JPH0895641A - Plane plate direction controller - Google Patents

Plane plate direction controller

Info

Publication number
JPH0895641A
JPH0895641A JP7099340A JP9934095A JPH0895641A JP H0895641 A JPH0895641 A JP H0895641A JP 7099340 A JP7099340 A JP 7099340A JP 9934095 A JP9934095 A JP 9934095A JP H0895641 A JPH0895641 A JP H0895641A
Authority
JP
Japan
Prior art keywords
plate
solar cell
photoelectric conversion
plane
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7099340A
Other languages
Japanese (ja)
Inventor
Taku Sugiyama
卓 杉山
Yoshio Matsuhashi
良夫 松橋
Makoto Takagi
誠 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOKOGAWA SOGO KENKYUSHO KK
Yokogawa Electric Corp
Original Assignee
YOKOGAWA SOGO KENKYUSHO KK
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOKOGAWA SOGO KENKYUSHO KK, Yokogawa Electric Corp filed Critical YOKOGAWA SOGO KENKYUSHO KK
Priority to JP7099340A priority Critical patent/JPH0895641A/en
Publication of JPH0895641A publication Critical patent/JPH0895641A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE: To provide a plane plate direction controller which can cope with even the change of the angle of elevation to the sun in the summer and winter etc., by providing a rotary drive mechanism which turns a plane plate in response to the output difference of plural photoelectric transducers and then always setting the plane plate right against the incident direction of the light. CONSTITUTION: Plural solar batteries 1b are attached on a plane plate 1a and used as a solar battery plate 1, and a light shielding plate 4 is erected on the surface of the plate 1 so that the lengthwise direction of the plate 4 is set in the vertical direction. The photoelectric transducers 6a, 6b, 7a and 7b are attached on the surface of the plate 1 and adjacent to the plate 4. The electric signals received from the transducers 6a to 7b are differentially amplified, and the rotary drive mechanisms 20 and 30 are driven. Furthermore, the plate 1 is always turned right against the sun by an automatic balancing function. Thus, it is possible to cope with the change of the angle of elevation to the sun in the summer and winter etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は常に太陽に対向できるよ
う自動的に回転追従する平面板方向制御装置に関するも
のである。このように構成された平面板に太陽電池を搭
載すれば、効率のよい太陽光の集光が可能で、環境に影
響の少ない電源を供給することができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plane plate direction control device that automatically follows rotation so that it can always face the sun. If the solar cell is mounted on the flat plate configured as described above, it is possible to efficiently collect sunlight and supply a power source that has little influence on the environment.

【0002】[0002]

【従来の技術】従来より太陽電池を平面状に配設してな
る太陽電池板は各技術分野において広く利用されてい
る。この種の太陽電池板は、その利用形態にもよるが大
部分は固定または手動で大体真南に向け45度程度の仰
角で取り付けられている。
2. Description of the Related Art Conventionally, a solar cell plate having solar cells arranged in a plane has been widely used in various technical fields. Most of the solar cell plates of this type are fixedly or manually attached at an elevation angle of about 45 degrees, depending on the type of use, toward the south.

【0003】[0003]

【発明が解決しようとする課題】しかしながらこのよう
な取り付け構造では、太陽の南中に近い時刻つまり午前
11時〜午後1時頃の間は効率よく太陽エネルギーを吸
収できるものの、その他の時間帯では著しくエネルギー
吸収効率が低下し実用価値に乏しいという欠点があっ
た。
However, with such a mounting structure, the solar energy can be efficiently absorbed at a time close to the south central part of the sun, that is, between 11:00 am and 1:00 pm, but at other times. There is a drawback that the energy absorption efficiency is remarkably lowered and the practical value is poor.

【0004】本発明の目的は、このような点に鑑み、従
来のものと異なり平面板(ここでは太陽電池板とする)
を常に最も明るい方向に自動的に正対させる機構を備え
て平面板に指向性を持たせ、光照射効率の向上を図った
平面板方向制御装置を提供することにある。本発明の他
の目的は、日没時西向きで停止した太陽電池板を翌朝太
陽光に対向させるために太陽電池板を急速に東向きに回
転させ得る平面板方向制御装置を提供することにある。
本発明の更に他の目的は、夏期、冬期などの太陽仰角変
化にも対応できるよう太陽電池板の仰角を制御し得る平
面板方向制御装置を提供することにある。
In view of the above points, an object of the present invention is a plane plate (here, a solar cell plate) unlike the conventional one.
It is an object of the present invention to provide a plane plate direction control device which is provided with a mechanism for automatically confronting the flat plate automatically in the brightest direction so that the plane plate has directivity and the light irradiation efficiency is improved. Another object of the present invention is to provide a plane plate orientation control device capable of rapidly rotating the solar cell plate in the east direction in order to face the solar cell plate stopped in the west direction at sunset at the next morning to the sunlight. .
Still another object of the present invention is to provide a plane plate orientation control device capable of controlling the elevation angle of a solar cell plate so as to cope with changes in the sun elevation angle in summer, winter, etc.

【0005】[0005]

【課題を解決するための手段】このような目的を達成す
るために本発明では、平面板と、この平面板の表面に長
手方向が垂直方向に向くように立てられた遮光板と、こ
の遮光板に隣接し遮光板を挟むようにして配設された少
なくとも2個の光電変換素子と、前記光電変換素子の出
力差に応じて前記平面板を回転駆動する回転駆動機構を
具備し、前記平面板を常に光の入射方向に正対させる自
動平衡機能を持たせたことを特徴とする。
In order to achieve such an object, according to the present invention, a flat plate, a light shielding plate which is erected on the surface of the flat plate so that the longitudinal direction thereof is oriented in the vertical direction, and the light shielding At least two photoelectric conversion elements arranged adjacent to the plate so as to sandwich the light shielding plate, and a rotary drive mechanism for rotationally driving the flat plate according to an output difference of the photoelectric conversion element are provided. It is characterized by having an automatic balancing function that always faces the incident direction of light.

【0006】[0006]

【作用】平面板表面に立てた遮光板の両脇にある光電変
換素子から出力を取り出す。平面板が光の入射方向に正
対している場合は、光電変換素子の出力信号の差は零で
あるが、正対していない場合はいずれかの光電変換素子
が遮光板の影になり出力信号の差は零以外の値となるの
で、この出力差に応じて平面板を右または左に回転させ
る。正対するとその回転は停止する。このような自動平
衡機構により平面板を常に光の入射方向に追従回転させ
ることができる。
Function: Output is taken out from the photoelectric conversion elements on both sides of the light shielding plate standing on the surface of the plane plate. When the flat plate faces the incident direction of light, the difference between the output signals of the photoelectric conversion elements is zero, but when the flat plates do not face each other, one of the photoelectric conversion elements becomes the shadow of the light shielding plate and the output signal. Since the difference between the two is a value other than zero, the flat plate is rotated to the right or left according to this output difference. The rotation stops when it faces directly. With such an automatic balancing mechanism, the plane plate can always be rotated following the incident direction of light.

【0007】[0007]

【実施例】以下図面を用いて本発明を詳しく説明する。
図1は本発明に係る平面板方向制御装置の一実施例を示
す構成図である。なお、図1では、目的平面板を、太陽
光を受ける太陽電池板とした場合を例にとってある。
The present invention will be described in detail below with reference to the drawings.
FIG. 1 is a block diagram showing an embodiment of a plane board direction control device according to the present invention. Note that FIG. 1 shows an example in which the target plane plate is a solar cell plate that receives sunlight.

【0008】図1において、1は太陽電池板であり、四
角形の平面基板1a上に複数個の太陽電池を縦横に並べ
て配設したものである。平面基板1aは通常光を透過し
ない材料で形成されており、図2に示すようにその平面
基板1a上に複数個の太陽電池1bが取り付けられてい
る。複数個の太陽電池1bの出力は適宜直並列接続され
(結線図は省略してある)電源箱2に収納された蓄電池
(図示せず)を充電する。この蓄電池の出力は、端子3
a,3bより外部へ出力でき種々の機器を動作させるの
に利用されるが、同時に太陽電池板1を回転するための
第1の回転駆動機構20および第2の回転駆動機構30
の電源としても利用される。
In FIG. 1, reference numeral 1 denotes a solar cell plate, which comprises a plurality of solar cells arranged vertically and horizontally on a rectangular flat substrate 1a. The flat substrate 1a is usually made of a material that does not transmit light, and a plurality of solar cells 1b are mounted on the flat substrate 1a as shown in FIG. The outputs of the plurality of solar cells 1b are connected in series and in parallel as appropriate (a wiring diagram is omitted) to charge a storage battery (not shown) housed in the power supply box 2. The output of this battery is terminal 3
The first rotary drive mechanism 20 and the second rotary drive mechanism 30 for rotating the solar cell plate 1 at the same time, which can be output to the outside from a and 3b and are used for operating various devices.
It is also used as a power source.

【0009】第1の回転駆動機構20は電源箱2に固着
され、太陽電池板1が太陽の移動に追従回転するよう太
陽電池板1に係合したシャフト8をモータ(図示せず)
により回転させるものである(この回転の軸を第1の回
転軸と呼ぶ)。他方第2の回転駆動機構30は、シャフ
ト8の先端部と太陽電池板1の背面に連結した機構で、
太陽仰角の変化に追従するようモータ(図示せず)によ
り太陽電池板1の仰角を回転制御するものである(この
回転の軸を第2の回転軸と呼ぶ)。なお、第1の回転軸
と第2の回転軸は通常直交している。
The first rotary drive mechanism 20 is fixed to the power source box 2, and the shaft 8 engaged with the solar cell plate 1 is rotated by a motor (not shown) so that the solar cell plate 1 rotates following the movement of the sun.
(The axis of this rotation is called the first axis of rotation). On the other hand, the second rotation drive mechanism 30 is a mechanism connected to the tip of the shaft 8 and the back surface of the solar cell plate 1,
A motor (not shown) controls the rotation of the elevation angle of the solar cell plate 1 so as to follow changes in the sun elevation angle (the axis of this rotation is called the second rotation axis). The first axis of rotation and the second axis of rotation are usually orthogonal.

【0010】4および5は太陽電池板1を左右上下に分
ける遮光板であり、遮光板4はその長手方向が垂直とな
るように太陽電池板1の表面に直角に立つように取り付
けられている。さらにその遮光板に隣接して光電変換素
子6a,6b,7a,7bが太陽電池板1の表面に装着
されている。光電変換素子6a,6bと7a,7bから
の電気信号は差動的に増幅され、回転駆動機構20,3
0を駆動する。光電変換素子6a,6bと7a,7bの
それぞれの出力が等しくなると、換言すれば遮光板4,
5の影が光電変換素子から離れると第1および第2の回
転軸の回転はそれぞれ停止する。
Numerals 4 and 5 are light-shielding plates for dividing the solar cell plate 1 into left and right, and the light-shielding plate 4 is attached so as to stand at a right angle on the surface of the solar cell plate 1 so that its longitudinal direction is vertical. . Further, photoelectric conversion elements 6a, 6b, 7a, 7b are mounted on the surface of the solar cell plate 1 adjacent to the light shielding plate. The electric signals from the photoelectric conversion elements 6a, 6b and 7a, 7b are differentially amplified, and the rotary drive mechanisms 20, 3
Drive 0. When the respective outputs of the photoelectric conversion elements 6a, 6b and 7a, 7b become equal, in other words, the light shielding plate 4,
When the shadow of 5 separates from the photoelectric conversion element, the rotations of the first and second rotation shafts stop.

【0011】9a,9bは太陽電池板1の背面に所定の
角度で取り付けられた光電変換素子であり、太陽電池板
1の背面からの太陽光入射を検知するためのもので、そ
の出力は翌朝太陽電池板1の向きを変える際に役立つも
のである。10は太陽電池板1の右端に取り付けられた
仕切板であり、ここには右側から入射される太陽光にの
み感応するよう光電変換素子10a,10bが取り付け
られている。太陽電池板1の左端にも同様に仕切板11
が取り付けられ、ここには左側からの太陽光にのみ感応
するよう光電変換素子11a,11bが取り付けられて
いる。この光電変換素子の出力も太陽電池板1の向きを
変えるのに利用される。
Reference numerals 9a and 9b denote photoelectric conversion elements mounted on the back surface of the solar cell plate 1 at a predetermined angle for detecting the incidence of sunlight from the back surface of the solar cell plate 1, and the output thereof is the next morning. It is useful when changing the direction of the solar cell plate 1. Reference numeral 10 denotes a partition plate attached to the right end of the solar cell plate 1, on which photoelectric conversion elements 10a and 10b are attached so as to be sensitive only to the sunlight incident from the right side. A partition plate 11 is similarly provided on the left end of the solar cell plate 1.
Is attached, and photoelectric conversion elements 11a and 11b are attached here so as to be sensitive only to sunlight from the left side. The output of this photoelectric conversion element is also used to change the direction of the solar cell plate 1.

【0012】図4はこのような平面板方向制御装置にお
ける電気的構成図の一実施例を示す図である。図におい
て、100は太陽電池板1に搭載された複数個の太陽電
池群であり、その合成出力は過充電防止回路101を経
由して蓄電池102に加えられる。蓄電池102に充電
された電圧はか電圧防止回路103(例えばツェナーダ
イオードなど)を経由して一定電圧として出力端子3
a,3bより外部へ出力でき、同時に本装置内部の電気
回路の電圧源としても利用される。なお、過充電防止回
路101と蓄電池102は電源箱2内に収納されてい
る。
FIG. 4 is a diagram showing an embodiment of an electrical configuration diagram of such a plane plate direction control device. In the figure, reference numeral 100 denotes a plurality of solar cell groups mounted on the solar cell plate 1, and the combined output thereof is applied to the storage battery 102 via the overcharge prevention circuit 101. The voltage charged in the storage battery 102 is output to the output terminal 3 as a constant voltage via the voltage protection circuit 103 (eg, Zener diode).
It can be output from a and 3b to the outside, and at the same time, it can be used as a voltage source for an electric circuit inside the device. The overcharge prevention circuit 101 and the storage battery 102 are housed in the power supply box 2.

【0013】201は第1の加算器、202は反転増幅
器、203は第2の加算器、204は第3の加算器、2
05は第1の電力増幅器、206は第1のモータであ
り、これらの回路は第1の回転駆動機構20に含まれ、
太陽電池板1の左右回転を制御する自動平衡機構であ
る。他方、301は第4の加算器、302は第2の反転
増幅器、303は第2の電力増幅器、304は第2のモ
ータであり、これらの回路は第2の回転駆動機構30に
含まれ、太陽電池板1の仰角の制御を行う自動平衡機構
である。
Reference numeral 201 is a first adder, 202 is an inverting amplifier, 203 is a second adder, 204 is a third adder, 2
Reference numeral 05 is a first power amplifier, 206 is a first motor, and these circuits are included in the first rotary drive mechanism 20,
It is an automatic balancing mechanism that controls the left-right rotation of the solar cell plate 1. On the other hand, 301 is a fourth adder, 302 is a second inverting amplifier, 303 is a second power amplifier, 304 is a second motor, and these circuits are included in the second rotary drive mechanism 30, This is an automatic balancing mechanism that controls the elevation angle of the solar cell plate 1.

【0014】第1の回転駆動機構20において、第1の
加算器201は入力抵抗R1,R2,R3と帰還抵抗R
4を有する演算増幅器A1より構成され、各入力抵抗に
加えられる光電変換素子6aと6bの出力および反転増
幅器202の出力を加算するものである。反転増幅器2
02は入力抵抗R5,R6と帰還抵抗R7を有する演算
増幅器A2から構成され、各入力抵抗に加えられる光電
変換素子7a,7bの出力を加算すると共に極性反転を
行うもので、その出力は前記第1の加算器201の入力
抵抗R3に加えられる。
In the first rotary drive mechanism 20, the first adder 201 includes input resistors R1, R2 and R3 and a feedback resistor R.
The output of the photoelectric conversion elements 6a and 6b added to each input resistance and the output of the inverting amplifier 202 are added together. Inverting amplifier 2
Reference numeral 02 denotes an operational amplifier A2 having input resistors R5 and R6 and a feedback resistor R7, which adds the outputs of the photoelectric conversion elements 7a and 7b added to the respective input resistors and performs polarity inversion. 1 is added to the input resistance R3 of the adder 201.

【0015】第2の加算器203は入力抵抗R9,R1
0と帰還抵抗R11を有する演算増幅器A3より構成さ
れ、各入力抵抗に加えられる光電変換素子9aと9bの
出力を加算するものである。第3の加算器204は入力
抵抗R13,R14,R15,R16と帰還抵抗R17
を有する演算増幅器A4から構成され、各入力抵抗に加
えられる光電変換素子10a,10b,11a,11b
の出力を加算するものである。
The second adder 203 has input resistors R9 and R1.
It is composed of an operational amplifier A3 having 0 and a feedback resistor R11, and adds the outputs of the photoelectric conversion elements 9a and 9b added to each input resistor. The third adder 204 includes input resistors R13, R14, R15, R16 and a feedback resistor R17.
Photoelectric conversion elements 10a, 10b, 11a, 11b which are configured by an operational amplifier A4 having
The output of is added.

【0016】電力増幅器205は抵抗R8,R12,R
18を介して入力される第1および第2並びに第3の加
算器(201,203,204)の出力を加算しそれを
電力増幅するもので、その出力により第1のモータ20
6を駆動する。モータは電力増幅器205の出力の極性
に応じて回転方向が変わる。例えばモータに正の電圧が
印加されるとシャフト8は左回転し、負の電圧では右回
転となる。
The power amplifier 205 includes resistors R8, R12, R
The output of the first, second, and third adders (201, 203, 204) input via 18 is added and the power is amplified, and the output of the first motor 20
Drive 6 The rotation direction of the motor changes depending on the polarity of the output of the power amplifier 205. For example, when a positive voltage is applied to the motor, the shaft 8 rotates counterclockwise, and a negative voltage rotates it clockwise.

【0017】さらに詳細に述べれば、光電変換素子7
a,7bの出力が光電変換素子6a,6bの出力より大
きい場合、すなわち太陽光が図1に示すように太陽電池
板1の左方向から照射し、光電変換素子6a,6bが遮
光板4の影に入っている場合には、モータ206は太陽
電池板1が左に向くようシャフト8を左方向へ回転し、
逆に太陽光が太陽電池板1の右方向から照射している場
合にはシャフトを右回転する。太陽電池板1が太陽に正
対すると、第1の加算器201の出力は零となり(第2
の加算器203および第3の加算器204の各出力も実
質上零になる)、モータ206の回転は止まる。
More specifically, the photoelectric conversion element 7
When the output of a, 7b is larger than the output of the photoelectric conversion elements 6a, 6b, that is, the sunlight irradiates from the left side of the solar cell plate 1 as shown in FIG. When in the shadow, the motor 206 rotates the shaft 8 leftward so that the solar cell plate 1 faces left,
On the contrary, when sunlight is shining from the right side of the solar cell plate 1, the shaft is rotated to the right. When the solar cell plate 1 faces the sun, the output of the first adder 201 becomes zero (second
The respective outputs of the adder 203 and the third adder 204 are also substantially zero), and the rotation of the motor 206 is stopped.

【0018】第4の加算器301は入力抵抗R19,R
20,R21と帰還抵抗R22を有する演算増幅器A5
より構成され、各抵抗に加えられる光電変換素子6a,
7aの出力および第2の反転増幅器302の出力とを加
算するものである。第2の反転増幅器302は入力抵抗
R23,R24と帰還抵抗R25を有する演算増幅器A
6より構成され、各抵抗に加えられる光電変換素子6
b,7bの出力を加算し極性を反転するもので、その出
力は前記入力抵抗R21に加えられる。
The fourth adder 301 has input resistors R19 and R19.
Operational amplifier A5 having 20, R21 and feedback resistor R22
Photoelectric conversion element 6a, which is configured by
The output of 7a and the output of the second inverting amplifier 302 are added. The second inverting amplifier 302 is an operational amplifier A having input resistors R23 and R24 and a feedback resistor R25.
Photoelectric conversion element 6 composed of 6 and added to each resistor
The outputs of b and 7b are added and the polarity is inverted. The output is added to the input resistor R21.

【0019】第2の電力増幅器303は第4の加算器3
01の出力を増幅し、その出力で第2のモータ304を
駆動する。モータは電力増幅器303の出力の極性に応
じて回転方向が変わる。例えば、光電変換素子6a,7
aの出力が光電変換素子6b,7bの出力より大きい場
合、すなわち、太陽電池板1の仰角が小さく光電変換素
子6b,7bが遮光板5の影に入っている場合は、モー
タ304は太陽電池板1の仰角が大きくなるようにシャ
フト(第2の回転軸のシャフト。ただし、図示省略)を
回転する。光電変換素子6a,7a,6b,7bに均等
に太陽光が照射され光電変換素子の各出力が等しくなる
と、その回転は止まる。
The second power amplifier 303 is the fourth adder 3
The output of 01 is amplified, and the output drives the second motor 304. The rotation direction of the motor changes depending on the polarity of the output of the power amplifier 303. For example, the photoelectric conversion elements 6a and 7
When the output of a is larger than the output of the photoelectric conversion elements 6b and 7b, that is, when the elevation angle of the solar cell plate 1 is small and the photoelectric conversion elements 6b and 7b are in the shadow of the light shielding plate 5, the motor 304 is the solar cell. The shaft (the shaft of the second rotation shaft, but not shown) is rotated so that the elevation angle of the plate 1 becomes large. When the photoelectric conversion elements 6a, 7a, 6b, 7b are uniformly irradiated with sunlight and the respective outputs of the photoelectric conversion elements become equal, the rotation thereof stops.

【0020】このような構成における動作を次に説明す
る。いま図1に示すように太陽光が左上方向から太陽電
池板1に入射しているものとする。光電変換素子7a,
7bおよび仕切板11に埋め込まれた光電変換素子11
a,11bには太陽光が照射され(これら各光電変換素
子からは正の電圧が出力される)、遮光板4の影になっ
ている光電変換素子6a,6bと仕切板10に埋め込ま
れた光電変換素子10a,10bおよび背面の光電変換
素子9a,9bには太陽光が照射されない。このため、
第1の加算器201からは正の電圧、第2の加算器20
3の出力は零、第3の加算器204からは負の電圧が出
力される。
The operation of such a configuration will be described below. Now, it is assumed that sunlight is incident on the solar cell plate 1 from the upper left direction as shown in FIG. Photoelectric conversion element 7a,
7b and the photoelectric conversion element 11 embedded in the partition plate 11
Sunlight is irradiated to a and 11b (a positive voltage is output from each photoelectric conversion element), and the photoelectric conversion elements 6a and 6b and the partition plate 10 which are shaded by the light shielding plate 4 are embedded. The photoelectric conversion elements 10a and 10b and the photoelectric conversion elements 9a and 9b on the back surface are not irradiated with sunlight. For this reason,
Positive voltage from first adder 201, second adder 20
The output of 3 is zero, and the third adder 204 outputs a negative voltage.

【0021】ここで、光電変換素子は総て同じ光電変換
特性を有し、また抵抗R8,R12,R18の抵抗値に
は重み付けを行い(例えば1:2:2の抵抗比とす
る)、他の入力抵抗や帰還抵抗R1〜R17はそれぞれ
同じ抵抗値であるとする(抵抗R19〜R25も同じ抵
抗値とする)。第1の電力増幅器205部分により上記
電流加算器201、203、204の出力を加算増幅
し、その出力(この場合は正の電圧)で第1のモータ2
06を駆動することにより、シャフト8は左回転し、太
陽電池板1は左方向へ回転する。
Here, the photoelectric conversion elements all have the same photoelectric conversion characteristics, and the resistance values of the resistors R8, R12, and R18 are weighted (for example, a resistance ratio of 1: 2: 2), and others. It is assumed that the input resistances and the feedback resistances R1 to R17 have the same resistance value (the resistances R19 to R25 also have the same resistance value). The first power amplifier 205 portion adds and amplifies the outputs of the current adders 201, 203 and 204, and the output (positive voltage in this case) of the first motor 2
By driving 06, the shaft 8 rotates counterclockwise and the solar cell plate 1 rotates leftward.

【0022】上記左方向への回転により、光電変換素子
6a,6bにも太陽光が照射されるようになると(太陽
電池板1が太陽にほぼ正対すると)、電力増幅器205
の加算入力が零になり、モータ206の回転は停止し、
太陽電池板1の回転も停止する。以降太陽が西方向へ移
動すれば上記動作にならって太陽電池板1は常に太陽に
正対するように追従回転する。
When the photoelectric conversion elements 6a and 6b are also irradiated with sunlight due to the leftward rotation (when the solar cell plate 1 faces the sun substantially), the power amplifier 205
The addition input of becomes zero and the rotation of the motor 206 stops,
The rotation of the solar cell plate 1 is also stopped. After that, when the sun moves to the west, the solar cell plate 1 follows the above-described operation and always rotates so as to face the sun.

【0023】他方、仰角の制御についても同様な動作で
ある。すなわち、光電変換素子6b,7bが遮光板5の
影になっているときは、第4の加算器301の出力は負
の電圧となり、これを電力増幅した第2の電力増幅器3
03の出力で第2のモータ304が駆動される。これに
より太陽電池板1は仰角が大きくなるよう上方向に回転
する。光電変換素子6b,7bにも太陽光が照射される
ようになると第4の加算器301の出力が零になり、モ
ータ304の回転は停止し、太陽電池板1の上向きの回
転も停止する。
On the other hand, the same operation is performed for elevation angle control. That is, when the photoelectric conversion elements 6b and 7b are in the shadow of the light shielding plate 5, the output of the fourth adder 301 is a negative voltage, and the second power amplifier 3 that power-amplifies the negative voltage is output.
The output of 03 drives the second motor 304. As a result, the solar cell plate 1 rotates upward so that the elevation angle increases. When the photoelectric conversion elements 6b and 7b are also irradiated with sunlight, the output of the fourth adder 301 becomes zero, the rotation of the motor 304 stops, and the upward rotation of the solar cell plate 1 also stops.

【0024】以上の動作は日の出から日没まで続く。太
陽が沈むと、太陽電池板1は自動平衡機能が失われ西向
きで停止する。翌朝太陽が東から昇ると、太陽電池板1
の背面の光電変換素子9a,9bに太陽光が照射され、
第2の加算器203からは負の出力電圧が発生し、第1
の電力増幅器205に加えられる。第1のモータ206
は電力増幅器205の負の電圧により駆動され、その結
果太陽電池板1は右方向に回転する。回転が進むにつれ
て光電変換素子9a,9bに入射される太陽光量は減っ
てくるが、その代わりに側面の仕切板10に取り付けた
光電変換素子10a,10bが太陽光に感応し始め、こ
れにより第3の加算器204から負の出力が電力増幅器
205に加えられ、モータ206の駆動により依然とし
て太陽電池板1は右方向への回転動作を続ける。さらに
回転が進み、太陽光が太陽電池板1の表面に照射される
ようになると、光電変換素子6a,6bも太陽光に感応
するようになり、第1の加算器201の出力(負の出
力)が電力増幅器205に加えられ、さらに太陽電池板
1は右方向へ回転する。
The above operation continues from sunrise to sunset. When the sun goes down, the solar cell plate 1 loses its self-balancing function and stops westward. The next morning when the sun rises from the east, the solar panel 1
Sunlight is radiated to the photoelectric conversion elements 9a and 9b on the back surface of the
A negative output voltage is generated from the second adder 203,
Power amplifier 205. First motor 206
Are driven by the negative voltage of the power amplifier 205, so that the solar cell plate 1 rotates to the right. As the rotation progresses, the amount of sunlight incident on the photoelectric conversion elements 9a and 9b decreases, but instead, the photoelectric conversion elements 10a and 10b attached to the side partition plate 10 start to be sensitive to the sunlight, and as a result, A negative output from the adder 204 of 3 is applied to the power amplifier 205, and the solar cell plate 1 continues to rotate in the right direction by driving the motor 206. When the rotation further progresses and the sunlight is applied to the surface of the solar cell plate 1, the photoelectric conversion elements 6a and 6b also become sensitive to the sunlight, and the output of the first adder 201 (negative output). ) Is added to the power amplifier 205, and the solar cell plate 1 further rotates to the right.

【0025】光電変換素子7a,7bにも太陽光が当た
るようになると、ついには電力増幅器205の加算入力
値がほぼ零になり、モータ206の回転が止まり、太陽
電池板1は太陽にほぼ正対した位置で停止する。その後
は前述の動作により太陽の動きに追従して回転する。
When sunlight comes into contact with the photoelectric conversion elements 7a and 7b, the added input value of the power amplifier 205 finally becomes almost zero, the rotation of the motor 206 stops, and the solar cell plate 1 is almost positive to the sun. Stop at the opposite position. After that, it rotates following the movement of the sun by the above-mentioned operation.

【0026】なお、太陽電池板1の左側の仕切板11に
取り付けた光電変換素子11a,11bは、何らかの原
因で太陽光が太陽電池板1の左真横から照射される状態
になった場合太陽に正対する位置へ回転復帰させるため
に必要となるものである。
The photoelectric conversion elements 11a and 11b attached to the partition plate 11 on the left side of the solar cell plate 1 are not exposed to the sun when the sunlight is radiated from the right side of the solar cell plate 1 for some reason. It is necessary to return the rotation to the directly facing position.

【0027】以上のような構成により、太陽電池板を常
に太陽光に正対するよう追従回転させる自動平衡機構を
実現することができる。なお、本発明は実施例に限定さ
れるものではなく、各部の構成を適宜変形することを妨
げない。例えば、背面および仕切板10,11に取り付
けられた光電変換素子は2個を1組としているが、2個
以外でも何ら差し支えなく、取り付け位置も限定されな
い。また、各抵抗の抵抗値も実施例に限定されるもので
はない。さらに、太陽電池板を回転させる回転機構は、
必ずしもモータである必要はなく、同様の目的を達成す
る回転駆動機構であればどんな構成のものでもよい。
With the above-described structure, it is possible to realize an automatic balancing mechanism for rotating the solar cell plate so as to always follow the sunlight. It should be noted that the present invention is not limited to the embodiments and does not prevent appropriate modification of the configuration of each part. For example, two photoelectric conversion elements are attached to the back surface and the partition plates 10 and 11 as one set, but other than two photoelectric conversion elements may be used without any limitation, and the attachment position is not limited. Moreover, the resistance value of each resistor is not limited to the embodiment. Furthermore, the rotation mechanism that rotates the solar cell plate,
It does not necessarily have to be a motor, and may have any configuration as long as it is a rotary drive mechanism that achieves the same purpose.

【0028】また、遮光板4,5の位置や高さ、光電変
換素子6a,6b,7a,7bの遮光板に対する取り付
け位置なども特に限定されない。また、仰角の制御は場
合によっては固定(手動による半固定も含む)としても
よい。
Further, the positions and heights of the light shielding plates 4 and 5 and the mounting positions of the photoelectric conversion elements 6a, 6b, 7a and 7b with respect to the light shielding plates are not particularly limited. In addition, the elevation angle control may be fixed (including manual semi-fixation) in some cases.

【0029】さらに、実施例では平面板を太陽電池板と
したが、これに限らず、太陽集光装置(太陽熱利用)に
置き換えてもよく、農作物の苗床その他光化学反応の効
率化等にも応用できる。また、本発明の装置は通常露天
に設けられるため、風、雪、埃り等の影響を受けるが、
光の入射を妨げない範囲で温室状のカバーを取り付ける
ことも長期実用上有効である。また、本発明の装置の電
源は野外に分布するセンサーや機器の電源として利用で
きるだけでなく、日中の電力を蓄えて、防犯ブザー、夜
間警戒燈、近接スイッチ作動等の電力として用いること
もできる。
Further, although the flat plate is the solar cell plate in the embodiment, it is not limited to this and may be replaced with a solar concentrator (utilization of solar heat), which is also applied to the nursery of crops and other photochemical reaction efficiency. it can. Further, since the device of the present invention is usually provided in the open air, it is affected by wind, snow, dust, etc.
It is also effective for long-term practical use to attach a greenhouse-like cover within the range that does not block the incidence of light. Further, the power source of the device of the present invention can be used not only as a power source for sensors and devices distributed outdoors, but also as a power source for daytime power storage such as a security buzzer, night warning light, proximity switch operation, etc. .

【0030】なお、太陽光に正対させて追従させるに
は、例えば、実用新案登録第1509814号「光源追
従装置」、実用新案登録第1552510号「ヘリオス
タット」、実用新案登録第1579814号「光源追従
装置」等を用いて実現するこもできるが、それらと比べ
て本発明の装置はより経済的な構成となっている。
In order to directly face and follow the sunlight, for example, utility model registration No. 1509814 "light source tracking device", utility model registration No. 1552510 "heliostat", utility model registration No. 1579814 "light source" However, the device of the present invention has a more economical structure than those devices.

【0031】図5は本発明に係るモータ駆動部の他の実
施例図を示す要部構成図である。この例では、日没等に
より太陽電池の電圧出力が所定の電圧以下に低下すると
太陽電池板を強制的に西方向に向け、続いて反転して南
方向に向けそこで停止させるようになっている。日の出
時は一度太陽電池板を南から東の方向へ回転させ、その
後は太陽に追尾するように制御している。
FIG. 5 is a main part configuration diagram showing another embodiment of the motor drive unit according to the present invention. In this example, when the voltage output of the solar cell drops below a predetermined voltage due to sunset or the like, the solar cell plate is forcibly directed in the west direction, then reversed and stopped in the south direction. . At sunrise, the solar panel is rotated once from the south to the east, and then controlled to track the sun.

【0032】図5において、401は差動増幅器であ
り、光電変換素子(例えば図1における6aと7a)の
出力の差を増幅する。402は差動増幅器401の出力
電圧を検出する電圧検出器、410は太陽電池板100
からの電圧を受け主電源(図示せず)を制御する主電源
制御回路、411は太陽電池板100の出力電圧を検出
する電圧検出器、412は電圧検出器411の出力が所
定の値以上になったことを検出する立上り検出器、41
5は電圧検出器411の出力が所定の値以下になったこ
とを検出する立下り検出器である。
In FIG. 5, reference numeral 401 is a differential amplifier, which amplifies the difference between the outputs of the photoelectric conversion elements (for example, 6a and 7a in FIG. 1). 402 is a voltage detector for detecting the output voltage of the differential amplifier 401, and 410 is the solar cell plate 100.
The main power supply control circuit that receives the voltage from the main power supply (not shown), 411 is a voltage detector that detects the output voltage of the solar cell plate 100, and 412 that the output of the voltage detector 411 is a predetermined value or more. Rising detector to detect when
Reference numeral 5 is a trailing edge detector for detecting that the output of the voltage detector 411 has become a predetermined value or less.

【0033】413は太陽電池板を東向きに回転させる
ための信号(モータ駆動信号)を発生する東向き動作信
号発生器で、その出力信号は立上り検出器412の出力
により立上り、東スイッチ414がONになると立下
る。416は太陽電池板を西向きに回転させるための信
号を発生する西向き動作信号発生器で、その出力信号は
立下り検出器415の出力により立上り、西スイッチ4
17がONになると立下る。418は太陽電池板を南向
きに回転させるための信号を発生する南向き動作信号発
生器で、その出力信号は西向き動作信号発生器416の
出力の立下がりにより立上がり、南スイッチ419がO
Nになると立下がる。
Reference numeral 413 is an eastward operation signal generator for generating a signal (motor drive signal) for rotating the solar cell plate in the eastward direction. The output signal thereof rises by the output of the rising detector 412, and the east switch 414 outputs the signal. It falls when it is turned on. Reference numeral 416 denotes a westward operation signal generator that generates a signal for rotating the solar cell plate in the westward direction. The output signal thereof rises by the output of the fall detector 415, and the west switch 4
It falls when 17 is turned on. Reference numeral 418 denotes a southward operation signal generator that generates a signal for rotating the solar cell plate to the south, and its output signal rises due to the fall of the output of the westward operation signal generator 416, and the south switch 419 is turned off.
When it reaches N, it falls.

【0034】東スイッチ414、西スイッチ417、南
スイッチ419は自動復帰型のON/OFFスイッチ
で、太陽電池板100が真東、真西、真南(厳密に真
東、真西、真南である必要はなく、ほぼ東、西、南であ
ればよい)に向いたときに接点がON(あるいはOF
F、ただし本実施例ではONとする)になるようにそれ
ぞれ配設されている。420はセレクタ回路であり、モ
ータ駆動回路421に与える信号を選択するものであ
る。モータ駆動回路421はセレクタ回路420から与
えられる信号に基づき太陽電池板100を回転させるモ
ータ206を駆動する。
The east switch 414, the west switch 417, and the south switch 419 are ON / OFF switches of an automatic resetting type, and the solar cell plate 100 is located in the true east, true west, true south (strictly true east, true west, true south. It does not have to be, and the contact is ON (or OF) when facing east, west, and south)
F, but is turned on in this embodiment). A selector circuit 420 selects a signal to be given to the motor drive circuit 421. The motor drive circuit 421 drives the motor 206 that rotates the solar cell plate 100 based on the signal provided from the selector circuit 420.

【0035】このような構成における動作を説明する。
太陽電池の出力電圧が上昇し開始シーケンス設定電圧
(予め設定してある)以上になると、電圧検出器411
の出力電圧が立上り、その立上りが立上り検出器412
により検出される。なお、主電源制御回路410も起動
し、各部への電源供給も開始される。立上り検出器41
2の出力により東向き動作信号発生器413からモータ
の反転駆動信号が送出される。この信号はセレクタ回路
420を通ってモータ駆動回路421に入力され、これ
によりモータは逆回転する(真南を向いていた太陽電池
板100が東に向くように回転する)。
The operation in such a configuration will be described.
When the output voltage of the solar cell rises and exceeds the start sequence set voltage (preset), the voltage detector 411
Output voltage rises, and its rise is detected by the rise detector 412.
Is detected by The main power supply control circuit 410 is also activated, and power supply to each unit is also started. Rise detector 41
By the output of 2, the reverse drive signal of the motor is sent from the eastward operation signal generator 413. This signal is input to the motor drive circuit 421 through the selector circuit 420, whereby the motor rotates in the reverse direction (the solar cell plate 100 that had been facing south is rotated so as to face east).

【0036】回転が進み東スイッチ414がONになる
と、東向き動作信号発生器413の出力がクリアされる
と共に東スイッチ414のON信号によりセレクタ回路
420は電圧検出器402の出力を選択する。これによ
り光電変換素子6a,7aによる太陽追尾が開始され
る。この太陽追尾中は日照がずれてくるとモータが回転
するという動作が断続的に行われ、ほとんどは停止状態
である。したがって、1日当たりのモータ駆動用の消費
電力は非常に少ない。
When the rotation advances and the east switch 414 is turned on, the output of the eastward operation signal generator 413 is cleared and the selector circuit 420 selects the output of the voltage detector 402 by the ON signal of the east switch 414. This starts the sun tracking by the photoelectric conversion elements 6a and 7a. During the tracking of the sun, the motor rotates intermittently when the sunshine shifts, and most of them are stopped. Therefore, the power consumption for driving the motor per day is very small.

【0037】日没時太陽電池電圧が低下して終了シーケ
ンス設定電圧(予め設定してある)に達すると電圧検出
器411の出力電圧が立下り、その立下りが立下り検出
器415により検出される。これにより西向き動作信号
発生器416よりモータの正転駆動信号(太陽電池板を
西方向に回転させる駆動信号)が送出される。この信号
はセレクタ回路420を通ってモータ駆動回路421に
加えられ、モータ206が正転する。
When the solar cell voltage at sunset reaches the end sequence set voltage (preset), the output voltage of the voltage detector 411 falls, and the fall is detected by the fall detector 415. It As a result, a forward drive signal for the motor (a drive signal for rotating the solar cell plate in the west direction) is sent from the westward operation signal generator 416. This signal is applied to the motor drive circuit 421 through the selector circuit 420, and the motor 206 rotates normally.

【0038】太陽電池板が回転して真西に向き、西スイ
ッチ417がONになると、南向き動作信号発生器41
8から信号が発生すると共に、セレクタ回路420では
西スイッチ417のスイッチ信号に基づき南向き動作信
号発生器418からの信号(モータ逆転の信号)を選択
してモータ駆動回路421に加える。これによりモータ
206は逆転する。回転が進み太陽電池板が真南に来る
と南スイッチ419がONになり、南向き動作信号発生
器418の出力がクリアされ、モータは停止する。翌朝
太陽電池の出力電圧が開始シーケンス設定電圧に上昇す
るまで、太陽電池板は南を向いたままである。
When the solar cell plate rotates to face west and the west switch 417 turns on, the southward operation signal generator 41
8 and a selector circuit 420 selects a signal from the southward operation signal generator 418 (motor reverse signal) based on the switch signal from the west switch 417 and applies it to the motor drive circuit 421. This causes the motor 206 to rotate in the reverse direction. When the rotation advances and the solar cell plate comes to the south, the south switch 419 is turned on, the output of the southward operation signal generator 418 is cleared, and the motor is stopped. The solar panel remains facing south until the next morning the solar cell output voltage rises to the start sequence set voltage.

【0039】なお、実施例は北半球での使用を考慮した
ものであり、正転とは上から見て太陽電池板が右回りと
なる回転である。南半球で使用する場合は、正転が左回
りとなるように変える必要がある。
Note that the embodiment is intended for use in the northern hemisphere, and the forward rotation is the rotation in which the solar cell plate turns clockwise when viewed from above. When using in the Southern Hemisphere, it is necessary to change so that the forward rotation is counterclockwise.

【0040】[0040]

【発明の効果】以上説明したように本発明によれば、平
面板を常に光の入射方向に追従回転する自動平衡機構を
簡単な構成で容易に実現でき、実用上の効果は大きい。
なお、平面板を太陽電池板とすれば効率のよい太陽電池
が実現できることは勿論のこと、その他平面板を農作物
の苗床等にすれば光化学反応の効率化を容易に達成する
ことができる。
As described above, according to the present invention, it is possible to easily realize an automatic balancing mechanism in which a flat plate is always rotated in the incident direction of light with a simple structure, and the practical effect is great.
It should be noted that an efficient solar cell can be realized by using a flat plate as a solar cell plate, and the efficiency of photochemical reaction can be easily achieved by using a flat plate as a nursery bed of agricultural products.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る平面板方向制御装置の一構成例を
示す斜視図である。
FIG. 1 is a perspective view showing a configuration example of a plane board direction control device according to the present invention.

【図2】太陽電池板の断面図である。FIG. 2 is a cross-sectional view of a solar cell plate.

【図3】平面駆動装置の側面図である。FIG. 3 is a side view of the plane driving device.

【図4】平面駆動装置に係る電気的構成図である。FIG. 4 is an electrical configuration diagram relating to the planar drive device.

【図5】本発明の他の実施例を示す要部構成図である。FIG. 5 is a main part configuration diagram showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 太陽電池板 1b 太陽電池 2 電源箱 3 出力端子 4,5 遮光板 6a,6b,7a,7b 光電変換素子 8 シャフト 9a,9b 光電変換素子 10,11 仕切板 10a,10b,11a,11b 光電変換素子 20 第1の回転駆動機構 30 第2の回転駆動機構 401 差動増幅器 402,411 電圧検出器 412 立上り検出器 413 東向き動作信号発生器 414,417,419 スイッチ 415 立下り検出器 416 西向き動作信号発生器 418 南向き動作信号発生器 420 セレクタ回路 421 モータ駆動回路 1 solar cell plate 1b solar cell 2 power supply box 3 output terminal 4,5 light-shielding plate 6a, 6b, 7a, 7b photoelectric conversion element 8 shaft 9a, 9b photoelectric conversion element 10, 11 partition plate 10a, 10b, 11a, 11b photoelectric conversion Element 20 First rotary drive mechanism 30 Second rotary drive mechanism 401 Differential amplifier 402,411 Voltage detector 412 Rise detector 413 Eastward operation signal generator 414, 417, 419 Switch 415 Falling detector 416 Westward operation Signal generator 418 Southward operation signal generator 420 Selector circuit 421 Motor drive circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高木 誠 東京都板橋区向原3丁目10番25号 株式会 社大成電機製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Makoto Takagi 3-10-25 Mukaihara, Itabashi-ku, Tokyo Inside Taisei Electric Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】平面板と、この平面板の表面に長手方向が
垂直方向に向くように立てられた遮光板と、この遮光板
に隣接し遮光板を挟むようにして配設された少なくとも
2個の光電変換素子と、前記光電変換素子の出力差に応
じて前記平面板を回転駆動する回転駆動機構を具備し、
前記平面板を常に光の入射方向に正対させる機能を有す
ることを特徴とする平面板方向制御装置。
1. A flat plate, a light-shielding plate which is erected on the surface of the flat plate so that the longitudinal direction is oriented in the vertical direction, and at least two light-shielding plates arranged adjacent to the light-shielding plate and sandwiching the light-shielding plate. A photoelectric conversion element and a rotary drive mechanism for rotationally driving the flat plate according to an output difference of the photoelectric conversion element,
A plane plate direction control device having a function of causing the plane plate to always face the incident direction of light.
【請求項2】前記平面板の背面に光電変換素子を配設
し、前記回転駆動機構はこの光電変換素子の出力信号に
応じて平面板を回転する機能を含み、前記平面板が前記
自動平衡機構の制御の範囲を外れて停止した場合に平面
板を自動平衡機構の制御の範囲内に復帰させることがで
きるようにしたことを特徴とする請求項1に記載の平面
板方向制御装置。
2. A photoelectric conversion element is arranged on the back surface of the flat plate, and the rotation driving mechanism includes a function of rotating the flat plate according to an output signal of the photoelectric conversion element, wherein the flat plate has the automatic balance. 2. The plane plate direction control device according to claim 1, wherein the plane plate can be returned to the range of control of the automatic balancing mechanism when the plane plate is stopped outside the control range of the mechanism.
【請求項3】前記平面板の左右側面にも光電変換素子を
配設し、前記回転駆動機構はこの光電変換素子の出力信
号にも応じて平面板を回転する機能を含むように構成し
たことを特徴とする請求項2に記載の平面板方向制御装
置。
3. A photoelectric conversion element is also disposed on the left and right side surfaces of the flat plate, and the rotation driving mechanism includes a function of rotating the flat plate according to an output signal of the photoelectric conversion element. The plane plate direction control device according to claim 2.
【請求項4】前記平面板の表面に長手方向が水平方向と
なるように遮光板を立て、この遮光板に隣接し遮光板を
挟むようにして少なくとも2個の光電変換素子を配設
し、この光電変換素子の出力差に応じて前記平面板の仰
角を変化させることのできる回転駆動機構を備え、光の
入射方向に応じて平面板の仰角を制御できるようにした
ことを特徴とする請求項1に記載の平面板方向制御装
置。
4. A light shielding plate is erected on the surface of the plane plate so that the longitudinal direction is horizontal, and at least two photoelectric conversion elements are arranged adjacent to the light shielding plate and sandwiching the light shielding plate. 2. A rotary drive mechanism capable of changing the elevation angle of the plane plate according to the output difference of the conversion element, and the elevation angle of the plane plate can be controlled according to the incident direction of light. The plane board direction control device according to.
【請求項5】前記平面板を太陽電池搭載の太陽電池板と
し、この太陽電池により充電される蓄電池を備え、この
蓄電池より前記回転駆動機構に電源を供給するようにし
たことを特徴とする請求項1に記載の平面板方向制御装
置。
5. The flat plate is a solar cell plate on which a solar cell is mounted, a storage battery charged by the solar cell is provided, and power is supplied from the storage battery to the rotary drive mechanism. Item 2. The plane board direction control device according to item 1.
【請求項6】前記平面板を太陽電池搭載の太陽電池板と
し、前記太陽電池の電圧が予め設定された終了シーケン
ス設定電圧に達すると前記平面板を西方向に回転した後
逆回転して南に向け停止し、前記太陽電池の電圧が予め
設定された開始シーケンス設定電圧以上になると前記平
面板を東に回転させその後は前記回転駆動機構により太
陽追尾を開始するように制御する制御手段を備えたこと
を特徴とする請求項1に記載の平面板方向制御装置。
6. The flat plate is a solar cell plate having a solar cell mounted thereon, and when the voltage of the solar cell reaches a preset end sequence set voltage, the flat plate is rotated westward and then reversely rotated to the south. And a control means for rotating the plane plate to the east when the voltage of the solar cell becomes equal to or higher than a preset start sequence setting voltage, and thereafter controlling the rotation drive mechanism to start sun tracking. The plane board direction control device according to claim 1, characterized in that.
JP7099340A 1994-04-28 1995-04-25 Plane plate direction controller Pending JPH0895641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7099340A JPH0895641A (en) 1994-04-28 1995-04-25 Plane plate direction controller

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-91128 1994-04-28
JP9112894 1994-04-28
JP7099340A JPH0895641A (en) 1994-04-28 1995-04-25 Plane plate direction controller

Publications (1)

Publication Number Publication Date
JPH0895641A true JPH0895641A (en) 1996-04-12

Family

ID=26432598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7099340A Pending JPH0895641A (en) 1994-04-28 1995-04-25 Plane plate direction controller

Country Status (1)

Country Link
JP (1) JPH0895641A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001065611A3 (en) * 2000-03-01 2002-11-28 Juergen Kaiser Power generating unit
US7252084B2 (en) * 2004-06-28 2007-08-07 Lucent Technologies Inc. Solar tracking system
JP2008091670A (en) * 2006-10-03 2008-04-17 Gyoseiin Genshino Iinkai Kakuno Kenkyusho Optical tracking equipment with mixed type tracking controller
JP2009099904A (en) * 2007-10-19 2009-05-07 Gyoseiin Genshino Iinkai Kakuno Kenkyusho Heliostat solar position sensor mechanism, controller and following control method thereof
US20100218758A1 (en) * 2009-11-20 2010-09-02 International Business Machines Corporation Solar energy alignment and collection system
US8569616B2 (en) 2009-11-20 2013-10-29 International Business Machines Corporation Method of concetrating solar energy
JP2014514774A (en) * 2012-02-13 2014-06-19 ジェ・ジン・イ Self powered solar tracker

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001065611A3 (en) * 2000-03-01 2002-11-28 Juergen Kaiser Power generating unit
US7252084B2 (en) * 2004-06-28 2007-08-07 Lucent Technologies Inc. Solar tracking system
JP2008091670A (en) * 2006-10-03 2008-04-17 Gyoseiin Genshino Iinkai Kakuno Kenkyusho Optical tracking equipment with mixed type tracking controller
JP2009099904A (en) * 2007-10-19 2009-05-07 Gyoseiin Genshino Iinkai Kakuno Kenkyusho Heliostat solar position sensor mechanism, controller and following control method thereof
US20100218758A1 (en) * 2009-11-20 2010-09-02 International Business Machines Corporation Solar energy alignment and collection system
US8490619B2 (en) * 2009-11-20 2013-07-23 International Business Machines Corporation Solar energy alignment and collection system
US8569616B2 (en) 2009-11-20 2013-10-29 International Business Machines Corporation Method of concetrating solar energy
JP2014514774A (en) * 2012-02-13 2014-06-19 ジェ・ジン・イ Self powered solar tracker
US9070806B2 (en) 2012-02-13 2015-06-30 Jae Jin Lee Self-powered solar tracker

Similar Documents

Publication Publication Date Title
US6089224A (en) Apparatus for orientation of solar radiation collectors
US4147154A (en) Solar heat tracking and collecting apparatus
US20070102037A1 (en) Self-powered systems and methods using auxiliary solar cells
Chin Model-based simulation of an intelligent microprocessor-based standalone solar tracking system
JPH0895641A (en) Plane plate direction controller
Samanta et al. A simple and efficient sun tracking mechanism using programmable logic controller
JP2004146760A (en) Differential voltage driven sun tracking solar electric power plant
JPH085366A (en) Automatic sun-tracking apparatus
JP2004309098A (en) Solar drying apparatus with sunlight position detecting sensor
CN107733345B (en) A kind of control system of motion tracking solar plate
CN105337559B (en) A kind of combination type solar plate
JP2004146759A (en) Differential voltage drive sun tracking solar electric power plant
Anyaka et al. Improvement of PV systems power output using sun-tracking techniques
Belhadj et al. Modeling of automatic reflectors for PV panel attached to commercial PV/T module
KR20120125715A (en) Solar tracking control device with solar cell
GB2365116A (en) A hybrid photovoltaic/thermal system
JP3231220U (en) Photovoltaic automatic tracking type power generation power supply
JPH0429577Y2 (en)
JPH075923A (en) Automatic pyramidical solar tracking device
CN2205525Y (en) Automatic tracing device for solar energy collector
JP2003031835A (en) Photovoltaic power generation set with solar light position detecting sensor
JP3093695U (en) Differential voltage driven solar tracking solar power generator
Kancevica et al. The tracking system for solar collectors with reflectors
Nwanyanwu et al. Design, construction and test of a solar tracking system using photo sensor
JPS6082752A (en) Sun tracking device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010904