が盛んに行われている。磁
気誘導起電力を用いる場合は、磁場の時間当たりの変化
を電圧として検出するのに対し、磁気抵抗効果は磁場強
度で電気抵抗が変化する現象を利用するものであり、静
磁場でも検出が可能である。従って磁気抵抗効果型薄膜
磁気ヘッドを使用すれば、磁気ディスクの小型化に伴っ
て磁気ヘッドと磁気ディスクとの相対速度が低下しても
対応することができる。例えば特開平2−220213号公報
には、磁気抵抗導体層及び縦方向バイアス発生手段を備
える磁気抵抗読取トランスデューサが開示されており、
永続性があるバイアスを実現することができる。
2. Description of the Related Art With the miniaturization of hard disks, which are auxiliary storage devices of computers, magnetoresistive thin film magnetic heads using magnetoresistive effect have been actively studied in place of magnetic heads using magnetic induced electromotive force. It is being appreciated. When using magnetically induced electromotive force, the change over time in the magnetic field is detected as a voltage, whereas the magnetoresistive effect uses the phenomenon that the electrical resistance changes with the magnetic field strength, and can be detected even in a static magnetic field. Is. Therefore, by using the magnetoresistive thin-film magnetic head, it is possible to cope with a decrease in the relative speed between the magnetic head and the magnetic disk as the magnetic disk becomes smaller. For example, JP-A-2-220213 discloses a magnetoresistive reading transducer including a magnetoresistive conductor layer and a longitudinal bias generating means,
Persistent bias can be achieved.

【0003】図6,7は、ソフトバイアス法を使用した
場合の磁気抵抗効果型薄膜磁気ヘッドを示す構造断面図
である。図6では、基板41上に、ソフトバイアス膜
5,非磁性分離膜6及びMR膜7からなるMR3層膜1
3がこの順に積層され、その上にCu,Au,W,Ta
等の単層膜又はこれらの多層膜からなる電極9,9が所
定領域に形成されている。図7では逆に、基板41上
に、間に電磁気的絶縁膜14を挟む態様で電極9,9が
形成されており、その上にMR膜7,非磁性分離膜6及
びソフトバイアス膜5がこの順に積層されている。図7
に示す磁気抵抗効果型薄膜磁気ヘッドは電磁気的絶縁膜
14を使用した平坦化が必要であるため、図6に示す構
造の方が一般的である。
6 and 7 are structural sectional views showing a magnetoresistive thin-film magnetic head when the soft bias method is used. In FIG. 6, the MR3 layer film 1 including the soft bias film 5, the non-magnetic separation film 6 and the MR film 7 is formed on the substrate 41.
3 is laminated in this order, and Cu, Au, W, Ta
Electrodes 9 and 9 made of a single-layer film or a multilayer film of these are formed in a predetermined region. On the contrary, in FIG. 7, electrodes 9 and 9 are formed on the substrate 41 with an electromagnetic insulating film 14 interposed therebetween, and the MR film 7, the non-magnetic separation film 6 and the soft bias film 5 are formed thereon. They are stacked in this order. Figure 7
Since the magnetoresistive thin-film magnetic head shown in FIG. 6 requires flattening using the electromagnetic insulating film 14, the structure shown in FIG. 6 is more general.

【0004】MR3層膜13を構成するソフトバイアス
膜5,非磁性分離膜6及びMR膜7は、膜厚は夫々異な
るが、形状は同じ(矩形)である。MR膜7は、ディス
クからの磁場強度に応じて電気抵抗が変化する膜であ
り、その変化が大きいほど磁気抵抗効果型薄膜磁気ヘッ
ドの再生出力電圧は大きい。MR膜7に使用される材料
としてはNi−Fe合金(パーマロイ)が代表的であ
る。また巨大MR効果を示す人工格子多層膜も使用可能
である。
The soft bias film 5, the non-magnetic separation film 6 and the MR film 7 forming the MR three-layer film 13 have the same shape (rectangular shape) although the film thicknesses thereof are different. The MR film 7 is a film whose electric resistance changes according to the strength of the magnetic field from the disk. The larger the change, the larger the reproduction output voltage of the magnetoresistive thin-film magnetic head. A typical material used for the MR film 7 is a Ni—Fe alloy (permalloy). Also, an artificial lattice multilayer film exhibiting a giant MR effect can be used.

【0005】非磁性分離膜6には金属膜が使用される場
合と、絶縁膜が使用される場合とがある。前記金属膜と
してはTi,Ta,Nb等が挙げられ、電気抵抗がMR
膜7よりも大きいものが望ましい。また前記絶縁膜とし
てはSiO2 ,Ai2 3 等が挙げられる。ソフトバイ
アス膜5には軟磁性の金属膜が使用される場合が多く、
MR膜7よりも電気抵抗が大きいものが望ましい。具体
的にはNi−Fe系又はCo−Zr系のアモルファス等
が挙げられる。
The non-magnetic separation film 6 may be a metal film or an insulating film. Examples of the metal film include Ti, Ta, Nb and the like, and the electric resistance is MR.
A film larger than the film 7 is desirable. Examples of the insulating film include SiO 2 and Ai 2 O 3 . A soft magnetic metal film is often used for the soft bias film 5,
It is desirable that the electric resistance is larger than that of the MR film 7. Specific examples thereof include Ni-Fe-based or Co-Zr-based amorphous materials.

【0006】MR膜7とソフトバイアス膜5とには形状
磁気異方性が生じ、矩形のアスペクト比(素子長と素子
高さとの比、通常長い方を短い方で割った値)を大きく
することにより、無磁場中では素子長方向に磁化が向
く。磁場中においては、この磁化方向は磁場の方向へ回
転する。実際にはアスペクト比を10以上とすることが
多い。
A shape magnetic anisotropy occurs in the MR film 7 and the soft bias film 5, and a rectangular aspect ratio (ratio between the element length and the element height, which is usually a value obtained by dividing a long one by a short one) is increased. As a result, the magnetization is oriented in the element length direction in the absence of a magnetic field. In the magnetic field, this magnetization direction rotates in the direction of the magnetic field. In practice, the aspect ratio is often 10 or more.

【0007】図8は、磁気抵抗効果型薄膜磁気ヘッドの
動作原理を説明するための図であり、MR3層膜13及
び電極9,9のみを電極9,9側から示す斜視図であ
る。図8に破線矢符で示す方向にセンス電流31を流す
と、電気抵抗が最も小さいMR膜7に大部分の電流が流
れる。MR膜7に電流が流れると、MR膜7の周囲に磁
場が形成される。これは直線状の銅線に電流を流すと導
線の周囲を回転する方向に磁場が発生することに似てい
る。この磁場は、ソフトバイアス膜5内に入り、ソフト
バイアス膜5の磁化の向きを素子長方向から素子高さ方
向へ回転させる。図中32(白抜き矢符)は、このとき
のソフトバイアス膜5の磁化方向を示す。
FIG. 8 is a diagram for explaining the operating principle of the magnetoresistive thin film magnetic head, and is a perspective view showing only the MR three-layer film 13 and the electrodes 9, 9 from the side of the electrodes 9, 9. When the sense current 31 flows in the direction indicated by the broken arrow in FIG. 8, most of the current flows through the MR film 7 having the smallest electric resistance. When a current flows through the MR film 7, a magnetic field is formed around the MR film 7. This is similar to that when a current is applied to a straight copper wire, a magnetic field is generated in the direction of rotation around the conductor. This magnetic field enters the soft bias film 5 and rotates the magnetization direction of the soft bias film 5 from the element length direction to the element height direction. In the figure, 32 (white arrow) indicates the magnetization direction of the soft bias film 5 at this time.

【0008】このようにソフトバイアス膜5の磁化方向
が回転すると、ソフトバイアス膜5の素子高さ方向の端
部に磁極(N極,S極)が生じ、ソフトバイアス膜5の
周囲にN極から出てS極に入る磁場15が発生する。磁
場15はMR膜7に入り、MR膜7の磁化方向33を素
子長方向から素子高さ方向へ回転させる。この磁場15
はバイアス磁場と呼ばれ、MR膜7の磁化方向33が素
子長方向に対して45°の方向であればバイアス磁場は
適正であるといえる。このようにMR膜7の磁化方向3
3はソフトバイアス膜5の磁化方向32に依存するた
め、センス電流の大きさを変化させることによりバイア
ス磁場の大きさを制御することができる。
When the magnetization direction of the soft bias film 5 rotates in this way, magnetic poles (N pole, S pole) are generated at the ends of the soft bias film 5 in the element height direction, and N poles are formed around the soft bias film 5. A magnetic field 15 is generated which exits from and enters the south pole. The magnetic field 15 enters the MR film 7 and rotates the magnetization direction 33 of the MR film 7 from the element length direction to the element height direction. This magnetic field 15
Is called a bias magnetic field, and it can be said that the bias magnetic field is appropriate if the magnetization direction 33 of the MR film 7 is 45 ° with respect to the element length direction. In this way, the magnetization direction 3 of the MR film 7
Since 3 depends on the magnetization direction 32 of the soft bias film 5, the magnitude of the bias magnetic field can be controlled by changing the magnitude of the sense current.

【0009】非磁性分離膜6の役割は、MR膜7とソフ
トバイアス膜5との間を磁気的に分離することであり、
非磁性分離膜6が存在することによってMR膜7とソフ
トバイアス膜5とは素子高さ方向の端部においてのみ磁
束が作用し合うことになる。
The role of the non-magnetic separation film 6 is to magnetically separate the MR film 7 and the soft bias film 5.
Due to the existence of the non-magnetic separation film 6, the magnetic flux acts on the MR film 7 and the soft bias film 5 only at the end portion in the element height direction.

【0010】図9は図8に示されている構造を下側から
見た図に相当し、強磁性膜を併せて示す。MR3層膜1
3の素子長方向の両端部には、縦バイアス磁場用の強磁
性膜8,8が接続されている。2つの強磁性膜8,8の
磁化は素子長方向を向いており、一の強磁性膜8のN極
がMR3層膜13に接続しており、他の強磁性膜8はS
極がMR3層膜13に接続している。そして一の強磁性
膜8のN極から出た磁場34は、MR膜7内を通り、他
の強磁性膜8のS極に入いる。このように強磁性膜8か
らMR膜7に作用する磁場34を縦バイアス磁場と呼ん
でいる。縦バイアス磁場34の役割はMR膜7を単磁区
化することにある。単磁区には磁壁がないため、バルク
ハウゼンノイズが発生せずS/Nが高い。縦バイアス磁
場34がない場合、MR膜7は多磁区になりやすく、バ
ルクハウゼンノイズが再生信号に乗ってS/Nが低下す
る。
FIG. 9 corresponds to a view of the structure shown in FIG. 8 as seen from below, and also shows a ferromagnetic film. MR three-layer film 1
Ferromagnetic films 8 for a longitudinal bias magnetic field are connected to both ends of the element 3 in the element length direction. The magnetizations of the two ferromagnetic films 8 and 8 are oriented in the element length direction, the N pole of one ferromagnetic film 8 is connected to the MR3 layer film 13, and the other ferromagnetic film 8 is S.
The pole is connected to the MR3 layer film 13. The magnetic field 34 emitted from the N pole of one ferromagnetic film 8 passes through the MR film 7 and enters the S pole of the other ferromagnetic film 8. The magnetic field 34 acting on the MR film 7 from the ferromagnetic film 8 is called a longitudinal bias magnetic field. The role of the longitudinal bias magnetic field 34 is to make the MR film 7 into a single magnetic domain. Since there is no domain wall in the single magnetic domain, Barkhausen noise does not occur and the S / N is high. In the absence of the longitudinal bias magnetic field 34, the MR film 7 is apt to have multiple magnetic domains, and Barkhausen noise is superimposed on the reproduced signal to reduce the S / N.

【0011】MR3層膜13を含むMR素子部は、一般
に真空蒸着装置又はスパッタリング装置で成膜される。
このとき積層界面の密着性を向上させるために、3元以
上の真空蒸着装置又はスパッタリング装置(3種類以上
の材料がセットされており、交換なしで連続成膜が可能
である。)を使用し、チャンバを大気開放せずにMR3
層膜13を連続で成膜することがある。成膜されたMR
3層膜13はイオンミリング装置で矩形に加工され、M
R3層膜13の両端にリフトオフで強磁性膜を成膜し、
さらにリフトオフで電極9,9を形成する。
The MR element portion including the MR three-layer film 13 is generally formed by a vacuum evaporation system or a sputtering system.
At this time, in order to improve the adhesion at the stacking interface, a vacuum vapor deposition device or a sputtering device of three or more elements (three or more kinds of materials are set, and continuous film formation is possible without replacement) is used. , MR3 without opening the chamber to the atmosphere
The layer film 13 may be continuously formed. MR formed
The three-layer film 13 is processed into a rectangular shape by an ion milling device, and M
A ferromagnetic film is formed by lift-off on both ends of the R3 layer film 13,
Further, the electrodes 9 and 9 are formed by lift-off.

【0012】[0012]

【発明が解決しようとする課題】MR3層膜13と強磁
性膜8,8との接続部分は、図9に示す如く端部が一致
している状態が適正である。しかしながら露光時のアラ
イメントがずれると、図10に示す如く、MR3層膜1
3と強磁性膜8とが離れたり、強磁性膜8がMR3層膜
13にかぶさったりする。このアライメントのずれはサ
ブミクロンオーダーであるが、大なり小なり存在する。
この場合はMR膜7に作用する縦バイアス磁場34が小
さくなり、バルクハウゼンノイズの抑制効果が減少し、
S/Nの低下に繋がる。また接続部分が離れていたり重
なっていたりすると、その上に形成される電極9,9に
凹凸が発生し、電極9,9上に絶縁膜を介して形成され
る上部シールドと電極9,9との電気的ショートの可能
性が高くなる。これらS/Nの低下,電気的ショートは
歩留りを低下させるという問題がある。
As shown in FIG. 9, it is appropriate that the connecting portion between the MR three-layer film 13 and the ferromagnetic films 8 and 8 have their ends aligned with each other. However, if the alignment during exposure shifts, as shown in FIG.
3 and the ferromagnetic film 8 are separated from each other, or the ferromagnetic film 8 covers the MR3 layer film 13. This misalignment is on the order of submicrons, but it exists to a greater or lesser extent.
In this case, the longitudinal bias magnetic field 34 acting on the MR film 7 becomes small, and the Barkhausen noise suppressing effect is reduced.
This leads to a decrease in S / N. Further, when the connecting portions are separated or overlap, the electrodes 9, 9 formed thereon have irregularities, and the upper shield and the electrodes 9, 9 formed on the electrodes 9, 9 with an insulating film interposed therebetween. The possibility of electrical shorts is increased. These reductions in S / N and electrical shorts have the problem of reducing the yield.

【0013】本発明は、斯かる事情に鑑みてなされたも
のであり、磁気抵抗効果3層膜と強磁性膜との接続部分
をテーパ形状とすることにより、S/Nの向上及び電気
的ショートの低減が可能な磁気抵抗効果型薄膜磁気ヘッ
ド及びその製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and improves the S / N ratio and electrical short-circuit by forming the connecting portion between the magnetoresistive effect three-layer film and the ferromagnetic film into a tapered shape. It is an object of the present invention to provide a magnetoresistive effect thin film magnetic head capable of reducing noise and a manufacturing method thereof.

【0014】[0014]

【課題を解決するための手段】第1発明に係る磁気抵抗
効果型薄膜磁気ヘッドは、基板上に、磁気抵抗効果膜,
該磁気抵抗効果膜にバイアス磁場を印加するためのソフ
トバイアス膜,及び前記磁気抵抗効果膜,ソフトバイア
ス膜間を磁気的に遮断するための非磁性分離膜を有する
磁気抵抗効果3層膜と、前記磁気抵抗効果膜に接続され
た電極と、前記磁気抵抗効果膜の両端に接続されてお
り、磁気抵抗効果膜に縦バイアス磁場を印加するための
強磁性膜とを備える磁気抵抗効果型薄膜磁気ヘッドにお
いて、前記磁気抵抗効果膜の両端がテーパ形状をなして
おり、その両端に接続される強磁性膜の端部が逆テーパ
形状となしてあることを特徴とする。
A magnetoresistive effect thin film magnetic head according to a first aspect of the present invention comprises a magnetoresistive effect film on a substrate,
A magnetoresistive effect three-layer film having a soft bias film for applying a bias magnetic field to the magnetoresistive film, and a nonmagnetic separation film for magnetically blocking between the magnetoresistive film and the soft bias film; A magnetoresistive thin-film magnetic device including electrodes connected to the magnetoresistive film, and ferromagnetic films connected to both ends of the magnetoresistive film for applying a longitudinal bias magnetic field to the magnetoresistive film. In the head, both ends of the magnetoresistive film are tapered, and ends of the ferromagnetic film connected to the both ends are inversely tapered.

【0015】第2発明に係る磁気抵抗効果型薄膜磁気ヘ
ッドは、第1発明において、前記強磁性膜の膜厚は、前
記磁気抵抗効果3層膜の合計膜厚と略等しいことを特徴
とする。
The magnetoresistive effect thin film magnetic head according to the second invention is characterized in that, in the first invention, the film thickness of the ferromagnetic film is substantially equal to the total film thickness of the magnetoresistive effect three-layer film. .

【0016】第3発明に係る磁気抵抗効果型薄膜磁気ヘ
ッドの製造方法は、基板上に、磁気抵抗効果膜,該磁気
抵抗効果膜にバイアス磁場を印加するためのソフトバイ
アス膜,及び前記磁気抵抗効果膜,ソフトバイアス膜間
を磁気的に遮断するための非磁性分離膜を有する磁気抵
抗効果3層膜と、前記磁気抵抗効果膜の両端に接続され
ており、磁気抵抗効果膜に縦バイアス磁場を印加するた
めの強磁性膜とを備える磁気抵抗効果型薄膜磁気ヘッド
を製造する方法において、前記磁気抵抗効果3層膜の上
にレジストを形成する工程と、このレジストが形成され
た前記磁気抵抗効果3層膜を回転させながら、所定角度
傾斜させたイオンビームを照射する工程と、前記磁気抵
抗効果3層膜を回転させながら、所定角度傾斜させたイ
オンビームのスパッタリングにて強磁性膜を成膜する工
程と、前記レジストを除去する工程とを含むことを特徴
とする。
According to a third aspect of the present invention, there is provided a method of manufacturing a magnetoresistive thin film magnetic head, in which a magnetoresistive film, a soft bias film for applying a bias magnetic field to the magnetoresistive film, and the magnetoresistive film are formed on a substrate. A magnetoresistive effect three-layer film having a non-magnetic separation film for magnetically blocking between the effect film and the soft bias film, and a longitudinal bias magnetic field connected to both ends of the magnetoresistive effect film. In a method of manufacturing a magnetoresistive thin film magnetic head including a ferromagnetic film for applying a magnetic field, a step of forming a resist on the magnetoresistive three-layer film, and the magnetoresistive film on which the resist is formed. The step of irradiating an ion beam inclined at a predetermined angle while rotating the effect three-layer film, and the ion beam spa tilted at a predetermined angle while rotating the magnetoresistive effect three-layer film A step of forming a ferromagnetic film at Taringu, characterized in that it comprises a step of removing the resist.

【0017】[0017]

【作用】第1発明にあっては、磁気抵抗効果3層膜と強
磁性膜との接続部分を、例えばアライメントのずれより
大きいテーパ形状となしてあるので、通常のアライメン
トのずれが生じても、磁気抵抗効果3層膜と強磁性膜と
が離れることはなく、また重なり過ぎによる盛り上がり
も削減される。従って充分な縦バイアス磁場が形成され
るので、バルクハウゼンノイズが低減せしめられ高いS
/Nが得られる。また電極の表面も平坦となる。
In the first aspect of the invention, since the connecting portion between the magnetoresistive effect three-layer film and the ferromagnetic film has a tapered shape larger than the alignment deviation, for example, even if the normal alignment deviation occurs. In addition, the magnetoresistive effect three-layer film and the ferromagnetic film are not separated from each other, and swelling due to excessive overlap is reduced. Therefore, since a sufficient longitudinal bias magnetic field is formed, Barkhausen noise is reduced and high S
/ N is obtained. The surface of the electrode is also flat.

【0018】第2発明にあっては、磁気抵抗効果3層膜
と強磁性膜との膜厚を略同等となしてあるので、この部
分にほとんど段差が生じない。これによりその上に形成
される電極の表面をさらに平坦とすることができる。
In the second aspect of the invention, since the magnetoresistive effect three-layer film and the ferromagnetic film are made substantially equal in thickness, there is almost no step at this portion. Thereby, the surface of the electrode formed thereon can be made even more flat.

【0019】第3発明にあっては、所定角度傾斜させた
イオンビームを照射すると、レジストの影になる部分の
磁気抵抗効果3層膜は除去されにくく残るので、磁気抵
抗効果3層膜の端部をテーパ形状とすることができる。
さらに所定角度傾斜させたイオンビームのスパッタリン
グにて強磁性膜を成膜すると、レジストの影になるテー
パ部分の膜厚は他の部分より薄くなり、磁気抵抗効果3
層膜のテーパ形状に適合する逆テーパ形状となるので、
強磁性膜の表面高さは略均等となる。
According to the third aspect of the invention, when the ion beam tilted by a predetermined angle is irradiated, the magnetoresistive effect three-layer film in the shadow of the resist remains difficult to be removed. The portion can be tapered.
Further, when a ferromagnetic film is formed by ion beam sputtering tilted at a predetermined angle, the film thickness of the taper portion which becomes the shadow of the resist becomes thinner than the other portions, and the magnetoresistive effect 3
Since it has an inverse taper shape that matches the taper shape of the layer film,
The surface height of the ferromagnetic film is substantially uniform.

【0020】[0020]

【実施例】以下、本発明をその実施例を示す図面に基づ
き具体的に説明する。図1は、本発明に係る磁気抵抗効
果型薄膜磁気ヘッドを浮上面側から示す断面構造図であ
る。図中1は、Al2 3 −TiC基板であり、この上
に下部保護膜2(Al2 3 ,3μm)が形成されてい
る。下部保護膜2上の所定領域には下部シールド膜3
(Ni−Fe,1.5μm)が形成されており、下部電磁気的
絶縁膜4(Al2 3 , 0.17μm)にて覆われている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings showing the embodiments. FIG. 1 is a sectional structural view showing a magnetoresistive thin-film magnetic head according to the present invention from the air bearing surface side. In the figure, reference numeral 1 denotes an Al 2 O 3 —TiC substrate, on which a lower protective film 2 (Al 2 O 3 , 3 μm) is formed. The lower shield film 3 is provided in a predetermined area on the lower protective film 2.
(Ni-Fe, 1.5 μm) is formed and covered with the lower electromagnetic insulating film 4 (Al 2 O 3 , 0.17 μm).

【0021】この上にCo−Zr−Moからなるソフト
バイアス膜5(0.02μm),Tiからなる非磁性分離膜6
(0.01μm)及びNi−FeからなるMR膜7(0.02μm)
を含むMR3層膜13が積層され、その両側に、Cr下
地上にCo−Cr−Taを成膜してなる強磁性膜8,8
(0.05μm)が形成されている。MR3層膜13の両端部
はテーパ状になしてあり、MR3層膜13と接する強磁
性膜8,8の端部は逆テーパ状になしてある。MR3層
膜13の中央部を除き、強磁性膜8,8を覆う態様でC
r−Cu−Crを積層した電極9,9(0.15μm)が形成
されており、その上に上部電磁気的絶縁膜10(Al2
3 ,0.2μm)及び上部シールド膜11(Ni−Fe,1.5
μm)が形成されている。そして全表面は上部保護膜12
(Al23 , 20μm)にて覆われている。
On top of this, a soft bias film 5 (0.02 μm) made of Co—Zr—Mo and a non-magnetic separation film 6 made of Ti.
MR film 7 (0.02 μm) consisting of (0.01 μm) and Ni-Fe
Ferromagnetic films 8 and 8 formed by laminating a MR3 layer film 13 containing Co and depositing Co-Cr-Ta on a Cr underlayer on both sides thereof.
(0.05 μm) is formed. Both ends of the MR3 layer film 13 are tapered, and the ends of the ferromagnetic films 8 and 8 in contact with the MR3 layer film 13 are inversely tapered. Except for the central portion of the MR3 layer film 13, the C film is formed so as to cover the ferromagnetic films 8 and 8.
Electrodes 9 and 9 (0.15 μm) in which r-Cu-Cr are laminated are formed, and an upper electromagnetic insulating film 10 (Al 2
O 3 , 0.2 μm) and the upper shield film 11 (Ni-Fe, 1.5
μm) is formed. And the entire surface is the upper protective film 12
(Al 2 O 3 , 20 μm).

【0022】MR3層膜13及び強磁性膜8の素子高さ
は 2.5μm ,電極9,9の間隔は4μm である。MR3
層膜13と強磁性膜8との平坦化を図るために、強磁性
膜8はMR3層膜13の合計膜厚と一致させてある。
The element height of the MR three-layer film 13 and the ferromagnetic film 8 is 2.5 μm, and the distance between the electrodes 9 and 4 is 4 μm. MR3
In order to flatten the layer film 13 and the ferromagnetic film 8, the ferromagnetic film 8 is made to match the total film thickness of the MR3 layer film 13.

【0023】以上の如き構成の磁気抵抗効果型薄膜磁気
ヘッドの製造方法について説明する。Al2 3 −Ti
C基板1上に、スパッタ法で下部保護膜2を形成し、め
っきで下部シールド膜3を形成し、スパッタ法で下部電
磁気的絶縁膜4を形成する。次いでソフトバイアス膜
5,非磁性分離膜6及びMR膜7を連続してスパッタ法
で形成し、イオンミリングで加工する。図2はイオンミ
リングを行っている状態を示す説明図であり、図2(a)
は側面図、図2(b) は上方から見た斜視図である。イオ
ンミリングは、MR3層膜13上にレジスト21を形成
しておき、試料Sを回転させながら、試料S表面に対し
て15°傾斜させたイオンビームを照射する。そうする
と図2に示す如く、レジスト21の影になる部分に3μ
m 程度のテーパ形状が得られる。
A method of manufacturing the magnetoresistive thin-film magnetic head having the above structure will be described. Al 2 O 3 -Ti
On the C substrate 1, the lower protective film 2 is formed by the sputtering method, the lower shield film 3 is formed by plating, and the lower electromagnetic insulating film 4 is formed by the sputtering method. Next, the soft bias film 5, the non-magnetic separation film 6 and the MR film 7 are successively formed by the sputtering method and processed by ion milling. FIG. 2 is an explanatory view showing a state in which ion milling is performed, and FIG.
Is a side view and FIG. 2 (b) is a perspective view seen from above. In the ion milling, a resist 21 is formed on the MR3 layer film 13, and while rotating the sample S, an ion beam inclined by 15 ° with respect to the surface of the sample S is irradiated. Then, as shown in FIG.
A taper shape of about m can be obtained.

【0024】次に図3(a) に示す如く、この状態の試料
Sを回転させながら、試料S表面に対し30°傾斜させ
たイオンビームスパッタリングにて強磁性膜8を成膜す
る。レジスト21の影になるテーパ部分の膜厚は他の部
分より薄くなるので、強磁性膜8の表面高さは略均等と
なる。平坦な試料S表面にレジスト21を形成して、上
述の如き30°傾斜させたイオンビームスパッタリング
を行った場合を図3(b) に示す。この場合もレジスト2
1の影になるテーパ部分の膜厚は他の部分より薄くなる
が、下地が平坦であるので徐々に盛り上がった態様で成
膜が行われる。
Next, as shown in FIG. 3 (a), while the sample S in this state is being rotated, the ferromagnetic film 8 is formed by ion beam sputtering inclined at 30 ° with respect to the surface of the sample S. Since the film thickness of the tapered portion which is the shadow of the resist 21 is thinner than the other portions, the surface height of the ferromagnetic film 8 is substantially equal. FIG. 3B shows the case where the resist 21 is formed on the flat surface of the sample S and the ion beam sputtering is performed with the inclination of 30 ° as described above. Even in this case, the resist 2
Although the film thickness of the tapered portion which is shaded by 1 is smaller than that of the other portions, since the base is flat, the film formation is performed in a gradually rising manner.

【0025】このときMR3層膜13の端部及び強磁性
膜8の端部をテーパ形状とすることにより、2つの膜の
接触面積を増大することができる。ただ単に接触面積を
増大させるのであればMR3層膜13上全体に強磁性膜
8を積層すればよいが、その場合はMR膜7と強磁性膜
8とが交換結合してしまいMR膜7の軟磁気特性が損な
われる。従って本実施例の如く端部のみで接続させる必
要がある。このときのテーパ形状はアライメントのずれ
以上の大きさであればよい。
At this time, the contact area between the two films can be increased by tapering the ends of the MR3 layer film 13 and the ferromagnetic film 8. If the contact area is simply increased, the ferromagnetic film 8 may be laminated on the entire MR3 layer film 13. However, in that case, the MR film 7 and the ferromagnetic film 8 are exchange-coupled with each other, and the MR film 7 of the MR film 7 is exchanged. Soft magnetic properties are impaired. Therefore, it is necessary to connect only at the ends as in this embodiment. The taper shape at this time may be larger than the alignment deviation.

【0026】またこのとき、例えば図4に示す如くMR
3層膜13が強磁性膜8より厚いと、その上に形成され
る電極9,9に段差が発生する。これは前述したよう
に、電極9,9の上に上部電磁気的絶縁膜10を介して
形成される上部シールド膜11との電気的ショートを招
来するので好ましくない。従ってレジストの形状及びビ
ーム強度を制御してMR3層膜13と強磁性膜8とのテ
ーパ形状及び膜厚を揃えることにより、図5に示す如く
MR3層膜13と強磁性膜8とを平坦化すれば、平坦な
電極9,9を作製することができる。そしてレジスト2
1を除去した後、電極9,9及び上部電磁気的絶縁膜1
0をスパッタ法で、上部シールド膜11をめっき法で、
さらに上部保護膜12をスパッタ法で夫々形成する。
Further, at this time, for example, as shown in FIG.
When the three-layer film 13 is thicker than the ferromagnetic film 8, steps are formed on the electrodes 9 and 9 formed thereon. As described above, this is not preferable because it causes an electrical short circuit with the upper shield film 11 formed on the electrodes 9 and 9 via the upper electromagnetic insulating film 10. Therefore, by controlling the shape of the resist and the beam intensity to make the taper shape and film thickness of the MR3 layer film 13 and the ferromagnetic film 8 uniform, the MR3 layer film 13 and the ferromagnetic film 8 are flattened as shown in FIG. Then, the flat electrodes 9 and 9 can be manufactured. And resist 2
After removing 1, the electrodes 9 and 9 and the upper electromagnetic insulating film 1
0 is the sputtering method, the upper shield film 11 is the plating method,
Further, the upper protective film 12 is formed by the sputtering method.

【0027】このようにして得られた磁気抵抗効果型薄
膜磁気ヘッドの再生特性を検討した結果について述べ
る。使用した磁気抵抗効果型薄膜磁気ヘッドは、 2.5イ
ンチ,保磁力1800Oe,最低浮上量0.08μm である。但
しインダクティブヘッドを有さないので記録は42ター
ンの別の薄膜磁気ヘッドを使用した。
The results of examining the reproducing characteristics of the magnetoresistive thin film magnetic head thus obtained will be described. The magnetoresistive thin-film magnetic head used has 2.5 inches, a coercive force of 1800 Oe, and a minimum flying height of 0.08 μm. However, since there was no inductive head, another thin film magnetic head with 42 turns was used for recording.

【0028】図1に示す如きテーパ形状のMR3層膜1
3及び強磁性膜8を有さない従来の磁気抵抗効果型薄膜
磁気ヘッドは、S/Nの平均が35dBであり、標準偏
差σが29〜41dBの広い範囲に分布していた。一方
テーパ形状を有する本発明に係る磁気抵抗効果型薄膜磁
気ヘッドは、S/Nの平均が43dBと高く、標準偏差
σも40〜45dBの比較的狭い範囲に分布していた。
これはテーパ形状を形成することにより、アライメント
がずれていても切れ目及び重なり過ぎがない接続が可能
になったためであると考えられる。
A tapered MR3 layer film 1 as shown in FIG.
In the conventional magnetoresistive thin-film magnetic head not having No. 3 and the ferromagnetic film 8, the average S / N was 35 dB, and the standard deviation σ was distributed in a wide range of 29 to 41 dB. On the other hand, in the magnetoresistive thin-film magnetic head having the tapered shape according to the present invention, the average S / N was as high as 43 dB, and the standard deviation σ was distributed in a relatively narrow range of 40 to 45 dB.
It is considered that this is because by forming the taper shape, it is possible to make a connection without a break or an excessive overlap even if the alignment is deviated.

【0029】また前述した如くレジストの形状及びビー
ム強度を制御することにより、MR3層膜13と強磁性
膜8とを平坦化することができるので、その上に形成さ
れる電極9,9に凹凸が発生することもない。従って電
極9,9上に上部電磁気的絶縁膜10を介して形成され
ている上部シールド膜11と電極9,9との電気的ショ
ートを大幅に低減することができる。
By controlling the shape of the resist and the beam intensity as described above, the MR3 layer film 13 and the ferromagnetic film 8 can be flattened, so that the electrodes 9 and 9 formed thereon have unevenness. Does not occur. Therefore, the electrical short circuit between the upper shield film 11 formed on the electrodes 9, 9 via the upper electromagnetic insulating film 10 and the electrodes 9, 9 can be greatly reduced.

【0030】[0030]

【発明の効果】以上のように本発明に係る磁気抵抗効果
型薄膜磁気ヘッドは、磁気抵抗効果3層膜と強磁性膜と
の接続部分をアライメントのずれより大きいテーパ形状
となしてあるので、通常のアライメントのずれが生じて
も、磁気抵抗効果3層膜と強磁性膜とが離れることはな
く、また重なり過ぎによる盛り上がりも少ない。従って
充分な縦バイアス磁場が形成され、高いS/Nが得られ
る。また電極の表面も平坦となるので、電極の上に電磁
気的絶縁膜を介して形成されているシールド膜と電極と
の電気的ショートを防止することができる。また磁気抵
抗効果3層膜と強磁性膜との膜厚を略同等とすれば、こ
の部分にほとんど段差が生じない。これによりさらに電
極の表面を平坦とすることができる。
As described above, in the magnetoresistive thin-film magnetic head according to the present invention, the connecting portion between the magnetoresistive three-layer film and the ferromagnetic film has a taper shape larger than the misalignment. Even if a normal misalignment occurs, the magnetoresistive effect three-layer film and the ferromagnetic film do not separate from each other, and there is little swelling due to excessive overlap. Therefore, a sufficient longitudinal bias magnetic field is formed and a high S / N is obtained. Moreover, since the surface of the electrode is also flat, it is possible to prevent an electrical short circuit between the electrode and the shield film formed on the electrode via the electromagnetic insulating film. Further, if the magnetoresistive effect three-layer film and the ferromagnetic film are made substantially equal in thickness, there is almost no step difference in this portion. Thereby, the surface of the electrode can be further flattened.

【0031】また本発明に係る磁気抵抗効果型薄膜磁気
ヘッドの製造方法は、所定角度傾斜させたイオンビーム
を照射するので、レジストの影になる部分の磁気抵抗効
果3層膜は除去されにくく残り、テーパ形状が得られ
る。さらに所定角度傾斜させたイオンビームのスパッタ
リングにて強磁性膜を成膜するので、レジストの影にな
るテーパ部分の膜厚は他の部分より薄くなり、磁気抵抗
効果3層膜のテーパ形状に適合する逆テーパ形状となっ
て、強磁性膜の表面高さを略均等とすることができる
等、本発明は優れた効果を奏する。
Further, in the method of manufacturing the magnetoresistive effect thin film magnetic head according to the present invention, since the ion beam inclined at a predetermined angle is irradiated, the magnetoresistive effect three-layer film in the shadow of the resist is hard to be removed and remains. , A tapered shape can be obtained. Furthermore, since the ferromagnetic film is formed by ion beam sputtering tilted at a predetermined angle, the film thickness of the taper part which becomes the shadow of the resist becomes thinner than the other parts, and it matches the taper shape of the magnetoresistive effect three-layer film. The present invention has an excellent effect such that the surface height of the ferromagnetic film can be made substantially uniform by forming an inverse taper shape.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る磁気抵抗効果型薄膜磁気ヘッドを
浮上面側から示す断面構造図である。
FIG. 1 is a sectional structural view showing a magnetoresistive thin-film magnetic head according to the present invention from the air bearing surface side.

【図2】イオンミリングを行っている状態を示す説明図
である。
FIG. 2 is an explanatory diagram showing a state in which ion milling is performed.

【図3】本実施例におけるイオンビームスパッタリング
を説明するための図である。
FIG. 3 is a diagram for explaining ion beam sputtering in this example.

【図4】MR3層膜が強磁性膜より厚い場合を示す構造
断面図である。
FIG. 4 is a structural cross-sectional view showing a case where an MR3 layer film is thicker than a ferromagnetic film.

【図5】MR3層膜及び強磁性膜の厚さ同等である場合
を示す構造断面図である。
FIG. 5 is a structural cross-sectional view showing a case where the MR3 layer film and the ferromagnetic film have the same thickness.

【図6】ソフトバイアス法を使用した場合の磁気抵抗効
果型薄膜磁気ヘッドを示す構造断面図である。
FIG. 6 is a structural sectional view showing a magnetoresistive thin film magnetic head when a soft bias method is used.

【図7】ソフトバイアス法を使用した場合の磁気抵抗効
果型薄膜磁気ヘッドを示す構造断面図である。
FIG. 7 is a structural sectional view showing a magnetoresistive thin film magnetic head when a soft bias method is used.

【図8】磁気抵抗効果型薄膜磁気ヘッドの動作原理を説
明するための図である。
FIG. 8 is a diagram for explaining the operating principle of a magnetoresistive thin-film magnetic head.

【図9】MR3層膜と強磁性膜との接続部分を示す図で
ある。
FIG. 9 is a diagram showing a connecting portion between an MR3 layer film and a ferromagnetic film.

【図10】アライメントのずれを説明するための図であ
る。
FIG. 10 is a diagram for explaining misalignment.

【符号の説明】[Explanation of symbols]

1 Al2 3 −TiC基板 2 下部保護膜 3 下部シールド膜 4 下部電磁気的絶縁膜 5 ソフトバイアス膜 6 非磁性分離膜 7 MR膜 8 強磁性膜 9 電極 10 上部電磁気的絶縁膜 11 上部シールド膜 12 上部保護膜 13 MR3層膜1 Al 2 O 3 -TiC substrate 2 Lower protective film 3 Lower shield film 4 Lower electromagnetic insulating film 5 Soft bias film 6 Non-magnetic separation film 7 MR film 8 Ferromagnetic film 9 Electrode 10 Upper electromagnetic insulating film 11 Upper shield film 12 Upper protective film 13 MR3 layer film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板上に、磁気抵抗効果膜,該磁気抵抗
効果膜にバイアス磁場を印加するためのソフトバイアス
膜,及び前記磁気抵抗効果膜,ソフトバイアス膜間を磁
気的に遮断するための非磁性分離膜を有する磁気抵抗効
果3層膜と、前記磁気抵抗効果膜に接続された電極と、
前記磁気抵抗効果膜の両端に接続されており、磁気抵抗
効果膜に縦バイアス磁場を印加するための強磁性膜とを
備える磁気抵抗効果型薄膜磁気ヘッドにおいて、前記磁
気抵抗効果膜の両端がテーパ形状をなしており、その両
端に接続される強磁性膜の端部が逆テーパ形状となして
あることを特徴とする磁気抵抗効果型薄膜磁気ヘッド。
1. A magnetoresistive effect film on a substrate, a soft bias film for applying a bias magnetic field to the magnetoresistive effect film, and a magnetic shutoff between the magnetoresistive effect film and the soft bias film. A magnetoresistive effect three-layer film having a non-magnetic separation film, and an electrode connected to the magnetoresistive effect film,
In a magnetoresistive thin-film magnetic head connected to both ends of the magnetoresistive film and including a ferromagnetic film for applying a longitudinal bias magnetic field to the magnetoresistive film, both ends of the magnetoresistive film are tapered. A magnetoresistive thin-film magnetic head, characterized in that it has a shape, and the ends of the ferromagnetic film connected to both ends thereof have an inverse taper shape.
【請求項2】 前記強磁性膜の膜厚は、前記磁気抵抗効
果3層膜の合計膜厚と略等しいことを特徴とする請求項
1記載の磁気抵抗効果型薄膜磁気ヘッド。
2. The magnetoresistive thin-film magnetic head according to claim 1, wherein a film thickness of the ferromagnetic film is substantially equal to a total film thickness of the magnetoresistive three-layer film.
【請求項3】 基板上に、磁気抵抗効果膜,該磁気抵抗
効果膜にバイアス磁場を印加するためのソフトバイアス
膜,及び前記磁気抵抗効果膜,ソフトバイアス膜間を磁
気的に遮断するための非磁性分離膜を有する磁気抵抗効
果3層膜と、前記磁気抵抗効果膜の両端に接続されてお
り、磁気抵抗効果膜に縦バイアス磁場を印加するための
強磁性膜とを備える磁気抵抗効果型薄膜磁気ヘッドを製
造する方法において、前記磁気抵抗効果3層膜の上にレ
ジストを形成する工程と、このレジストが形成された前
記磁気抵抗効果3層膜を回転させながら、所定角度傾斜
させたイオンビームを照射する工程と、前記磁気抵抗効
果3層膜を回転させながら、所定角度傾斜させたイオン
ビームのスパッタリングにて強磁性膜を成膜する工程
と、前記レジストを除去する工程とを含むことを特徴と
する磁気抵抗効果型薄膜磁気ヘッドの製造方法。
3. A magnetoresistive effect film on a substrate, a soft bias film for applying a bias magnetic field to the magnetoresistive effect film, and a magnetic shutoff between the magnetoresistive effect film and the soft bias film. A magnetoresistive effect type including a magnetoresistive effect three-layer film having a non-magnetic separation film and ferromagnetic films connected to both ends of the magnetoresistive effect film and for applying a longitudinal bias magnetic field to the magnetoresistive effect film. In a method of manufacturing a thin film magnetic head, a step of forming a resist on the magnetoresistive effect three-layer film, and an ion inclined at a predetermined angle while rotating the magnetoresistive effect three-layer film on which the resist is formed. Beam irradiation, a step of forming a ferromagnetic film by sputtering an ion beam inclined at a predetermined angle while rotating the magnetoresistive effect three-layer film, and removing the resist. And a step of removing the thin film magnetic head.
JP6228501A 1994-09-22 1994-09-22 Magnetoresistive effect thin film magnetic head and its production Pending JPH0896328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6228501A JPH0896328A (en) 1994-09-22 1994-09-22 Magnetoresistive effect thin film magnetic head and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6228501A JPH0896328A (en) 1994-09-22 1994-09-22 Magnetoresistive effect thin film magnetic head and its production

Publications (1)

Publication Number Publication Date
JPH0896328A true JPH0896328A (en) 1996-04-12

Family

ID=16877444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6228501A Pending JPH0896328A (en) 1994-09-22 1994-09-22 Magnetoresistive effect thin film magnetic head and its production

Country Status (1)

Country Link
JP (1) JPH0896328A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001203406A (en) * 1999-10-28 2001-07-27 Quantum Corp Thin film device and photoresist lift-off structure
US6281538B1 (en) * 2000-03-22 2001-08-28 Motorola, Inc. Multi-layer tunneling device with a graded stoichiometry insulating layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001203406A (en) * 1999-10-28 2001-07-27 Quantum Corp Thin film device and photoresist lift-off structure
US6281538B1 (en) * 2000-03-22 2001-08-28 Motorola, Inc. Multi-layer tunneling device with a graded stoichiometry insulating layer

Similar Documents

Publication Publication Date Title
US5388019A (en) Magnetic thin film structures fabricated with edge closure layers
US7007372B1 (en) Method for making high speed, high areal density inductive write structure
JP3520170B2 (en) Composite type thin film magnetic head
JP2694806B2 (en) Magnetoresistive element and method of manufacturing the same
US5777542A (en) Magnetoresistance effect device and manufacturing method thereof
JP3473939B2 (en) Thin film magnetic head and method of manufacturing the same
US5675459A (en) Magnetoresistive head with improved insulation between a main electrode layer and a lower shield layer
US5892641A (en) Magnetoresistive effect head with individual layers satisfying a basic inequality involving layer thickness and ion milling rates
JP2000030227A (en) Thin-film magnetic head and its production
JPH08153310A (en) Magnetoresistance effect type thin film magnetic head
US5896251A (en) Magnetoresistance effect head with conductor film pair and magnetic field proving film pair disposed between substrate and magnetoresistance effect film
JPH0896328A (en) Magnetoresistive effect thin film magnetic head and its production
JPH06318515A (en) Magnetoresistive element and manufacture thereof and magnetic head and magnetic memory device
JP3475868B2 (en) Magnetoresistive thin-film magnetic head
JPH11112055A (en) Magnetic sensor
JP3184470B2 (en) Thin film magnetic head
JP2000113416A (en) Magnetoresistive head and its manufacturing method
JPH0817022A (en) Production of combined thin-film magnetic head
JPH11232615A (en) Magnetoresistive effect element, magnetoresistive effect type head and magnetic recording reproducer
JPH0918069A (en) Magnetic reluctance device and its formation process
JPH06301931A (en) Magnetic head of magnetoresistance effect type and its manufacture
JPH05182145A (en) Recording and reproducing separation type magnetic head
JP2000149218A (en) Thin film magnetic head and its manufacture
JPH08221717A (en) Magneto-resistive magnetic head
JPH09129945A (en) Magnetoresistance effect element and manufacturing method thereof