JPH0894931A - Variable power lens - Google Patents

Variable power lens

Info

Publication number
JPH0894931A
JPH0894931A JP23391594A JP23391594A JPH0894931A JP H0894931 A JPH0894931 A JP H0894931A JP 23391594 A JP23391594 A JP 23391594A JP 23391594 A JP23391594 A JP 23391594A JP H0894931 A JPH0894931 A JP H0894931A
Authority
JP
Japan
Prior art keywords
lens
group
power
variable power
order
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23391594A
Other languages
Japanese (ja)
Other versions
JP3360433B2 (en
Inventor
Yusuke Nanjo
雄介 南條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP23391594A priority Critical patent/JP3360433B2/en
Publication of JPH0894931A publication Critical patent/JPH0894931A/en
Application granted granted Critical
Publication of JP3360433B2 publication Critical patent/JP3360433B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE: To provide a variable power lens which is high competitiveness in miniaturization and the cost. CONSTITUTION: This variable power lens is constituted of a variable power system which is constituted of a first group 1 having a positive refracting power and a second group 2 having negative refracting power, a third group 3 which has positive refracting power and is always fixed, and a fourth group 4 which has positive refracting power and is movable in order to adjust focusing position in the case of performing variable power and changing object distance in order from an object side. The third group 3 is constituted of a convex lens L5 and a joint concave lens L6 constituted of a convex lens and a concave lens in order from the object side, and a diaphragm P is arranged between the lens L5 and the lens L6. The fourth group 4 is constituted of the lens L7 having weak refracting power and a biconvex lens L8 in order from the object side, and at least one surface of the group 3 and the lens L7 in the fourth group 4 having the weak refracting power are plastic lenses.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主にビデオカメラに使
用する、全長の短い変倍レンズに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable power lens having a short total length, which is mainly used for video cameras.

【0002】[0002]

【従来の技術】近年、ビデオカメラに使用する変倍レン
ズは、全体として全体として正、負、負、正の屈折力配
置で、正の第1群を繰り出してフォーカシングを行う所
謂前玉繰り出し式ズームレンズから、全体として正、
負、正、正の屈折力配置で、固定の第3群の直前に絞り
を配置し、負の第2群を移動して主に変倍を行い、正の
第4群で焦点位置を調節する所謂インナーフォーカス式
ズームレンズへ移行することで、小型化とコスト低減と
を達成した。特に正の第3群を凸単レンズとして、少な
くともその1面を非球面とし、正の第4群を凹レンズと
凸レンズとで構成し、最も像側の面を非球面として、9
枚で構成した変倍レンズが、変倍比、明るさ、小型化お
よびコストのバランスが取れて、広く普及している。そ
の一例が例えば特開平3−33710号公報(以下、同
公報の第1図に開示された技術を従来例1と記す)に開
示されており、この従来例1を図5に示す。
2. Description of the Related Art In recent years, variable power lenses used in video cameras have a positive, negative, negative, and positive refractive power arrangement as a whole, and a so-called front-lens extension type in which a positive first group is extended to perform focusing. From the zoom lens, overall positive,
With a negative, positive, and positive refractive power arrangement, an aperture stop is arranged immediately in front of the fixed third lens group, the negative second lens group is moved to mainly perform zooming, and the positive fourth lens group adjusts the focal position. By shifting to a so-called inner focus type zoom lens, downsizing and cost reduction were achieved. In particular, the positive third group is a convex single lens, at least one surface of which is an aspherical surface, the positive fourth group is composed of a concave lens and a convex lens, and the most image-side surface is an aspherical surface.
A variable power lens made up of a single piece is widely used, with a good balance of variable power ratio, brightness, miniaturization and cost. An example thereof is disclosed in, for example, Japanese Patent Laid-Open No. 3-33710 (hereinafter, the technique disclosed in FIG. 1 of the publication is referred to as Conventional Example 1), and this Conventional Example 1 is shown in FIG.

【0003】従来例1の構成では、第1群1から第4群
4の4つの群の屈折力配置には、あまり自由度が無く、
全長を短縮する目的には、十分ではなかった。
In the configuration of the first conventional example, there is not much freedom in the arrangement of the refractive powers of the four groups of the first group 1 to the fourth group 4,
It was not sufficient for the purpose of shortening the total length.

【0004】従来例1より全長を短くすることを目的と
した技術が、例えば特開平4−104114号公報(以
下、同公報の第11図に開示された技術を従来例2と記
す)が開示されており、この従来例2を図6に示す。従
来例2は、従来例1の構成を基本に、第3群のレンズ構
成を工夫して第3群と第4群とで望遠タイプを構成し
て、第3群から像面までの長さを短くするとともに、絞
りを第3群の間に配置して、第1群から第3群までの長
さを短縮し、第3群に入射する光束の広がりも抑えて、
全体を短縮している。
A technique aiming at shortening the total length as compared with the prior art example 1 is disclosed in, for example, Japanese Patent Laid-Open No. 4-104114 (hereinafter, the technique disclosed in FIG. 11 of the publication is referred to as the prior art example 2). This prior art example 2 is shown in FIG. In the second conventional example, based on the configuration of the first conventional example, the lens configuration of the third group is devised to form a telephoto type with the third group and the fourth group, and the length from the third group to the image plane is set. Is shortened, a diaphragm is arranged between the third group, the length from the first group to the third group is shortened, and the spread of the light flux incident on the third group is suppressed,
The whole is shortened.

【0005】[0005]

【発明が解決しようとする課題】ところで、上述した従
来例1と従来例2とを比較すると、従来例2でレンズ枚
数が1枚増えていることが分かる。従来例2では第3群
又は第4群の少なくとも1つのレンズが非球面を有する
か不均質媒質からなることを特徴としているが、小型化
を追及すると、第3群と第4群の両方に非球面か不均質
媒質を取り入れる必要があることが分かり、従来例1に
比べて球面レンズ1枚分コストが高くなってしまう。ビ
デオカメラ市場では、低価格化競争が激しく、コストの
増加は極力避けなければならない。
By the way, comparing the conventional example 1 and the conventional example 2 described above, it can be seen that the number of lenses in the conventional example 2 is increased by one. The second conventional example is characterized in that at least one lens of the third group or the fourth group has an aspherical surface or is made of an inhomogeneous medium. However, when miniaturization is pursued, both the third group and the fourth group are formed. It turns out that it is necessary to incorporate an aspherical surface or an inhomogeneous medium, and the cost for one spherical lens will be higher than in the first conventional example. In the video camera market, competition for lower prices is fierce, and cost increases must be avoided as much as possible.

【0006】本発明は、従来例2と同様の小型を達成す
るとともに、コストの増加を極力抑えて、小型化とコス
トにおいて、競争力の強い変倍レンズを提供することを
目的とする。
An object of the present invention is to provide a variable power lens which achieves a small size similar to that of the second conventional example, suppresses an increase in cost as much as possible, and is highly competitive in size and cost.

【0007】[0007]

【課題を解決するための手段】本発明の構成を、以下に
説明する。
The structure of the present invention will be described below.

【0008】請求項1に記載の構成は、物体側より順に
正の屈折力を有する第1群と、負の屈折力を有する第2
群とよりなる変倍系と、正の屈折力を有し常時固定の第
3群と、正の屈折力を有し変倍時および被写体距離の変
化等の時に焦点位置を調節するために可動である第4群
とよりなる変倍レンズにおいて、前記第3群が物体側よ
り順に凸レンズおよび凸レンズと凹レンズとの接合凹レ
ンズとにて構成され、前記凸レンズと接合凹レンズとの
間に絞りを配置し、前記第4群が物体側より順に屈折力
の弱いレンズと両凸レンズとにて構成され、前記第3群
の少なくとも1つの面および前記第4群の屈折力の弱い
レンズの少なくとも1つの面が非球面であることを特徴
とする。
According to a first aspect of the present invention, the first group having a positive refractive power and the second group having a negative refractive power are arranged in this order from the object side.
A variable power system consisting of a group, a third lens group having a positive refracting power and always fixed, and a movable lens group having a positive refracting power for adjusting the focal position at the time of zooming or when the subject distance changes. In the variable power lens including the fourth group, the third group includes, in order from the object side, a convex lens and a cemented concave lens of a convex lens and a concave lens, and a diaphragm is disposed between the convex lens and the cemented concave lens. , The fourth group is composed of a lens having a weak refractive power and a biconvex lens in order from the object side, and at least one surface of the third group and at least one surface of the lens having a weak refractive power of the fourth group are It is characterized by being an aspherical surface.

【0009】請求項2に記載の構成は、請求項1に記載
の変倍レンズにおいて、前記第4群の屈折力の弱いレン
ズの材質をプラスチックとしたことを特徴とする。
According to a second aspect of the present invention, in the variable power lens according to the first aspect, the material of the lens of the fourth group having a weak refractive power is plastic.

【0010】[0010]

【作用】本発明の目的を達成するため、上記の各構成要
件により、以下の改善作用が得られる。
In order to achieve the object of the present invention, the following improving actions are obtained by the above respective constituents.

【0011】請求項1に記載の構成は、全長を短縮する
ための構成要件で、第3群を物体側より順に凸レンズ、
凸レンズおよび凹レンズの3枚構成にして主点を物体側
に寄せて全長の短縮を図るとともに、2番目の凸レンズ
と凹レンズとを接合して偏心に対する敏感度を下げる。
また2番目の凸レンズより凹レンズの外径が大きい、段
差のある接合レンズとし、凹レンズを鏡筒で保持する構
造にすることで、2番目の凸レンズの外径を小さくし、
厚みを加工能力の限界まで薄くすることが出来る。絞り
を第3群の間に配置することで、望遠端で第2群と第3
群の間に絞り空間を開ける必要が無くなり、第1群と第
3群を近づけるとともに、第3群に入射する光束の広が
りを抑えてバックフォーカスが不要に長く伸びることを
避けられる。第4群は、主な屈折力を球面のみの両凸レ
ンズに持たせ、収差補正のために不可欠な非球面を屈折
力の弱いレンズに取り入れることで、非球面を形成する
材質の選択の幅を広げる効果を得る。使用する撮像素子
の特性によっては、射出瞳位置が像面に近すぎると周辺
光量不足の原因になるが、第4群の主な屈折力が後ろ寄
りになるため、射出瞳位置を適度に遠ざけることと、全
長の短縮を両立出来る。射出瞳位置を適度に遠ざけるた
めに、第3群と第4群は接近させるのに制限があり、第
3群と第4群の両凸レンズの間に屈折力の弱いレンズを
配置することが、全長を短縮する妨げにはならない。
According to a first aspect of the present invention, there is provided a constituent element for shortening the total length, and the third lens unit is a convex lens in order from the object side,
A three-lens structure of a convex lens and a concave lens is used to bring the principal point closer to the object side to shorten the overall length, and the second convex lens and the concave lens are cemented to reduce the sensitivity to decentering.
In addition, the outer diameter of the second convex lens is made smaller by making the cemented lens with a step difference in which the outer diameter of the concave lens is larger than that of the second convex lens and by holding the concave lens by the lens barrel.
The thickness can be reduced to the limit of processing capacity. By arranging the diaphragm between the third lens group and the third lens group at the telephoto end,
It is not necessary to open a diaphragm space between the groups, the first group and the third group are brought close to each other, and the spread of the light flux incident on the third group is suppressed to prevent the back focus from unnecessarily extending long. The fourth group allows the biconvex lens having only a spherical surface to have a main refracting power, and incorporates an aspherical surface, which is indispensable for aberration correction, into a lens having a weak refracting power, thereby providing a wide range of materials for forming the aspherical surface. Get the effect of spreading. Depending on the characteristics of the image sensor used, if the exit pupil position is too close to the image plane, it may cause a shortage of peripheral light amount, but the main refracting power of the fourth lens unit is rearward, so that the exit pupil position is appropriately distanced. It is possible to both shorten the total length. In order to appropriately move the exit pupil position, the third group and the fourth group are limited to be close to each other, and it is necessary to dispose a lens having a weak refractive power between the biconvex lenses of the third group and the fourth group. It does not hinder the overall length reduction.

【0012】請求項2に記載の構成は、第4群の非球面
レンズが屈折力が弱いことを活かし、射出成形によるプ
ラスチックレンズとして、コストの安い非球面を導入す
ることが目的で、全体として11枚構成で、従来例1お
よび従来例2より枚数が多いにもかかわらず、ガラスモ
ールド非球面レンズ2枚を使った従来例1と同等の製造
コストを実現する。プラスチックの成形では、偏肉(肉
厚の極端な不均一)やボテ肉(分厚い肉厚)が成形時間
の増加を招き、成形のコスト増加の要因になるが、屈折
力が弱いため偏肉やボテ肉を避けることが出来る。また
屈折力が弱いためプラスチックの温度依存性(線膨張係
数、屈折率の温度変化など)の影響を受けにくく、全体
としてガラスモールド非球面レンズを使った変倍レンズ
と同等の性能が得られる。第4群の非球面レンズの焦点
距離をf4-1、球面両凸レンズの焦点球をf4-2とする
と、 |f4-2/f4-1|<0.2 とすると上述の作用が容易に得られる。
The structure according to claim 2 takes advantage of the fact that the aspherical lens of the fourth group has a weak refractive power, and aims to introduce an inexpensive aspherical surface as a plastic lens by injection molding. With the 11-lens structure, the manufacturing cost equivalent to that of the conventional example 1 using the two glass-molded aspherical lenses is realized, although the number of lenses is larger than those of the conventional examples 1 and 2. In plastic molding, uneven thickness (extremely uneven wall thickness) and flesh thickness (thick wall thickness) increase the molding time, which increases the cost of molding, but due to the weak refractive power, uneven thickness and You can avoid flesh. In addition, since the refractive power is weak, it is less susceptible to the temperature dependence of the plastic (coefficient of linear expansion, temperature change of refractive index, etc.), and as a whole, the same performance as a variable power lens using a glass mold aspherical lens can be obtained. Assuming that the focal length of the aspherical lens of the fourth group is f 4-1 and the focal sphere of the spherical biconvex lens is f 4-2 , the above-mentioned action is obtained when | f 4-2 / f 4-1 | <0.2 Is easily obtained.

【0013】[0013]

【実施例】以下、本発明の実施例について説明する。Embodiments of the present invention will be described below.

【0014】図1は本発明の変倍レンズの実施例の構成
を示す。
FIG. 1 shows the construction of an embodiment of the variable power lens of the present invention.

【0015】図1に基づいて本実施例の構成を説明する
と、物体側より順に正の屈折力を有する第1群1と、負
の屈折力を有する第2群2とよりなる変倍系と、正の屈
折力を有し常時固定の第3群3と、正の屈折力を有し変
倍時および被写体距離の変化等の時に焦点位置を調節す
るために可動である第4群4とよりなる変倍レンズにお
いて、前記第3群3が物体側より順に凸レンズL5およ
び凸レンズと凹レンズとの接合凹レンズL6とにて構成
され、前記凸レンズL5と接合凹レンズL6との間に絞
りPを配置し、前記第4群4が物体側より順に屈折力の
弱いレンズL7と両凸レンズL8とにて構成され、前記
第3群3の少なくとも1つの面および前記第4群4の屈
折力の弱いレンズL7はプラスチックレンズである。
The structure of the present embodiment will be described with reference to FIG. 1. A variable power system consisting of a first group 1 having a positive refractive power and a second group 2 having a negative refractive power in order from the object side. A third group 3 having a positive refracting power and fixed at all times, and a fourth group 4 having a positive refracting power and movable for adjusting the focal position at the time of zooming or when the subject distance changes. In the variable power lens, the third group 3 is composed of a convex lens L5 and a cemented concave lens L6 composed of a convex lens and a concave lens in order from the object side, and a diaphragm P is arranged between the convex lens L5 and the cemented concave lens L6. , The fourth group 4 is composed of a lens L7 having a weak refractive power and a biconvex lens L8 in order from the object side, and at least one surface of the third group 3 and the lens L7 having a weak refractive power of the fourth group 4. Is a plastic lens.

【0016】物体側より順に、前記第1群1は凹レンズ
と凸レンズとの接合凸レンズL1と凸メニスカスレンズ
L2よりなり、前記第2群2は凹レンズL3および凹レ
ンズと凸レンズとの接合凹レンズL4よりなり、前記第
3群3は凸レンズL5および凸レンズと凹レンズとの接
合凹レンズL6よりなり、前記第4群4は屈折力の弱い
レンズL7と両凸レンズL8よりなる。尚、図1中、Q
はフィルターに相当する平面ガラス、Kは像面である。
In order from the object side, the first group 1 is composed of a cemented convex lens L1 of a concave lens and a convex lens and a convex meniscus lens L2, and the second group 2 is composed of a concave lens L3 and a cemented concave lens L4 of a concave lens and a convex lens. The third group 3 is composed of a convex lens L5 and a cemented concave lens L6 composed of a convex lens and a concave lens, and the fourth group 4 is composed of a lens L7 having a weak refractive power and a biconvex lens L8. In addition, in FIG. 1, Q
Is a flat glass corresponding to a filter, and K is an image plane.

【0017】次に、本実施例の数値例を表1〜表3に示
す。
Next, Tables 1 to 3 show numerical examples of this embodiment.

【0018】[0018]

【表1】 [Table 1]

【0019】上記において、 ri-j:レンズLiのj番目の面の曲率半径 di-j:レンズLiのj番目の面間隔 ni-j:レンズLiのj番目の媒質のe線における屈折
率n νi−j:レンズLiのj番目の媒質のe線におけるア
ッベ数νei :第i番目の可変間隔 r9-19-2面はフィルタに相当する平面ガラス を示す。
In the above, r ij is the radius of curvature of the j-th surface of the lens Li, d ij is the j-th surface spacing of the lens Li, n ij is the refractive index n e ν i of the j-th medium of the lens Li. -J : Abbe's number ν e S i at the e-line of the j-th medium of the lens Li: the i-th variable interval r 9-1 , 9-2 planes represent plane glass corresponding to a filter.

【0020】[0020]

【表2】 [Table 2]

【0021】非球面の定義:非球面の深さをχi、光軸
からの高さをHとして、下記の数式1で表される。
Definition of aspherical surface: The depth of the aspherical surface is represented by χ i , and the height from the optical axis is represented by H.

【0022】[0022]

【数1】 χi=H2/ri{1+(1−H2/ri 21/2}+ΣAj・Hj 絞りはr5-2面の前方 0.8、 絞りの開放径 Φ=5.6 f4-1=61489.0、 f4-2=8.066 |f4-2/f4-1|=1.312×10-4 Χ i = H 2 / r i {1+ (1-H 2 / r i 2 ) 1/2 } + ΣA j · H j The aperture is 0.8 in front of the r 5-2 surface, the aperture diameter of the aperture Φ = 5.6 f 4-1 = 61489.0, f 4-2 = 8.066 │f 4-2 / f 4-1 │ = 1.312 × 10 -4

【0023】[0023]

【表3】 [Table 3]

【0024】図2、図3および図4にf=4.500、
f=18.057、およびf=36.000の球面収
差、非点収差、歪曲収差を示す。
F = 4.500 in FIGS. 2, 3 and 4,
The spherical aberration, astigmatism, and distortion of f = 18.057 and f = 36.000 are shown.

【0025】以上説明したように、従来コスト増加と引
き換えに達成していた全長の短縮を、レンズ枚数は増加
してもプラスチックを効果的に使うことで、従来の最も
コストの安いズームレンズと同等のコストで、全長の短
縮を達成出来た。即ち、従来の4群インナーフォーカス
式ズームレンズでは、レンズの屈折力配置の自由度が小
さく、全長を短くするのに限界があったが、前記実施例
では、4群インナーフォーカスを基本としながら、レン
ズ構成を工夫することで、×8ズームで後述するように
約1割の全長短縮を達成できた。また、4群ズームの基
本は変わらないので、アクチュエータや制御ソフトは従
来技術が適用できる。さらに、前記実施例では、r1-1
面から像面Kまでの空気換算全長が約39.8であり、
同仕様を従来例1の手法で設計すると44程度が限界に
なり、本実施例の効果として約1割の全長短縮が得られ
た。
As described above, the shortening of the total length, which has been achieved in exchange for the cost increase in the related art, is effectively made of plastic even if the number of lenses is increased. We were able to reduce the total length at the cost of. That is, in the conventional four-group inner focus type zoom lens, the degree of freedom in arranging the refractive power of the lens is small, and there is a limit in shortening the total length. By devising the lens configuration, we were able to achieve a total length reduction of about 10% with the × 8 zoom as described later. Further, since the basics of the four-group zoom do not change, conventional techniques can be applied to the actuator and control software. Further, in the above embodiment, r 1-1
The air-converted total length from the surface to the image surface K is about 39.8,
When the same specifications are designed by the method of the conventional example 1, the limit is about 44, and the effect of the present example is that the total length is shortened by about 10%.

【0026】尚、前記実施例によれば、ビデオカメラの
変倍レンズについて説明したが、スチルカメラ等の他の
カメラの変倍レンズに前記実施例を適用できることは勿
論である。
Although the zoom lens of the video camera has been described in the above embodiment, it is needless to say that the embodiment can be applied to the zoom lens of another camera such as a still camera.

【0027】[0027]

【発明の効果】以上説明した各構成要件の効果により、
従来コスト増加と引き換えに達成していた全長の短縮
を、レンズ枚数は増加してもプラスチックを効果的に使
うことで、従来の最もコストの安いズームレンズと同等
のコストで、全長の短縮を達成出来る。即ち、本発明で
は、従来のものと比較して約1割の全長短縮が可能とな
る。
[Effects of the Invention] Due to the effects of the respective constituents described above,
By shortening the total length, which was achieved at the cost of the conventional model, by using plastic effectively even if the number of lenses increases, the total length can be shortened at the same cost as the cheapest zoom lens in the past. I can. That is, in the present invention, the total length can be shortened by about 10% as compared with the conventional one.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の変倍レンズの実施例を示す構成図。FIG. 1 is a configuration diagram showing an embodiment of a variable power lens of the present invention.

【図2】(a),(b),(c)は、広角端の焦点距離
(f=4.500)における球面収差,非点収差,歪曲
収差を示す各収差曲線図。
FIGS. 2A, 2B, and 2C are aberration curve diagrams showing spherical aberration, astigmatism, and distortion at the focal length (f = 4.500) at the wide-angle end.

【図3】(a),(b),(c)は、中間の焦点距離
(f=18.057)における球面収差,非点収差,歪
曲収差を示す各収差曲線図。
3A, 3B, and 3C are aberration curve diagrams showing spherical aberration, astigmatism, and distortion at an intermediate focal length (f = 18.057).

【図4】(a),(b),(c)は、望遠端(f=3
6.000)における球面収差,非点収差,歪曲収差を
示す各収差曲線図。
4 (a), (b) and (c) are at the telephoto end (f = 3).
FIG. 6 is an aberration curve diagram showing spherical aberration, astigmatism, and distortion at 6.000).

【図5】従来例の変倍レンズを示す構成図。FIG. 5 is a configuration diagram showing a variable power lens of a conventional example.

【図6】他の従来例の変倍レンズを示す構成図。FIG. 6 is a configuration diagram showing another conventional variable power lens.

【符号の説明】[Explanation of symbols]

1…第1群 2…第2群 3…第3群 4…第4群 L5…凸レンズ L6…接合凹レンズ P…絞り L7…屈折力の弱いレンズ L8…両凸レンズ 1 ... 1st group 2 ... 2nd group 3 ... 3rd group 4 ... 4th group L5 ... Convex lens L6 ... cemented concave lens P ... diaphragm L7 ... lens with weak refracting power L8 ... biconvex lens

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 物体側より順に正の屈折力を有する第1
群と、負の屈折力を有する第2群とよりなる変倍系と、
正の屈折力を有し常時固定の第3群と、正の屈折力を有
し変倍時および被写体距離の変化等の時に焦点位置を調
節するために可動である第4群とよりなる変倍レンズに
おいて、前記第3群が物体側より順に凸レンズおよび凸
レンズと凹レンズとの接合凹レンズとにて構成され、前
記凸レンズと接合凹レンズとの間に絞りを配置し、前記
第4群が物体側より順に屈折力の弱いレンズと両凸レン
ズとにて構成され、前記第3群の少なくとも1つの面お
よび前記第4群の屈折力の弱いレンズの少なくとも1つ
の面が非球面であることを特徴とする変倍レンズ。
1. A first lens element having a positive refractive power in order from the object side.
A variable power system including a group and a second group having negative refractive power,
A third lens unit having a positive refracting power and fixed at all times, and a fourth lens unit having a positive refracting power and movable for adjusting the focus position at the time of zooming or change of the object distance. In the magnification lens, the third group is composed of a convex lens and a cemented concave lens of a convex lens and a concave lens in order from the object side, and an aperture is arranged between the convex lens and the cemented concave lens, and the fourth group is arranged from the object side. It is composed of a lens having a weak refractive power and a biconvex lens in this order, and at least one surface of the third group and at least one surface of the lens having a weak refractive power of the fourth group are aspherical surfaces. Variable magnification lens.
【請求項2】 請求項1に記載の変倍レンズにおいて、
前記第4群の屈折力の弱いレンズの材質をプラスチック
としたことを特徴とする変倍レンズ。
2. The variable power lens according to claim 1, wherein:
A variable power lens characterized in that the material of the lens of the fourth group having a weak refractive power is plastic.
JP23391594A 1994-09-29 1994-09-29 Zoom lens Expired - Fee Related JP3360433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23391594A JP3360433B2 (en) 1994-09-29 1994-09-29 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23391594A JP3360433B2 (en) 1994-09-29 1994-09-29 Zoom lens

Publications (2)

Publication Number Publication Date
JPH0894931A true JPH0894931A (en) 1996-04-12
JP3360433B2 JP3360433B2 (en) 2002-12-24

Family

ID=16962595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23391594A Expired - Fee Related JP3360433B2 (en) 1994-09-29 1994-09-29 Zoom lens

Country Status (1)

Country Link
JP (1) JP3360433B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001098812A1 (en) * 2000-06-21 2001-12-27 Matsushita Electric Industrial Co., Ltd. Zoom lens, and its manufacturing method
US6587281B2 (en) 2000-06-12 2003-07-01 Olympus Optical Co., Ltd. Zoom image pickup optical system
JP2005345507A (en) * 2004-05-31 2005-12-15 Canon Inc Zoom lens and imaging apparatus having the same
JP2009198799A (en) * 2008-02-21 2009-09-03 Sony Corp Collapsible zoom lens
US7589908B2 (en) 2007-12-28 2009-09-15 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus having the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6587281B2 (en) 2000-06-12 2003-07-01 Olympus Optical Co., Ltd. Zoom image pickup optical system
US6788474B2 (en) 2000-06-12 2004-09-07 Olympus Corporation Zoom image pickup optical system
WO2001098812A1 (en) * 2000-06-21 2001-12-27 Matsushita Electric Industrial Co., Ltd. Zoom lens, and its manufacturing method
US6650484B2 (en) 2000-06-21 2003-11-18 Matsushita Electric Industrial Co., Ltd. Zoom lens, and its manufacturing method
JP2005345507A (en) * 2004-05-31 2005-12-15 Canon Inc Zoom lens and imaging apparatus having the same
JP4585794B2 (en) * 2004-05-31 2010-11-24 キヤノン株式会社 Zoom lens and imaging apparatus having the same
US7589908B2 (en) 2007-12-28 2009-09-15 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus having the same
JP2009198799A (en) * 2008-02-21 2009-09-03 Sony Corp Collapsible zoom lens

Also Published As

Publication number Publication date
JP3360433B2 (en) 2002-12-24

Similar Documents

Publication Publication Date Title
JP4596418B2 (en) Variable magnification optical system
US7639430B2 (en) Zoom lens and image pickup apparatus having the same
US6735020B2 (en) Zoom lens and image pickup apparatus
JP2000009997A (en) Zoom lens
JPH08248318A (en) Zoom lens
JPS62235916A (en) Zoom lens
JP3465036B2 (en) Zoom lens
JPH0527172A (en) Zoom lens
US4759619A (en) Inverted telephoto type wide angle lens system with a rear focusing unit
JPH0727976A (en) Small-sized two-group zoom lens system
JP2605386B2 (en) Compact zoom lens
JP2750775B2 (en) Compact zoom lens
JP3360433B2 (en) Zoom lens
JP2676367B2 (en) Small variable focal length lens
JP2782720B2 (en) Zoom lens
JPH0553053A (en) Zoom lens
JPH11305129A (en) Rear focus type zoom lens
JPH09184979A (en) Simple zoom lens
JPH07294817A (en) Zoom lens
JP2912666B2 (en) Inner focus type small zoom lens device
JP3695952B2 (en) Camera with 2 zoom lens
JPH1096858A (en) Zoom lens
JP3640025B2 (en) Zoom lens
JP2738137B2 (en) Small zoom lens
JP2000221392A (en) Zoom lens

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees