JPH0894983A - Branch modulation type optical modulator - Google Patents

Branch modulation type optical modulator

Info

Publication number
JPH0894983A
JPH0894983A JP23545094A JP23545094A JPH0894983A JP H0894983 A JPH0894983 A JP H0894983A JP 23545094 A JP23545094 A JP 23545094A JP 23545094 A JP23545094 A JP 23545094A JP H0894983 A JPH0894983 A JP H0894983A
Authority
JP
Japan
Prior art keywords
light
mode
waveguide
optical modulator
type optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23545094A
Other languages
Japanese (ja)
Other versions
JP3602874B2 (en
Inventor
Ryuji Yoneda
竜司 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP23545094A priority Critical patent/JP3602874B2/en
Publication of JPH0894983A publication Critical patent/JPH0894983A/en
Application granted granted Critical
Publication of JP3602874B2 publication Critical patent/JP3602874B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE: To prevent the complication of constitution and to improve an extinction ratio characteristic without impairing the characteristics of driving voltage by providing a light incident part or light exit part with a region of a small concn. of Ti atoms. CONSTITUTION: The front layer of a substrate 2a consisting of LiNbO3 is provided with waveguides 8 by incorporating a prescribed concn. of Ti atom therein. A light incident part 8a, a branching part 8b, phase modulating part 8c, a multiplexing part 8d and a light exit part 8e are formed in these waveguides 8. The light incident part 8a or the light exit part 8e is provided with a region of a low concn. of the Ti atoms. Setting of a refractive index distribution in such a manner that a TM mode is excited and a TE mode is put into the state of cut off is made possible, by which the coexistence of the TE mode component in the exit light is averted or the component is decreased down to a relative low level. The easy formation of the waveguides simply by forming a prescribed mask shape in the photolithography thereof is possible in the case of production of the waveguides by thermal diffusion of Ti.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は分岐変調型光変調器(マ
ッハツェンダー型光変調器)の改良に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a branch modulation type optical modulator (Mach-Zehnder type optical modulator).

【0002】[0002]

【従来の技術】近年のマッハツェンダー型光変調器にお
いては、Ti熱拡散LiNbO3 チャンネル型導波路
が、そのLiNbO3 自体の大きな電気光学定数ならび
に駆動電圧が小さくできるという点で、提案されてい
る。
2. Description of the Related Art In recent Mach-Zehnder type optical modulators, Ti thermal diffusion LiNbO 3 channel type waveguides have been proposed in that LiNbO 3 itself can have a large electro-optical constant and a driving voltage. .

【0003】図7はこのマッハツェンダー型光変調器1
であり、2はzカットニオブ酸リチウム板(LiNbO
3 z板)から成る基板、3はこの基板2上に設けたSi
2バッファ層、4は電気光学効果のある基板表層に設
けられた導波路、5は電極、6は偏光板である。
FIG. 7 shows this Mach-Zehnder type optical modulator 1.
And 2 is a z-cut lithium niobate plate (LiNbO
3 z plate) substrate 3 is Si provided on this substrate 2
An O 2 buffer layer, 4 is a waveguide provided on the surface layer of the substrate having an electro-optical effect, 5 is an electrode, and 6 is a polarizing plate.

【0004】この光変調器1によれば、上記導波路4
は、光入射部4aと、分波部4bと、位相変調部4c
と、合波部4dと、光出射部4eとから成り、偏光板6
を通して光入射部4aに入射した光は分波部4bにより
分波し、次いで位相変調部4cを伝搬し、合波部4dを
介して合成されて光出射部4eに到る。
According to this optical modulator 1, the waveguide 4 is provided.
Is a light incident section 4a, a demultiplexing section 4b, and a phase modulation section 4c.
And a light combining part 4d and a light emitting part 4e.
The light incident on the light incident portion 4a through the light is demultiplexed by the demultiplexing portion 4b, then propagates through the phase modulating portion 4c, is combined via the multiplexing portion 4d, and reaches the light emitting portion 4e.

【0005】各位相変調部4c上には電極5を形成し
て、この電極5に印加すると非対称電界が発生し、この
電界により各位相変調部4cの屈折率を変化させ、更に
この屈折率の変化に応じて、それぞれの光に位相差が生
じる。そして、上記電界強度の大きさにより位相変調部
4cの屈折率の変化量が決まるので、かかる位相差によ
り合成後の出射光の強度制御ができる。
When an electrode 5 is formed on each phase modulator 4c and applied to the electrode 5, an asymmetric electric field is generated, and the electric field changes the refractive index of each phase modulator 4c. A phase difference occurs in each light according to the change. Then, since the amount of change in the refractive index of the phase modulator 4c is determined by the magnitude of the electric field intensity, the intensity of the emitted light after combination can be controlled by the phase difference.

【0006】このLiNbO3 結晶には、光学的に異方
性があり、zカットLiNbO3 基板表層において、x
方向に光が伝搬するように導波路を作製した場合では、
光の偏光方向により屈折率が異なるので、TEモード光
が常光線、TMモードが異常光となる。そこで、電界を
z軸方向に印加したときの常光線および異常光の屈折率
の変化はそれぞれ、 Δno =r130 3 z /2 Δne =r33e 3 z /2 となって、r33がr13に比べて数倍程度の大きくなるの
で、TMモードの方がTEモードに比べ、電界の影響を
大きく受けることになる。したがって、変調動作に用い
るに際しては、TMモードの方が印加効率が大きい点で
望ましいので、TMモード光のみを導波させるために、
前記のように偏光板6を設けて、その偏光板6の偏光方
向と結晶の光学軸(z軸)を一致させて、偏光板6を介
して光の入射を行っている。
This LiNbO 3 crystal has optical anisotropy, and x is present in the surface layer of the z-cut LiNbO 3 substrate.
In the case of making a waveguide so that light propagates in the direction,
Since the refractive index differs depending on the polarization direction of light, TE mode light becomes ordinary light and TM mode becomes extraordinary light. Therefore, when the electric field is applied in the z-axis direction, the changes in the refractive indices of the ordinary ray and the extraordinary ray are Δn o = r 13 n 0 3 E z / 2 Δn e = r 33 n e 3 E z / 2, respectively. Then, r 33 becomes several times larger than r 13 , so that the TM mode is more affected by the electric field than the TE mode. Therefore, when used for the modulation operation, the TM mode is preferable because it has a higher application efficiency. Therefore, in order to guide only the TM mode light,
As described above, the polarizing plate 6 is provided, and the polarization direction of the polarizing plate 6 and the optical axis (z axis) of the crystal are aligned with each other, and light is incident through the polarizing plate 6.

【0007】[0007]

【従来技術の問題点】しかしながら、上記構成のマッハ
ツェンダー型光変調器1においては、導波路4の作製条
件(Ti拡散前のTi拡散源の幅、膜厚、拡散時間、拡
散温度等)、並びに導波路4と電極5との配置関係を、
駆動電圧が最小化するとともに、TM最低次モードがカ
ットオフにならない範囲内で、最適設計しているが、偏
光板6の偏光方向を基板2の結晶軸に対して正確に設定
することが難しく、よって入射した光は、TMモードの
みならず、TEモードが励起される場合があり、これに
より、そのTEモードも電界により変調を受け、その結
果、これらTM、TEの両モードの重ね合わせによって
図3の消光比特性図が示す通り、各ピークにおいて消光
比にばらつきが生じるという問題点があった。
However, in the Mach-Zehnder interferometer type optical modulator 1 having the above-mentioned structure, the manufacturing conditions of the waveguide 4 (width of Ti diffusion source before Ti diffusion, film thickness, diffusion time, diffusion temperature, etc.), And the arrangement relationship between the waveguide 4 and the electrode 5,
The optimum design is made within a range in which the driving voltage is minimized and the TM lowest order mode is not cut off, but it is difficult to accurately set the polarization direction of the polarizing plate 6 with respect to the crystal axis of the substrate 2. Therefore, the incident light may be excited not only in the TM mode but also in the TE mode. As a result, the TE mode is also modulated by the electric field, and as a result, due to the superposition of both TM and TE modes. As shown in the extinction ratio characteristic diagram of FIG. 3, there is a problem in that the extinction ratio varies at each peak.

【0008】この問題点を解決するためには、入射光の
偏光方向と結晶の光学軸を精度よく一致させることが重
要であるが、実際上その精度を高めることは難しく、熟
練した技術が要する。
In order to solve this problem, it is important to accurately match the polarization direction of the incident light with the optical axis of the crystal, but it is difficult to increase the accuracy in practice, and a skilled technique is required. .

【0009】しかも、その光変調器1の構成が複雑にな
り、コストの増大を招いていた。
Moreover, the structure of the optical modulator 1 is complicated, resulting in an increase in cost.

【0010】更にTMモードのみを励起させ、TEモー
ド成分をカットオフする導波路の条件を選択すると、駆
動電圧を下げるための最適化の設定が難しくなるという
問題点があった。
Further, when the condition of the waveguide that excites only the TM mode and cuts off the TE mode component is selected, there is a problem that it is difficult to set optimization for lowering the driving voltage.

【0011】したがって、本発明の目的は構成が複雑に
ならないようにして、駆動電圧の特性を損なわず、しか
も、消光比特性の良好な分岐変調型光変調器(マッハツ
ェンダー型光変調器)を提供することにある。
Therefore, an object of the present invention is to provide a branch modulation type optical modulator (Mach-Zehnder type optical modulator) which does not complicate the structure, does not impair the characteristics of the driving voltage, and has excellent extinction ratio characteristics. To provide.

【0012】[0012]

【課題を解決するための手段】本発明は、LiNbO3
成る基板の表層に所定濃度のTi原子を含有させて導波
路を設けるとともに、この導波路に光入射部と、分波部
と、位相変調部と、合波部と、光出射部とを構成した分
岐変調型光変調器において、前記光入射部もしくは光出
射部にTi原子濃度の小さい領域を設けたことを特徴と
する。
The present invention is directed to LiNbO 3
The surface layer of the substrate is provided with a waveguide containing a predetermined concentration of Ti atoms, and the waveguide is provided with a light incident portion, a demultiplexing portion, a phase modulating portion, a multiplexing portion, and a light emitting portion. In the above branch modulation type optical modulator, a region having a low Ti atom concentration is provided in the light incident part or the light emitting part.

【0013】[0013]

【作用】上記構成の分岐変調型光変調器によれば、導波
路のうち光入射部もしくは光出射部にTi原子濃度の小
さい領域を設けているので、TMモードが励起され、か
つTEモードをカットオフの状態となるように屈折率分
布を設定することができ、これにより、出射光において
TEモード成分が混在しないか、もしくはその成分を相
当程度にまで減少でき、その結果、偏光板を配置しなく
ても、消光比特性の良好な分岐変調型光変調器が得られ
る。
According to the branch modulation type optical modulator having the above structure, since the region having a low Ti atom concentration is provided in the light incident part or the light emitting part of the waveguide, the TM mode is excited and the TE mode is generated. The refractive index distribution can be set so as to be in a cut-off state, whereby the TE mode component is not mixed in the emitted light or the component can be reduced to a considerable extent, and as a result, the polarizing plate is arranged. Even without doing so, a branch modulation type optical modulator having a good extinction ratio characteristic can be obtained.

【0014】また、上記構成のように導波路のうち光入
射部もしくは光出射部にTi原子濃度の小さい領域を設
けるのであれば、その導波路をTi熱拡散法により作製
する場合に、そのフォトリソ技術において所定のマスク
形状にするだけで容易に形成することができる。したが
って、その製造コストが低減し、低コストな分岐変調型
光変調器を得られる。
Further, if a region having a low Ti atom concentration is provided in the light incident part or the light emitting part of the waveguide as in the above structure, when the waveguide is manufactured by the Ti thermal diffusion method, the photolithography is performed. In the technology, it can be easily formed only by forming a predetermined mask shape. Therefore, the manufacturing cost can be reduced, and a low-cost branch modulation type optical modulator can be obtained.

【0015】[0015]

【実施例】図1は実施例のマッハツェンダー型光変調器
7である。なお、図7と同一箇所には同一符号を付す。
2aはzカットニオブ酸リチウム板(LiNbO3
板)から成る基板であり、この基板2aに幅5μm程度
の導波路8をTi熱拡散法により作製した。このTi熱
拡散法は1000℃もしくはそれよりも僅かに高い温度
でTi熱拡散を行って、Ti原子をドープした。そのド
ープの際には、フォトリソ技術により所定形状のマスク
を用いて、レジストパターンを形成し、リフトオフ法に
よりTiパターンを作製した後、Ti熱拡散をおこなっ
た。
1 shows a Mach-Zehnder type optical modulator 7 according to an embodiment. The same parts as those in FIG. 7 are designated by the same reference numerals.
2a is a z-cut lithium niobate plate (LiNbO 3 z
A waveguide 8 having a width of about 5 μm was formed on the substrate 2a by a Ti thermal diffusion method. In this Ti thermal diffusion method, Ti thermal diffusion was performed at a temperature of 1000 ° C. or slightly higher to dope Ti atoms. At the time of the doping, a resist pattern was formed by a photolithography technique using a mask having a predetermined shape, a Ti pattern was formed by a lift-off method, and then thermal diffusion of Ti was performed.

【0016】そして、このTi熱拡散法は非常に高温で
おこなうので、基板2aの+C面のTi拡散した領域で
は分極反転が生じる場合があり、このような影響を避け
るために、この導波路8を−C面表層9に作製した。
Since this Ti thermal diffusion method is performed at an extremely high temperature, polarization inversion may occur in the Ti-diffused region of the + C plane of the substrate 2a, and in order to avoid such an influence, this waveguide 8 is used. Was prepared on the surface layer 9 of the -C plane.

【0017】この導波路8上に設けた電極5について
は、図1に示すようなCPS構造の他に、CPW構造で
あってもよい。
The electrode 5 provided on the waveguide 8 may have a CPW structure in addition to the CPS structure shown in FIG.

【0018】また、この電極5を導波路8上に設ける
と、導波光の伝搬損失が生じ易くなり、特にTMモード
光にその現象が顕著である。そこで、この伝搬損失を低
減するために基板2a上にSiO2 バッファ層3を設け
ている。
Further, when the electrode 5 is provided on the waveguide 8, a propagation loss of guided light is likely to occur, and the phenomenon is particularly remarkable in TM mode light. Therefore, in order to reduce this propagation loss, the SiO 2 buffer layer 3 is provided on the substrate 2a.

【0019】この導波路8についても、光入射部8a
と、分波部8bと、位相変調部8cと、合波部8dと、
光出射部8eとから成り、そして、光入射部8aに入射
した光は分波部8bにより分波し、次いで位相変調部8
cを伝搬し、合波部8dを介して合成されて光出射部8
eに到り、出射する構成であり、この構成によれば、各
位相変調部8c上に形成した両電極5の間に高周波電力
を印加すると電界が発生し、この電界により各位相変調
部8cの屈折率が変化し、更にこの屈折率の変化に応じ
て、それぞれの光に位相差が生じ、そして、上記電界強
度の大きさにより位相変調部8cの屈折率の程度が決ま
るので、かかる位相差により合成後の出射光の強度制御
ができた。
The waveguide 8 is also provided with a light incident portion 8a.
A demultiplexing unit 8b, a phase modulating unit 8c, a multiplexing unit 8d,
The light is incident on the light incident part 8a and is split by the branching part 8b.
c propagates and is combined via the combining unit 8d to form the light emitting unit 8
In this configuration, when high frequency power is applied between both electrodes 5 formed on each phase modulation section 8c, an electric field is generated, and this electric field causes each phase modulation section 8c. Changes in refractive index, and a phase difference occurs in each light according to the change in refractive index, and the magnitude of the electric field strength determines the degree of the refractive index of the phase modulator 8c. The intensity of the emitted light after the combination could be controlled by the phase difference.

【0020】次に導波路8に設けたTi原子濃度の小さ
い領域を説明する。本実施例においては、この導波路8
を作製するに当たって、光入射部8aもしくは光出射部
8eに、Ti原子濃度の小さい領域を設けている。以
下、この領域はTEモードをカットオフの状態となるよ
うに設定するためのものであるので、TEモードカット
オフ領域10を称する。
Next, the region of the waveguide 8 having a low Ti atom concentration will be described. In this embodiment, the waveguide 8
In manufacturing, the light incident portion 8a or the light emitting portion 8e is provided with a region having a low Ti atom concentration. Hereinafter, since this area is for setting the TE mode to be in the cutoff state, the TE mode cutoff area 10 is referred to.

【0021】このTEモードカットオフ領域10を図2
〜図5に示す。なお、これらの図中、矢印は光の伝搬方
向である。図2のTEモードカットオフ領域10aで
は、拡散前のTi幅を導波路8における拡散前のTi幅
に比べて20〜50%程度にまで小さくし、そして、そ
の領域10aの厚み(深度)が導波路8と同じになるよ
うに設けた。
This TE mode cutoff region 10 is shown in FIG.
~ Shown in FIG. In these figures, the arrow indicates the light propagation direction. In the TE mode cutoff region 10a of FIG. 2, the Ti width before diffusion is reduced to about 20 to 50% of the Ti width before diffusion in the waveguide 8, and the thickness (depth) of the region 10a is reduced. It was provided so as to be the same as the waveguide 8.

【0022】また、図3のTEモードカットオフ領域1
0bのように、Ti幅の変化による拡散Ti原子濃度の
調節をおこなうのと同様な効果を得るために、導波路8
aもしくは8eの内部にTiの未ドープ領域を設けた
り、図4のTEモードカットオフ領域10cのように、
ドット状に形成してもよい。
Further, the TE mode cutoff region 1 shown in FIG.
0b, in order to obtain the same effect as adjusting the diffused Ti atom concentration by changing the Ti width, the waveguide 8
An undoped region of Ti is provided inside a or 8e, or like the TE mode cutoff region 10c of FIG.
You may form in a dot shape.

【0023】あるいは、上記のようなTi厚みを変えな
い各TEモードカットオフ領域10a、10b、10c
以外に、図5に示すように2層構成の導波路8の一部に
1層構成にしたTEモードカットオフ領域10dを設け
て、Ti厚みをその領域で小さくしてもよい。
Alternatively, each TE mode cutoff region 10a, 10b, 10c which does not change the Ti thickness as described above.
Alternatively, as shown in FIG. 5, a TE-mode cutoff region 10d having a single-layer structure may be provided in a part of the waveguide 8 having a two-layer structure to reduce the Ti thickness in that region.

【0024】かくして上記各構成のTEモードカットオ
フ領域10(10a、10b、10c、10d)を設け
たことにより、各領域10の屈折率の分布が、導波路8
のものと比べて異なり、これにより、TMモードを励起
してTEモードをカットオフの状態に設定することがで
き、その結果、図6に示す通りの消光比特性図が得られ
た。同図によれば、横軸が電極5に印加する電圧であ
り、出射光の強弱が理想的に形態となって、各ピークに
おける消光比が一定となった。
Thus, by providing the TE mode cutoff regions 10 (10a, 10b, 10c, 10d) having the above-mentioned respective configurations, the distribution of the refractive index of each region 10 is changed to the waveguide 8.
This is different from that of the above, and this allows the TM mode to be excited to set the TE mode to the cutoff state, and as a result, the extinction ratio characteristic diagram as shown in FIG. 6 was obtained. According to the figure, the horizontal axis is the voltage applied to the electrode 5, the intensity of the emitted light has an ideal form, and the extinction ratio at each peak is constant.

【0025】なお、本発明は上記実施例に限定されるも
のではなく、本発明の要旨を逸脱しない範囲内で種々の
変更や改良等は何ら差し支えない。たとえば、TEモー
ドカットオフ領域10については実施例の他に各種形状
や構造を採用することができ、TEモードカットオフ領
域10cにおいては、その球状のドットの他に、任意形
状のドット状点源であってもよい。
The present invention is not limited to the above embodiments, and various changes and improvements may be made without departing from the scope of the present invention. For example, the TE mode cutoff region 10 can adopt various shapes and structures other than the embodiment. In the TE mode cutoff region 10c, in addition to the spherical dots, a dot-shaped point source of an arbitrary shape can be used. May be

【0026】[0026]

【発明の効果】以上の通り、本発明によれば、導波路の
うち光入射部もしくは光出射部にTi原子濃度の小さい
領域を設けているので、TMモードが励起され、かつT
Eモードをカットオフの状態となるように屈折率分布を
設定することができ、これにより、出射光においてTE
モード成分が混在しないか、もしくはその成分を相当程
度にまで減少でき、その結果、偏光板を配置しなくて
も、駆動電圧の特性を損なわず、消光比特性の良好な分
岐変調型光変調器が得られた。
As described above, according to the present invention, since the region where the Ti atom concentration is low is provided in the light incident portion or the light emitting portion of the waveguide, the TM mode is excited and the T
It is possible to set the refractive index distribution so that the E mode is in a cutoff state.
A branch modulation type optical modulator in which mode components are not mixed or the components can be reduced to a considerable extent, and as a result, the characteristics of the driving voltage are not impaired and the extinction ratio characteristics are excellent without disposing a polarizing plate. was gotten.

【0027】また、本発明によれば、導波路をTi熱拡
散法により作製する場合に、そのフォトリソ技術におい
て所定のマスク形状にするだけでTi原子濃度の小さい
領域を容易に形成することができ、これにより、製造コ
ストが低減し、低コストな分岐変調型光変調器を得られ
た。
Further, according to the present invention, when the waveguide is manufactured by the Ti thermal diffusion method, a region having a low Ti atom concentration can be easily formed only by forming a predetermined mask shape in the photolithography technique. As a result, the manufacturing cost is reduced, and a low-cost branch modulation type optical modulator is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の分岐変調型光変調器の斜視図である。FIG. 1 is a perspective view of a branch modulation type optical modulator of an embodiment.

【図2】実施例の分岐変調型光変調器における導波路の
要部を示す概略図である。
FIG. 2 is a schematic diagram showing a main part of a waveguide in a branch modulation type optical modulator of an example.

【図3】実施例の分岐変調型光変調器における導波路の
要部を示す概略図である。
FIG. 3 is a schematic view showing a main part of a waveguide in the branch modulation type optical modulator of the embodiment.

【図4】実施例の分岐変調型光変調器における導波路の
要部を示す概略図である。
FIG. 4 is a schematic diagram showing a main part of a waveguide in a branch modulation type optical modulator of an example.

【図5】実施例の分岐変調型光変調器における導波路の
要部を示す概略図である。
FIG. 5 is a schematic diagram showing a main part of a waveguide in the branch modulation type optical modulator of the embodiment.

【図6】実施例の分岐変調型光変調器の消光比特性を示
す線図である。
FIG. 6 is a diagram showing an extinction ratio characteristic of a branch modulation type optical modulator of an example.

【図7】従来の分岐変調型光変調器の斜視図である。FIG. 7 is a perspective view of a conventional branch modulation type optical modulator.

【図8】従来の分岐変調型光変調器のの消光比特性を示
す線図である。
FIG. 8 is a diagram showing an extinction ratio characteristic of a conventional branch modulation type optical modulator.

【符号の説明】[Explanation of symbols]

7 マッハツェンダー型光変調器 2a zカットニオブ酸リチウム(LiNbO3
z)基板 8 導波路 5 電極 3 SiO2 バッファ層 8a 光入射部 8b 分波部 8c 位相変調部 8d 合波部8d 8e 光出射部 10 TEモードカットオフ領域
7 Mach-Zehnder type optical modulator 2a z-cut lithium niobate (LiNbO 3
z) substrate 8 waveguide 5 electrode 3 SiO 2 buffer layer 8a light incident portion 8b demultiplexing portion 8c phase modulation portion 8d multiplexing portion 8d 8e light emitting portion 10 TE mode cutoff region

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】LiNbO3 成る基板の表層に所定濃度の
Ti原子を含有させて導波路を設けるとともに、該導波
路に光入射部と、分波部と、位相変調部と、合波部と、
光出射部とを構成した分岐変調型光変調器において、前
記光入射部もしくは光出射部にTi原子濃度の小さい領
域を設けたことを特徴とする分岐変調型光変調器。
1. A surface layer of a substrate made of LiNbO 3 is provided with a waveguide containing a predetermined concentration of Ti atoms, and a light incidence portion, a demultiplexing portion, a phase modulation portion, and a multiplexing portion are provided in the waveguide. ,
A branch modulation type optical modulator comprising a light emitting section, wherein a region having a low Ti atom concentration is provided in the light incident section or the light emitting section.
JP23545094A 1994-09-29 1994-09-29 Branch modulation type optical modulator Expired - Fee Related JP3602874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23545094A JP3602874B2 (en) 1994-09-29 1994-09-29 Branch modulation type optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23545094A JP3602874B2 (en) 1994-09-29 1994-09-29 Branch modulation type optical modulator

Publications (2)

Publication Number Publication Date
JPH0894983A true JPH0894983A (en) 1996-04-12
JP3602874B2 JP3602874B2 (en) 2004-12-15

Family

ID=16986294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23545094A Expired - Fee Related JP3602874B2 (en) 1994-09-29 1994-09-29 Branch modulation type optical modulator

Country Status (1)

Country Link
JP (1) JP3602874B2 (en)

Also Published As

Publication number Publication date
JP3602874B2 (en) 2004-12-15

Similar Documents

Publication Publication Date Title
US4984861A (en) Low-loss proton exchanged waveguides for active integrated optic devices and method of making same
JP5313198B2 (en) Waveguide polarizer
JP4552032B2 (en) Optical amplitude modulation system capable of eliminating higher-order components
JP4278586B2 (en) Light modulator
JP2007057785A (en) Automatically adjusting system of frequency shift keying modulator
JP5157785B2 (en) Optical functional device
JP2008039859A (en) Optical modulator
WO2010082673A1 (en) Branched optical waveguide, optical waveguide substrate and optical modulator
JP4958771B2 (en) Light control element
JPWO2004053574A1 (en) Light modulator
JPH07318986A (en) Waveguide type optical switch
US7088874B2 (en) Electro-optic devices, including modulators and switches
JPH0996731A (en) Waveguide type optical device
JP2013037243A (en) Optical modulator
JPH0894983A (en) Branch modulation type optical modulator
JP4793550B2 (en) Optical carrier suppressed double sideband (DSB-SC) modulation system capable of high extinction ratio modulation
US5815609A (en) Waveguide type optical external modulator
JP2011102891A (en) Optical functional waveguide
KR20000003220A (en) Light intensity modulator and method of fabricating the same
JP4161897B2 (en) Method of adjusting phase difference of optical waveguide element
JP3418391B2 (en) Method for manufacturing waveguide type optical device
JPH06250131A (en) Optical control element
KR20240029287A (en) optical device
JPH05297420A (en) Optical switch
JP3398191B2 (en) Waveguide type optical control device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040927

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071001

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees