JPH0892632A - Continuous annealing furnace and continuous annealing of silicon steel sheet - Google Patents

Continuous annealing furnace and continuous annealing of silicon steel sheet

Info

Publication number
JPH0892632A
JPH0892632A JP23290894A JP23290894A JPH0892632A JP H0892632 A JPH0892632 A JP H0892632A JP 23290894 A JP23290894 A JP 23290894A JP 23290894 A JP23290894 A JP 23290894A JP H0892632 A JPH0892632 A JP H0892632A
Authority
JP
Japan
Prior art keywords
furnace
steel sheet
silicon steel
gas
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23290894A
Other languages
Japanese (ja)
Other versions
JP3394609B2 (en
Inventor
Shigenobu Koga
重信 古賀
Osamu Togawa
修 外川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP23290894A priority Critical patent/JP3394609B2/en
Publication of JPH0892632A publication Critical patent/JPH0892632A/en
Application granted granted Critical
Publication of JP3394609B2 publication Critical patent/JP3394609B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To stably execute the decarburizing and nitriding treatments of a silicon steel sheet by controlling the sectional shape of a continuous annealing furnace and the amt. of the gaseous atmosphere in this furnace at the time of subjecting this silicon steel sheet to the decarburizing and nitriding treatments in the furnace. CONSTITUTION: The silicon steel sheet is heated in the continuous annealing furnace to be used in the case of subjecting the grain oriented silicon steel sheet to decarburization annealing or nitriding annealing including primary recrystallization and is subjected to the decarburizing and nitriding annealing by the in-furnace gaseous atmosphere while the silicon steel sheet is moved in the furnace by transporting rolls. The value of H2/H1 as the annealing furnace is specified to 1.0 to 2.5 and H2 to <=0.4(m) when the shorter distance of the distances from the steel sheet moving in the furnace to the effective inside walls of the furnace on both sides thereof is defined as H1(m) and the longer distance as H2(m). The furnace bottom walls in the lower part of the transporting walls are constructed by locally expanding these walls to 1 to 3 times the roll diameter. The gaseous mixture consisting essentially of gaseous H2 at the time of decarburization and consisting essentially of the gaseous H2 and gaseous NH3 and the balance an inert gas at the time of nitriding is used for the gaseous atmosphere. This gaseous mixture is passed in the furnace in a direction opposite to the moving direction of the steel sheet and is analyzed in mid-way while the gaseous mixture is kept circulated, by which the components are adequately adjusted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は鉄損が低い珪素鋼板(以
下電磁鋼板という)の連続焼鈍炉及びこの炉を用いる連
続焼鈍方法に関するものである。特に、その脱炭工程或
いは窒化工程において鋼板の脱炭或いは窒化を極めて安
定して行い、磁性及び皮膜の高位安定化を図ろうとする
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous annealing furnace for silicon steel sheets (hereinafter referred to as electromagnetic steel sheets) having a low iron loss and a continuous annealing method using this furnace. In particular, in the decarburization step or the nitriding step, the decarburization or nitriding of the steel sheet is performed extremely stably, and the magnetism and the coating are highly stabilized.

【0002】[0002]

【従来の技術】方向性電磁鋼板は電気機器の磁気鉄心と
して、一方、無方向性電磁鋼板は回転機器の磁気鉄心と
して、多用されている。これらのエネルギーロスを少な
くすべく、所謂前工程の製鋼成分の最適化、熱延条件等
の最適化から後工程の仕上焼鈍等の最適化まで改善が繰
り返されてきた。脱炭工程を含む一次再結晶焼鈍工程或
いは窒化工程も例外ではなかった。
2. Description of the Related Art Grain-oriented electrical steel sheets are widely used as magnetic iron cores for electrical equipment, while non-oriented electrical steel sheets are widely used as magnetic iron cores for rotating equipment. In order to reduce these energy losses, improvements have been repeated from the optimization of so-called pre-process steelmaking components, the optimization of hot rolling conditions and the like to the optimization of post-process finish annealing and the like. The primary recrystallization annealing process including the decarburization process or the nitriding process was no exception.

【0003】方向性電磁鋼板の一次再結晶を含む脱炭焼
鈍工程の主たる目的は、熱延工程でのγ相域確保等の
理由で鋼板に含まれた炭素(通常〜5×10-2%)を、
最終製品にて磁性が時効劣化しない領域まで脱炭し(〜
2×10-3%未満)、次いで鋼板表面に適正な酸素付
与を行いFe及びSi酸化物を形成させ、その後で表面
塗布したMgOと次工程の仕上焼鈍にて反応させ、グラ
ス皮膜を形成する前準備をするとともに、次工程の仕
上焼鈍で二次再結晶させるのに最適な結晶粒サイズに一
次再結晶させることである。
The main purpose of the decarburizing annealing process including primary recrystallization of grain-oriented electrical steel sheet is to include carbon (usually up to 5 × 10 -2 %) contained in the steel sheet for reasons such as securing the γ phase region in the hot rolling process. ),
Decarburize to the extent that magnetism does not deteriorate with age in the final product (~
(Less than 2 × 10 −3 %), and then appropriately oxygen is applied to the surface of the steel sheet to form Fe and Si oxides, and then the surface-coated MgO is reacted with finish annealing in the next step to form a glass film. In addition to the preliminary preparation, the primary recrystallization is performed to the optimum grain size for secondary recrystallization in the finish annealing in the next step.

【0004】従来、この方向性電磁鋼板の一次再結晶を
含む脱炭焼鈍工程は、連続焼鈍炉で行われるが、炉内で
鋼板が連続的に脱炭され、鋼板表面に酸素付与されると
ともに、雰囲気ガスも連続的に変化(還元)されてお
り、この炉内の反応プロセスが非常に複雑であるととも
に、炉内反応を十分に解析する解析装置(分析装置)が
なく、加えて、品質(磁性・皮膜等)には前後工程、特
に、仕上焼鈍工程の影響も大きく、結果として、十分な
理論的な解析が行われず、過去の経験に基づき、僅少な
改善しか行われていなかった。
Conventionally, the decarburizing annealing process including the primary recrystallization of the grain-oriented electrical steel sheet is carried out in a continuous annealing furnace. The steel sheet is continuously decarburized in the furnace and oxygen is added to the surface of the steel sheet. , The atmospheric gas is also continuously changed (reduced), the reaction process in this furnace is very complicated, and there is no analyzer (analyzer) to sufficiently analyze the reaction in the furnace. (Magnetic, coating, etc.) is greatly affected by pre- and post-processes, especially the finish annealing process. As a result, sufficient theoretical analysis was not performed, and only slight improvements were made based on past experience.

【0005】また、方向性電磁鋼板の窒化焼鈍工程の主
たる目的は、二次再結晶前でのインヒビタの強化であ
る。従来、炉内のNH3 は連続的に分解しており、炉内
反応が複雑なため十分な解析が行われず、僅少な改善し
か行われていなかった。
Further, the main purpose of the nitriding annealing process of grain-oriented electrical steel sheet is to strengthen the inhibitor before secondary recrystallization. Conventionally, NH 3 in the furnace was continuously decomposed, and the reaction in the furnace was complicated, so that sufficient analysis could not be performed and only slight improvement was made.

【0006】一方、無方向性電磁鋼板の一次再結晶を含
む脱炭焼鈍工程の主たる目的は、熱延工程でのγ相域確
保等の理由で鋼板に含まれた炭素(通常<2×10
-2%)を、可能な限り表面に酸素を付与せずに、最終製
品にて磁性が時効劣化しない領域まで脱炭することであ
る。これについての解析も方向性電磁鋼板と同様に十分
な解明が行われていなかった。
On the other hand, the main purpose of the decarburizing annealing process including the primary recrystallization of the non-oriented electrical steel sheet is the carbon contained in the steel sheet (usually <2 × 10 6) for the reason of ensuring the γ phase region in the hot rolling process.
-2 %) is to decarburize to the extent that magnetism does not age-deteriorate in the final product without giving oxygen to the surface as much as possible. Similar to the grain-oriented electrical steel sheet, the analysis on this has not been sufficiently clarified.

【0007】[0007]

【発明が解決しようとする課題】この方向性電磁鋼板の
一次再結晶を含む脱炭焼鈍工程については、鋼板温度と
雰囲気ガス成分分析値を用い改善が試みられてきたが、
雰囲気ガス成分分析値が極めて不安定であり、反応を代
表する炉内雰囲気ガス成分値を見つけることは困難であ
り、例えば、雰囲気ガスの供給方法についても、炉の後
方からの一括供給と炉の複数箇所からの分割供給の是非
についても満足な評価ができず、経験に頼らざるを得な
かった。この結果、安定した一次再結晶を含む脱炭焼鈍
を行うことが困難であり、しばしば脱炭不良、或いは皮
膜不良或いは磁性不良を招くとともに、これらの不良改
善に多大の時間と費用を費やさざるを得ない状態であっ
た。また、窒化焼鈍工程或いは無方向性電磁鋼板の一次
再結晶を含む脱炭焼鈍工程においても同様であった。
The decarburization annealing process including the primary recrystallization of the grain-oriented electrical steel sheet has been attempted to be improved by using the steel sheet temperature and the atmospheric gas component analysis value.
Atmospheric gas component analysis values are extremely unstable, and it is difficult to find the value of the atmospheric gas component in the furnace that is representative of the reaction. I was unable to make a satisfactory evaluation of the pros and cons of divided supply from multiple locations, so I had to rely on experience. As a result, it is difficult to carry out decarburization annealing including stable primary recrystallization, often leading to decarburization failure, or film failure or magnetic failure, and it is necessary to spend a great deal of time and money to improve these failures. It was in a state of not getting. The same applies to the nitriding annealing step or the decarburizing annealing step including the primary recrystallization of the non-oriented electrical steel sheet.

【0008】本発明は上述した従来の一次再結晶を含む
脱炭焼鈍工程或いは窒化工程が持っている課題に鑑み、
炉内の雰囲気ガスの安定化(均一化)を行って、安定し
て製品を生産する電磁鋼板の連続焼鈍炉及び連続焼鈍方
法の提供を目的とする。
In view of the problems of the conventional decarburization annealing process including primary recrystallization or the nitriding process described above,
An object of the present invention is to provide a continuous annealing furnace and a continuous annealing method for a magnetic steel sheet that stabilizes (uniformizes) the atmospheric gas in the furnace to stably produce a product.

【0009】[0009]

【課題を解決するための手段】本発明は、従来技術の課
題を有利に解決するものであって、上記目的を達成する
ために発明者らは炉内の雰囲気ガス流れに着目し、反応
の詳細解析を行い、創意工夫を重ねた結果、炉内断面形
状と雰囲気ガス量を或る範囲に制御することにより、極
めて安定して製品を生産することを可能にしたものであ
って、その発明の要旨とするところは、(1)1種類以
上の炉構造からなる珪素鋼板の連続脱炭焼鈍炉または窒
化焼鈍炉において、炉内に通板する鋼板とその両側の炉
の有効内壁までの距離(板面垂直方向距離)のうち短い
方の距離をH1 (m)、長い方の距離をH2 (m)、有
効炉内幅(板面内方向幅)をD(m)とするとき、各炉
構造のうちH1 /((H1+D)×(H1 +H2 ))の
数値が一番小さな炉構造のH2 /H1 を1.0〜2.5
とするとともに、長い方の距離H2 を0.4m以下とす
ることを特徴とする珪素鋼板の連続焼鈍炉、(2)焼鈍
炉内の鋼板を支持・搬送するロールの下部の炉底壁を、
周囲の炉底高さよりロール径の1倍〜3倍の距離で局部
的に拡張したことを特徴とする請求項1記載の珪素鋼板
の連続焼鈍炉、(3)鋼板の進行方向の最終部分に雰囲
気ガスを供給する装置を配設するとともに鋼板の進行方
向の初期部分に雰囲気ガスを排出する装置を配設したこ
とを特徴とする請求項1または2記載の珪素鋼板の連続
焼鈍炉、(4)鋼板の進行方向の最終部分に雰囲気ガス
を供給する装置を配設し、鋼板の進行方向の初期部分に
雰囲気ガスを排出する装置を配設するとともに、前記雰
囲気ガスの排出装置と前記雰囲気ガスの供給装置の間
に、雰囲気ガス精製装置と雰囲気ガス成分調整装置を配
設し、その間を連結管で連結したことを特徴とする請求
項1または2記載の珪素鋼板の連続焼鈍炉、(5)請求
項1ないし4のいずれかに記載の珪素鋼板の連続焼鈍炉
による方向性珪素鋼板の連続脱炭処理時に、炉の雰囲気
をH2 25%(ドライガス)以上、残部不活性ガス、露
点40〜70℃とし、該雰囲気のガス量を〔100×
(H1 +D)×(H1 +H2 )/H1 〕Nm3 /hr以上と
することを特徴とする珪素鋼板の連続焼鈍方法、(6)
請求項1ないし4のいずれかに記載の珪素鋼板の連続焼
鈍炉による方向性珪素鋼板の連続窒化処理時に、炉の雰
囲気をH2 25%(ドライガス)以上、NH3 2〜10
%、残部不活性ガス、露点20℃以下とし、該雰囲気の
ガス量を〔100×(H1 +D)×(H1 +H2 )/H
1 〕Nm3 /hr以上とすることを特徴とする珪素鋼板の連
続焼鈍方法、(7)請求項1ないし4のいずれかに記載
の珪素鋼板の連続焼鈍炉による無方向性珪素鋼板の連続
脱炭処理時に、炉の雰囲気をH2 15〜40%(ドライ
ガス)以上、残部不活性ガス、露点25〜45℃とし、
該雰囲気のガス量を〔50×(H1 +D)×(H1 +H
2 )/H1 〕Nm3 /hr以上とすることを特徴とする珪素
鋼板の連続焼鈍方法、にある。
The present invention advantageously solves the problems of the prior art, and in order to achieve the above object, the inventors have focused their attention on the atmospheric gas flow in the furnace and As a result of performing detailed analysis and ingenuity, by controlling the cross-sectional shape of the furnace and the amount of atmospheric gas within a certain range, it has become possible to produce products extremely stably. (1) In a continuous decarburizing annealing furnace or a nitriding annealing furnace for silicon steel plates having one or more types of furnace structures, the distance between the steel plate to be passed through the furnace and the effective inner walls of the furnace on both sides of the furnace. Of the (distance in the plate surface vertical direction), the shorter distance is H1 (m), the longer distance is H2 (m), and the effective furnace width (width in the plate surface direction) is D (m). The furnace structure with the smallest value of H1 / ((H1 + D) × (H1 + H2)) among the furnace structures H2 / H1 of 1.0 to 2.5
In addition, the longer distance H2 is 0.4 m or less, the continuous annealing furnace for silicon steel sheets, (2) the furnace bottom wall of the lower part of the roll supporting and conveying the steel sheets in the annealing furnace,
The continuous annealing furnace for a silicon steel sheet according to claim 1, wherein the furnace is locally expanded at a distance of 1 to 3 times the roll diameter from the height of the surrounding furnace bottom, and (3) the final portion in the traveling direction of the steel sheet. The continuous annealing furnace for a silicon steel sheet according to claim 1 or 2, wherein an apparatus for supplying an atmospheric gas is provided and an apparatus for discharging the atmospheric gas is provided at an initial portion in the traveling direction of the steel sheet. ) A device for supplying the atmospheric gas is arranged at the final portion in the traveling direction of the steel sheet, a device for discharging the atmospheric gas is disposed at the initial portion in the traveling direction of the steel plate, and the exhaust device for the atmospheric gas and the atmospheric gas are also provided. The continuous annealing furnace for a silicon steel sheet according to claim 1 or 2, wherein an atmosphere gas purifying device and an atmosphere gas component adjusting device are provided between the supply devices of (1) and (2), and a connecting pipe is connected between them. ) Any of claims 1 to 4 During continuous decarburization of grain-oriented silicon steel sheet by continuous annealing furnace of the silicon steel sheet of crab according to the furnace atmosphere H 2 25% (dry gas) or more, the balance inert gas, a dew point of 40 to 70 ° C., the atmosphere The gas amount of [100 ×
(H1 + D) × (H1 + H2) / H1] Nm 3 / hr or more, continuous annealing method for silicon steel sheet, (6)
At the time of the continuous nitriding treatment of the grain-oriented silicon steel sheet by the continuous annealing furnace for a silicon steel sheet according to any one of claims 1 to 4, the atmosphere of the furnace is H 2 25% (dry gas) or more, NH 3 2 to 10
%, Balance inert gas, dew point below 20 ° C., and the gas amount in the atmosphere is [100 × (H1 + D) × (H1 + H2) / H
1] Nm 3 / hr or more, continuous annealing method for silicon steel sheet, (7) Continuous removal of non-oriented silicon steel sheet by continuous annealing furnace for silicon steel sheet according to any one of claims 1 to 4. At the time of the charcoal treatment, the atmosphere of the furnace was H 2 15 to 40% (dry gas) or more, the balance was inert gas, and the dew point was 25 to 45 ° C.
The amount of gas in the atmosphere is [50 × (H1 + D) × (H1 + H
2) / H1] continuous annealing method of the silicon steel sheet, characterized in that the Nm 3 / hr or more, in.

【0010】[0010]

【作用】以下、本発明について詳細に説明する。本発明
者らは、連続焼鈍炉内の雰囲気ガス流れの挙動を詳細に
調査したところ、炉内のガス流れ挙動、特に鋼板と炉の
有効内壁までの距離、有効炉内幅及び雰囲気ガス量と鋼
板と炉の内壁の間の雰囲気ガスの濃度バラツキに強い関
係があることを見出した。調査は、以下の如くして行っ
た。
The present invention will be described in detail below. The present inventors have investigated the behavior of the atmospheric gas flow in the continuous annealing furnace in detail, and found that the gas flow behavior in the furnace, particularly the distance between the steel plate and the effective inner wall of the furnace, the effective furnace width and the atmospheric gas amount, It was found that there is a strong relationship with the variation in the concentration of atmospheric gas between the steel plate and the inner wall of the furnace. The survey was conducted as follows.

【0011】図4に、従来法による雰囲気ガスを炉内に
一括供給している一次再結晶を含む連続脱炭焼鈍炉の一
例を示す。雰囲気ガスは、炉1の後方の雰囲気ガス供給
管3より一括供給され、鋼板2と対向しながら炉の前方
に流され、雰囲気ガス排出管4より排出されている。
FIG. 4 shows an example of a continuous decarburizing annealing furnace including primary recrystallization in which atmospheric gas is conventionally supplied into the furnace by a conventional method. The atmospheric gas is supplied all at once from the atmospheric gas supply pipe 3 at the rear of the furnace 1, flows toward the front of the furnace while facing the steel plate 2, and is exhausted from the atmospheric gas exhaust pipe 4.

【0012】図5に、従来法による雰囲気ガスを炉内に
分割供給している一次再結晶を含む連続脱炭焼鈍炉の一
例を示す。雰囲気ガスは、炉1の複数の雰囲気ガス供給
管31〜35から分割供給され、鋼板2と対向しながら
炉の前部に流され、雰囲気ガス排出管4より排出されて
いる。
FIG. 5 shows an example of a continuous decarburization annealing furnace including primary recrystallization in which atmospheric gas is dividedly supplied into the furnace by a conventional method. The atmospheric gas is dividedly supplied from a plurality of atmospheric gas supply pipes 31 to 35 of the furnace 1, flown to the front of the furnace while facing the steel plate 2, and is discharged from the atmospheric gas discharge pipe 4.

【0013】本発明者らは、炉内断面形状、鋼板の炉内
での高さの位置、雰囲気ガス量及び雰囲気ガス供給位置
を種々に変えて調査した。その結果、鋼板と炉の有効内
壁までの距離、有効炉内幅及び雰囲気ガス量と鋼板と炉
の内壁の間の雰囲気ガスの濃度バラツキに強い相関があ
ることを見出し、更に詳細に解析したところ、炉内に通
板する鋼板とその上方の炉の有効内壁までの距離(板面
垂直方向距離)をHu(m)、炉内に通板する鋼板と下
方の炉の有効内壁までの距離をHd (m)(Hu +Hd
:炉内に通板する鋼板の両側の炉の内壁間の距離:板
面垂直方向距離)、有効炉内幅(板面内方向幅)をD
(m)とし、αu =(Hu +D)×(Hu +Hd )/H
u 、αd =(Hd +D)×(Hu +Hd )/Hd とする
とき、αu 、αd を変数とした雰囲気ガス量と鋼板と炉
の内壁の間の雰囲気ガスの濃度バラツキに強い相関があ
ることを見出した。
The present inventors conducted various investigations by changing the sectional shape of the furnace, the position of the height of the steel sheet in the furnace, the amount of atmospheric gas, and the position of supplying atmospheric gas. As a result, it was found that there is a strong correlation between the distance from the steel plate to the effective inner wall of the furnace, the effective furnace inner width, and the amount of atmospheric gas and the concentration variation of the atmospheric gas between the steel plate and the inner wall of the furnace, and further detailed analysis was performed. , Hu (m) is the distance between the steel plate passed through the furnace and the effective inner wall of the furnace above it (the distance in the plate surface vertical direction) is Hu (m), and the distance between the steel plate passed through the furnace and the effective inner wall of the lower furnace is Hd (m) (Hu + Hd
: Distance between inner walls of the furnace on both sides of the steel plate passed through the furnace: vertical distance in the plate surface), effective inner width (width in the plate surface direction) D
(M), αu = (Hu + D) × (Hu + Hd) / H
When u and αd = (Hd + D) × (Hu + Hd) / Hd, there is a strong correlation between the atmospheric gas amount with αu and αd as variables and the concentration variation of the atmospheric gas between the steel plate and the inner wall of the furnace. I found it.

【0014】図3に、方向性電磁鋼板の一次再結晶焼鈍
を含む連続脱炭処理における雰囲気ガス量と炉内の鋼板
と炉の内壁間の雰囲気ガスの濃度バラツキ(鋼板上方に
おける鋼板近傍点5と鋼板〜炉内壁中央点6との露点の
測定値差及び鋼板下方における鋼板近傍点5′と鋼板〜
炉内壁中央点6′との露点の測定値差)の関係の一例を
示す。供給雰囲気ガスは、H2 75%(ドライガス)、
COX (大部分はCOであり、一部CO2 を含む)0.
1%未満、露点64℃であった。また、通板した鋼板の
板厚は0.30mm、組成は、Si:3.2重量%、酸可
溶性Al:0.029重量%、N:0.080重量%、
Mn:0.11重量%、S:0.007重量%、C:
0.05重量%、残部Fe及び不可避不純物であった。
FIG. 3 shows variations in the amount of atmospheric gas and the concentration of atmospheric gas between the steel plate in the furnace and the inner wall of the furnace in the continuous decarburization treatment including primary recrystallization annealing of the grain-oriented electrical steel sheet (the steel sheet vicinity point 5 above the steel sheet). And steel plate-difference in measured value of dew point between furnace inner wall center point 6 and steel plate neighboring point 5'under steel plate and steel plate-
An example of the relationship between the dew point measurement value difference from the furnace inner wall center point 6'is shown. Supply atmosphere gas is H 2 75% (dry gas),
CO X (mostly CO, partially CO 2 ).
The dew point was less than 1% and the dew point was 64 ° C. Further, the plate thickness of the steel plate passed is 0.30 mm, the composition is Si: 3.2 wt%, acid-soluble Al: 0.029 wt%, N: 0.080 wt%,
Mn: 0.11% by weight, S: 0.007% by weight, C:
It was 0.05% by weight, the balance being Fe and unavoidable impurities.

【0015】鋼板上方の炉内においても、鋼板の下方の
炉内においても、いずれも雰囲気ガス量が、100×α
(αu 、αd )Nm3 /hr以上にて、鋼板と炉の内壁の間
の雰囲気ガスの濃度バラツキが非常に小さくなることを
解明した。加えて、雰囲気ガスの供給方法についても、
炉後方からの一括供給が、炉内への分割供給に比べ格段
に鋼板と炉の内壁の間の雰囲気ガスの濃度バラツキを小
さくすることを解明した。
Both in the furnace above the steel plate and in the furnace below the steel plate, the atmospheric gas amount was 100 × α.
At (αu, αd) Nm 3 / hr or more, it was clarified that the concentration variation of the atmospheric gas between the steel sheet and the inner wall of the furnace became very small. In addition, regarding the method of supplying atmospheric gas,
It was clarified that the batch supply from the rear of the furnace significantly reduces the variation in the concentration of the atmospheric gas between the steel plate and the inner wall of the furnace compared to the split supply into the furnace.

【0016】また、一般的な鋼板の連続焼鈍炉では、炉
内断面形状は、高さ(板面垂直方向距離)より、幅(板
面内方向距離)が大きい(D>(Hu +Hd ))ことに
着目し、更に、解析を進め、本発明者らは、炉内の鋼板
の上方、下方のいずれの空間においても、雰囲気ガスの
濃度バラツキを小さくすることを可能とする雰囲気ガス
量の下限値は、上記αu とαd の大きい方、つまり炉内
に通板する鋼板と両側の炉の有効内壁までの距離(板面
垂直方向距離)のうち小さい方の炉空間の雰囲気ガスの
濃度バラツキから規定されることを見出した。すなわ
ち、炉内に通板する鋼板とその両側の炉の有効内壁まで
の距離(板面垂直方向距離)のうち短い方をH1 、長い
方をH2 とし、αC=(H1 +D)×(H1 +H2 )/
H1 とするとき、100×αCNm3 /hr以上にて鋼板の
両側の空間において、雰囲気ガスの濃度バラツキは低減
される。従って、通板する鋼板の炉内における高さ方向
の位置は、可能な限り炉内断面高さの1/2に等しくす
るとともにH2 を可能な限り小さくすることにより、よ
り少ない雰囲気ガス量で、鋼板の上下の炉内空間におい
て、いずれも雰囲気ガスの濃度バラツキを小さくするこ
とが可能であることを見出した。
Further, in a general steel plate continuous annealing furnace, the cross-sectional shape in the furnace has a width (distance in the plate surface direction) larger than height (distance in the plate surface vertical direction) (D> (Hu + Hd)). Focusing on that point, the inventors further proceeded with the analysis, and the present inventors have found that the lower limit of the amount of the atmospheric gas that enables the concentration variation of the atmospheric gas to be reduced in any space above and below the steel plate in the furnace. The value is calculated based on the variation in the concentration of the atmospheric gas in the furnace space, whichever is the larger of the above αu and αd, that is, the smaller of the distances between the steel plates to be passed through the furnace and the effective inner walls of the furnaces on both sides (distance in the plate vertical direction) I found that it is regulated. That is, of the distances (distances in the direction perpendicular to the plate surface) between the steel sheet passing through the furnace and the effective inner walls of the furnace on both sides, the shorter one is H1, the longer one is H2, and αC = (H1 + D) × (H1 + H2 ) /
When H1 is set, the variation in the concentration of the atmospheric gas is reduced in the space on both sides of the steel sheet at 100 × αCNm 3 / hr or more. Therefore, the position of the steel plate to be passed in the height direction in the furnace is made equal to ½ of the sectional height in the furnace as much as possible and H2 is made as small as possible to reduce the amount of atmospheric gas. It has been found that it is possible to reduce the variation in the concentration of the atmospheric gas in the space inside the furnace above and below the steel sheet.

【0017】また、実際の炉には、鋼板搬送用のロール
が設置されており、この部分における雰囲気ガスの流れ
対策等のため、従来鋼板と下方の有効炉内壁との距離を
大きくとらざるをえない状況が発生する場合も少なくな
かったが、搬送ロールの下部の炉底壁を周囲の炉底高さ
よりロール径の1倍〜3倍の距離で局部的に下げること
により、円滑な雰囲気ガス流れを確保するとともに、鋼
板と下方の有効炉内壁との距離を小さくし、少ない供給
雰囲気ガスで、炉内雰囲気ガスの濃度バラツキも小さく
することを可能にできる方案も見出した。
Further, a roll for conveying a steel plate is installed in an actual furnace, and the distance between the conventional steel plate and the lower inner wall of the effective furnace has to be large in order to prevent the flow of atmospheric gas in this part. It was not uncommon for some cases to occur, but by locally lowering the bottom wall of the lower part of the transfer roll at a distance 1 to 3 times the roll diameter from the height of the surrounding bottom, a smooth atmosphere gas was obtained. We have also found a method that can secure the flow and reduce the distance between the steel plate and the inner wall of the effective furnace below so that the variation in the concentration of the atmosphere gas in the furnace can be reduced with a small amount of supply atmosphere gas.

【0018】尚、いろいろな成分系についても、同様の
研究を行い、上記関係が成り立つことを検証した。ま
た、窒化焼鈍或いは、無方向性電磁鋼板についても、同
様の調査を行い、同様の関係が成り立つことを見出し
た。
The same research was conducted for various component systems, and it was verified that the above relationship was established. Further, the same investigation was conducted for nitriding annealing or non-oriented electrical steel sheets, and it was found that the same relationship holds.

【0019】図1に本発明による雰囲気ガスを回収・精
製・成分調整し、炉の後方より一括供給している一次再
結晶を含む連続脱炭焼鈍炉の一例を示す。炉1の後方の
雰囲気ガス供給管3から炉内に供給開始された雰囲気ガ
スは、鋼板2と対向し進行し、炉の前部に至り雰囲気ガ
ス排出管4から炉外に排出されている。一方、鋼板2
は、搬送ロール61〜65により炉の前方から後方へ搬
送されている。炉内の雰囲気ガスは炉の前部に流れるに
つれ、H2 Oは消費され、減少するとともに、COX
増加している。雰囲気ガス排出管4から炉外に排出され
た雰囲気ガスは、雰囲気ガス精製装置8にて、COX
1%未満まで除去される。出口のガス分析装置11でガ
ス成分の濃度分析をされ、雰囲気ガス成分調整装置9へ
と入れられる。雰囲気ガス成分調整装置9では、濃度不
足分及び雰囲気ガス精製装置8の減量分が加えられる。
尚、上記回路中には雰囲気ガス循環装置10が配設さ
れ、雰囲気ガス循環・精製に必要な駆動力を付与してい
る。
FIG. 1 shows an example of a continuous decarburizing annealing furnace including primary recrystallization in which the atmospheric gas is recovered, purified, and the components are adjusted, and the gas is collectively supplied from the rear of the furnace according to the present invention. The atmospheric gas started to be supplied into the furnace from the atmospheric gas supply pipe 3 at the rear of the furnace 1 advances to face the steel plate 2, reaches the front portion of the furnace, and is discharged to the outside of the furnace from the atmospheric gas discharge pipe 4. On the other hand, steel plate 2
Are transported from the front to the rear of the furnace by the transport rolls 61 to 65. As the atmospheric gas in the furnace flows to the front of the furnace, H 2 O is consumed and reduced, and CO X increases. The atmospheric gas exhausted from the atmospheric gas exhaust pipe 4 to the outside of the furnace is removed by an atmospheric gas purifying device 8 until CO x is less than 1%. The concentration of the gas component is analyzed by the gas analyzer 11 at the outlet, and the gas component is put into the atmospheric gas component adjuster 9. In the atmospheric gas component adjusting device 9, the concentration deficiency and the reduced amount of the atmospheric gas purifying device 8 are added.
An atmospheric gas circulation device 10 is provided in the circuit to provide a driving force necessary for circulating and refining the atmospheric gas.

【0020】雰囲気ガス精製装置8は、特に難しい条件
はなく、COX が1%未満まで除去されるとともに、H
2 の回収効率が不活性ガス及びH2 Oの回収効率より高
ければよい。例えば、吸着剤として活性アルミナ、活性
炭、ゼオライト等を使用したPSA法(Pressure Swing
Adsorption)、或いは、ポリミド等の分離膜を使用した
膜分離法等が採用可能である。
The atmosphere gas purifying device 8 has no particularly difficult conditions, CO x is removed to less than 1%, and H 2
It suffices that the recovery efficiency of 2 is higher than the recovery efficiency of the inert gas and H 2 O. For example, PSA method (Pressure Swing) using activated alumina, activated carbon, zeolite, etc. as the adsorbent.
Adsorption) or a membrane separation method using a separation membrane such as polyimide.

【0021】図2に本発明による雰囲気ガスを回収・精
製・成分調整し、炉の後方より一括供給している一次再
結晶を含む連続脱炭焼鈍炉の別の一例を示す。鋼板が炉
内断面の高さの中央に位置し、搬送ロール62,63,
64の下部の炉壁がロール径の長さ程局部的に下げられ
ていることを除けば図1と同じである。
FIG. 2 shows another example of the continuous decarburizing annealing furnace including primary recrystallization in which the atmospheric gas is recovered, purified, and the components are adjusted, and is supplied all at once from the rear of the furnace. The steel plate is located at the center of the height of the cross section inside the furnace, and the transfer rolls 62, 63,
It is the same as FIG. 1 except that the furnace wall at the bottom of 64 is locally lowered by the length of the roll diameter.

【0022】以下、実施要件について述べる。炉内に通
板する鋼板とその両側の炉の有効内壁までの距離(板面
垂直方向距離)のうち短い方の距離をH1 (m)、長い
方の距離をH2 (m)、有効炉内幅(板面内方向幅)を
Dとするとき、各炉構造のうちH1 /((H1 +D)×
(H1+H2 ))の数値が一番小さな炉構造において、
H2 /H1 は2.5を超えると必要な雰囲気ガスが多く
必要となり経済的でないため、H2 /H1 は1.0〜
2.5とする。また、長い方の距離(H2 )が0.4m
を超えても同様に経済的でないため、これを0.4m以
下とする。
The implementation requirements will be described below. Of the distances (distances in the direction perpendicular to the plate surface) between the steel plate that is passed through the furnace and the effective inner walls of the furnace on both sides, the shorter distance is H1 (m), and the longer distance is H2 (m). When the width (width in the plate surface direction) is D, H1 / ((H1 + D) x of each furnace structure
In the furnace structure with the smallest value of (H1 + H2),
When H2 / H1 exceeds 2.5, a large amount of necessary atmospheric gas is required and it is not economical, so H2 / H1 is 1.0 to
Set to 2.5. The longer distance (H2) is 0.4m.
Similarly, even if it exceeds, it is not economical, so this is set to 0.4 m or less.

【0023】尚、炉内の鋼板通板方向に連続した突起
物、例えばヒータ加熱炉においてはヒータエレメント、
ラジアント加熱炉においてはラジアント管、が存在する
場合は、これらの鋼板側の側面を炉の有効内壁とする。
It should be noted that projections that are continuous in the direction of passage of the steel plate in the furnace, for example, heater elements in a heater heating furnace,
When a radiant tube is present in the radiant heating furnace, the side surface on the steel plate side is the effective inner wall of the furnace.

【0024】方向性電磁鋼板の一次再結晶を含む脱炭焼
鈍処理時には、雰囲気ガスのH2 濃度(ドライガス)
は、25%未満では、酸化ポテンシャルが強く表面のS
i選択酸化を阻害させる。また、露点40℃未満では、
酸化ポテンシャルが低く脱炭性を低下させる。一方、露
点70℃超では、1℃当たりの水の量が多くなりすぎ供
給雰囲気ガスの濃度の変動を大きくする。更に、一次再
結晶を含む脱炭焼鈍工程の雰囲気ガス量は、〔100×
(H1 +D)×(H1 +H2 )/H1 〕Nm3 /hr未満で
は、炉内の雰囲気ガス流れが不安定であり、鋼板垂直方
向の雰囲気ガスの濃度バラツキが大きい。尚、複数の炉
構造、例えばヒータ加熱炉とラジアント加熱炉、からな
る炉においては、各々において上記数値を満足すること
が必要である。
At the time of decarburizing annealing treatment including primary recrystallization of grain-oriented electrical steel sheet, H 2 concentration of atmospheric gas (dry gas)
Is less than 25%, the oxidation potential is strong and the surface S
i Inhibits selective oxidation. Further, when the dew point is less than 40 ° C,
It has a low oxidation potential and reduces decarburization. On the other hand, if the dew point exceeds 70 ° C., the amount of water per 1 ° C. becomes too large and the fluctuation of the concentration of the supply atmosphere gas becomes large. Further, the amount of atmospheric gas in the decarburization annealing step including primary recrystallization is [100 ×
When (H1 + D) × (H1 + H2) / H1] Nm 3 / hr is less than, the atmosphere gas flow in the furnace is unstable, and the concentration variation of the atmosphere gas in the vertical direction of the steel sheet is large. Incidentally, in the case of a furnace having a plurality of furnace structures, for example, a heater heating furnace and a radiant heating furnace, it is necessary to satisfy the above numerical values in each.

【0025】窒化焼鈍処理時には、雰囲気ガスのH2
度(ドライガス)は、25%未満では、炉内NH3 濃度
を高くすることが出来なく、窒化時間がかかりすぎ非効
率である。NH3 濃度(ドライガス)は、2%未満では
窒化時間がかかりすぎ非効率である。10%超では、炉
内でのNH3 分解が大きく炉内で成分が安定しない。ま
た、露点20℃超では、窒化が困難である。更に、一次
再結晶を含む脱炭焼鈍工程の雰囲気ガス量は、〔100
×(H1 +D)×(H1 +H2 )/H1 〕Nm3/hr未満
では、炉内の雰囲気ガス流れが不安定であり、鋼板垂直
方向の雰囲気ガスの濃度バラツキが大きい。尚、複数の
炉構造、例えばヒータ加熱炉とラジアント加熱炉、から
なる炉においては、各々において上記数値を満足するこ
とが必要である。
During the nitriding annealing treatment, if the H 2 concentration (dry gas) of the atmosphere gas is less than 25%, the NH 3 concentration in the furnace cannot be increased, and the nitriding time is too long and inefficient. If the NH 3 concentration (dry gas) is less than 2%, nitriding time is too long and inefficient. If it exceeds 10%, NH 3 decomposition in the furnace is large and the components are not stable in the furnace. If the dew point exceeds 20 ° C, nitriding is difficult. Further, the amount of atmospheric gas in the decarburization annealing step including primary recrystallization is [100
When less than × (H1 + D) × (H1 + H2) / H1] Nm 3 / hr, the atmosphere gas flow in the furnace is unstable, and the concentration variation of the atmosphere gas in the vertical direction of the steel sheet is large. Incidentally, in the case of a furnace having a plurality of furnace structures, for example, a heater heating furnace and a radiant heating furnace, it is necessary to satisfy the above numerical values in each.

【0026】無方向性電磁鋼板の一次再結晶を含む脱炭
焼鈍処理時には、雰囲気ガスのH2濃度(ドライガス)
は、15%未満ではH2 Oの可能搬送量が小さく、雰囲
気ガス量が多く必要となり経済的でない。一方、40%
超では雰囲気コストが高く経済的でない。また、露点2
5℃未満では、酸化ポテンシャルが低く脱炭性を低下さ
せる。一方、45℃超では、酸化ポテンシャルが高くな
りすぎ鋼板表面を過酸化させる。更に、一次再結晶を含
む脱炭焼鈍工程の雰囲気ガス量は、〔50×(H1 +
D)×(H1 +H2 )/H1 〕Nm3 /hr未満では、炉内
の雰囲気ガス流れが不安定であり、鋼板垂直方向の雰囲
気ガスの濃度バラツキが大きい。尚、複数の炉構造、例
えばヒータ加熱炉とラジアント加熱炉、からなる炉にお
いては、各々において上記数値を満足することが必要で
ある。
At the time of decarburizing annealing treatment including primary recrystallization of the non-oriented electrical steel sheet, H 2 concentration (dry gas) in the atmosphere gas
Is less than 15%, the amount of H 2 O that can be transported is small and the amount of atmospheric gas is large, which is not economical. On the other hand, 40%
If it is over, the atmosphere cost is high and it is not economical. Also, dew point 2
If it is less than 5 ° C, the oxidation potential is low and the decarburizing property is lowered. On the other hand, if it exceeds 45 ° C, the oxidation potential becomes too high and the surface of the steel sheet is overoxidized. Furthermore, the amount of atmospheric gas in the decarburization annealing step including primary recrystallization is [50 × (H1 +
If D) × (H1 + H2) / H1] Nm 3 / hr is less than, the atmosphere gas flow in the furnace is unstable and the concentration variation of the atmosphere gas in the vertical direction of the steel sheet is large. Incidentally, in the case of a furnace having a plurality of furnace structures, for example, a heater heating furnace and a radiant heating furnace, it is necessary to satisfy the above numerical values in each.

【0027】雰囲気ガスの供給方法は、鋼板の進行方向
の最終部分に一括供給し、鋼板と対向する方向に、一括
して流し、鋼板の進行方向の初期部分から排出する方法
が、分割供給方式にくらべ、炉内雰囲気ガスの濃度バラ
ツキが小さいとともに、設備として簡素化される。鋼板
の進行方向の初期部分から排出した雰囲気ガスを回収
し、必要な成分調整をしたあと鋼板の進行方向の最終部
分から供給することにより経済的となる。
As a method of supplying the atmospheric gas, a method in which the gas is supplied all at once to the final portion in the traveling direction of the steel sheet, is collectively flowed in the direction opposite to the steel sheet, and is discharged from the initial portion in the traveling direction of the steel sheet is a divided supply system. Compared with this, the variation in the concentration of the atmosphere gas in the furnace is small and the equipment is simplified. It is economical to collect the atmospheric gas discharged from the initial portion of the steel sheet in the traveling direction, adjust the necessary components, and then supply it from the final portion of the steel sheet in the traveling direction.

【0028】尚、方向性電磁鋼板の一次再結晶焼鈍を含
む連続脱炭焼鈍炉と窒化焼鈍炉をシリーズに組込むこと
も可能である。また、方向性電磁鋼板の一次再結晶焼鈍
を含む連続脱炭焼鈍と無方向性連続脱炭焼鈍を兼用する
炉も可能である。
It is also possible to incorporate a continuous decarburizing annealing furnace including primary recrystallization annealing and a nitriding annealing furnace into the series. Further, it is possible to use a furnace that combines continuous decarburization annealing including primary recrystallization annealing of grain-oriented electrical steel and non-directional continuous decarburization annealing.

【0029】[0029]

【実施例】【Example】

実施例1 Si:3.2重量%、酸可溶性Al:0.029重量
%、N:0.080重量%、Mn:0.11重量%、
S:0.007重量%、C:0.05重量%、残部Fe
及び不可避不純物からなる珪素熱延鋼帯を、1120℃
で2分間焼鈍した後冷延し、0.23mmとした。炉断面
サイズH1 =0.2m、H2 =0.4m、D=1.8m
なる焼鈍炉へ雰囲気ガス1000Nm3 /hr(ドライベー
ス、成分H275%、COX 1%未満、残部N2 )を露
点64℃に加湿したものを炉後方から一括導入し、この
炉内にてこれらの冷延板を鋼板温度820℃で2分間焼
鈍し、脱炭を含む一次再結晶させた。次に、二次再結晶
を安定にさせるために、アンモニア雰囲気中で窒化処理
を行い、窒素量を190ppm とし、インヒビタを強化し
た。その後、MgOを主成分とする焼鈍分離剤を塗布
し、高温焼鈍した。高温焼鈍は、1100℃まで25%
2 −75%H2 雰囲気で150℃/hrの昇温速度を保
ちながら昇温し、1100℃到達後、その温度で10時
間保持した。その後、100%H2 雰囲気とし、更に1
200℃まで昇温し、この温度に10時間保持した。仕
上焼鈍終了後、リン酸−クロム酸系の張力コーティング
処理を行った。得られた特性及び皮膜状況は表1の通り
である。
Example 1 Si: 3.2 wt%, acid-soluble Al: 0.029 wt%, N: 0.080 wt%, Mn: 0.11 wt%,
S: 0.007 wt%, C: 0.05 wt%, balance Fe
And hot-rolled silicon steel strip consisting of inevitable impurities at 1120 ° C
After annealing for 2 minutes, it was cold-rolled to 0.23 mm. Furnace cross section size H1 = 0.2m, H2 = 0.4m, D = 1.8m
1000 Nm 3 / hr (dry base, component H 2 75%, CO x less than 1%, balance N 2 ) humidified to a dew point of 64 ° C. was collectively introduced into the annealing furnace from the back of the furnace. These cold-rolled sheets were annealed at a steel sheet temperature of 820 ° C. for 2 minutes for primary recrystallization including decarburization. Next, in order to stabilize the secondary recrystallization, nitriding treatment was performed in an ammonia atmosphere so that the amount of nitrogen was 190 ppm and the inhibitor was strengthened. After that, an annealing separator containing MgO as a main component was applied, and high temperature annealing was performed. High temperature annealing is 25% up to 1100 ℃
The temperature was raised in an N 2 -75% H 2 atmosphere while maintaining a temperature rising rate of 150 ° C./hr, and after reaching 1100 ° C., the temperature was maintained for 10 hours. After that, the atmosphere is set to 100% H 2 and further 1
The temperature was raised to 200 ° C. and kept at this temperature for 10 hours. After finishing annealing, phosphoric acid-chromic acid-based tension coating treatment was performed. The properties and film conditions obtained are shown in Table 1.

【0030】上記実施例で明らかなように、雰囲気ガス
の炉内での均一化(ばらつきの減少)により磁性及び皮
膜を含めて製品の安定生産化がなされた。また、炉内雰
囲気を回収し、ガス成分を調整し、再使用することも可
能である。こうして、より経済的な製造を可能とした。
As is clear from the above examples, the uniform production of the atmosphere gas in the furnace (reduction of variations) resulted in stable production of the product including the magnetism and the film. It is also possible to recover the atmosphere in the furnace, adjust the gas component, and reuse. In this way, more economical manufacturing was made possible.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【発明の効果】本発明により、一次再結晶を含む脱炭焼
鈍炉或いは窒化焼鈍炉において、炉内に通板する鋼板と
その両側の炉の有効内壁までの距離(板面垂直距離)を
可能な限り等しくするとともに、炉内の雰囲気ガス量を
一定値以上にすることにより、皮膜性能及び磁性を高位
安定化することを可能とし、極めて安定して製品を生産
することが可能となり、工業上の価値は絶大である。
EFFECTS OF THE INVENTION According to the present invention, in a decarburizing annealing furnace or a nitriding annealing furnace including primary recrystallization, the distance between the steel plate to be passed through the furnace and the effective inner wall of the furnace on both sides of the steel plate (vertical surface distance) is possible. By making the amount of atmospheric gas in the furnace equal to or more than a certain value as much as possible, it is possible to stabilize the film performance and magnetism at a high level, and it is possible to produce products in a very stable manner. The value of is enormous.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による雰囲気ガスを回収・精製・成分調
整し、炉の後方より一括供給している一次再結晶を含む
連続脱炭焼鈍炉の一例を示す説明図である。
FIG. 1 is an explanatory diagram showing an example of a continuous decarburizing annealing furnace including primary recrystallization in which atmospheric gas is collected, purified, and components are adjusted, and is collectively supplied from the rear of the furnace according to the present invention.

【図2】本発明による雰囲気ガスを回収・精製・成分調
整し、炉の後方より一括供給している一次再結晶を含む
連続脱炭焼鈍炉の別の一例を示す説明図である。
FIG. 2 is an explanatory view showing another example of a continuous decarburizing annealing furnace including primary recrystallization in which the atmospheric gas is recovered, purified, and the components are adjusted, and the gas is collectively supplied from the rear of the furnace according to the present invention.

【図3】方向性電磁鋼板の一次再結晶を含む連続脱炭焼
鈍時における雰囲気ガス量と炉内の鋼板と炉の内壁間の
雰囲気ガスの濃度バラツキの関係の一例を示す図であ
る。
FIG. 3 is a diagram showing an example of a relationship between an atmospheric gas amount and a concentration variation of an atmospheric gas between a steel plate in a furnace and an inner wall of the furnace during continuous decarburizing annealing including primary recrystallization of a grain-oriented electrical steel sheet.

【図4】従来法による雰囲気ガスを炉の後方より一括供
給している一次再結晶を含む連続脱炭焼鈍炉の一例を示
す説明図である。
FIG. 4 is an explanatory diagram showing an example of a continuous decarburizing annealing furnace including primary recrystallization in which atmospheric gas is collectively supplied from the rear of the furnace by a conventional method.

【図5】従来法による雰囲気ガスを炉内に分割供給して
いる一次再結晶を含む連続脱炭焼鈍炉の一例を示す説明
図である。
FIG. 5 is an explanatory diagram showing an example of a continuous decarburizing annealing furnace including primary recrystallization in which atmospheric gas is dividedly supplied into the furnace by a conventional method.

【符号の説明】[Explanation of symbols]

1 炉 2 鋼板 3 雰囲気ガス供給管(後半部一括供給) 4 雰囲気ガス排出管 5 鋼板近傍点(鋼板上方) 5′ 鋼板近傍点(鋼板下方) 6 鋼板〜炉内壁中央点(鋼板上方) 6′ 鋼板〜炉内壁中央点(鋼板下方) 8 雰囲気ガス精製装置 9 雰囲気ガス成分調整装置 10 雰囲気ガス循環装置 11〜12 ガス分析装置 31〜35 雰囲気ガス供給管(炉内分割供給) 41 H2 源ガス供給管 42 不活性ガス供給管 43 H2 O源ガス供給管 51 H2 源ガス供給管バルブ 52 不活性ガス供給管バルブ 53 H2 O源ガス供給管バルブ 61〜65 搬送ロール1 Furnace 2 Steel plate 3 Atmosphere gas supply pipe (at the latter half of batch supply) 4 Atmosphere gas discharge pipe 5 Steel plate vicinity point (upper steel plate) 5'Steel plate vicinity point (lower steel plate) 6 Steel plate-furnace inner wall center point (upper steel plate) 6 ' Steel plate to furnace inner wall center point (downward of steel plate) 8 Atmosphere gas purifying device 9 Atmosphere gas component adjusting device 10 Atmosphere gas circulating device 11 to 12 Gas analyzer 31 to 35 Atmosphere gas supply pipe (furnace internal supply) 41 H 2 source gas Supply pipe 42 Inert gas supply pipe 43 H 2 O source gas supply pipe 51 H 2 source gas supply pipe valve 52 Inert gas supply pipe valve 53 H 2 O source gas supply pipe valve 61-65 Conveying roll

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C21D 9/46 501 A 9/56 101 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location C21D 9/46 501 A 9/56 101 A

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 1種類以上の炉構造からなる珪素鋼板の
連続脱炭焼鈍炉または窒化焼鈍炉において、炉内に通板
する鋼板とその両側の炉の有効内壁までの距離(板面垂
直方向距離)のうち短い方の距離をH1 (m)、長い方
の距離をH2(m)、有効炉内幅(板面内方向幅)をD
(m)とするとき、各炉構造のうちH1 /((H1 +
D)×(H1 +H2 ))の数値が一番小さな炉構造のH
2 /H1を1.0〜2.5とするとともに、長い方の距
離H2 を0.4m以下とすることを特徴とする珪素鋼板
の連続焼鈍炉。
1. In a continuous decarburizing annealing furnace or a nitriding annealing furnace for silicon steel sheets having one or more types of furnace structures, the distance between the steel sheet to be passed through the furnace and the effective inner walls of the furnace on both sides of the steel sheet (direction perpendicular to the plate surface) Of the distances, the shorter distance is H1 (m), the longer distance is H2 (m), and the effective furnace internal width (width in the plate surface direction) is D.
(M), H1 / ((H1 +
D) x (H1 + H2)) with the smallest numerical value of the furnace structure
A continuous annealing furnace for silicon steel sheets, characterized in that 2 / H1 is 1.0 to 2.5 and the longer distance H2 is 0.4 m or less.
【請求項2】 焼鈍炉内の鋼板を支持・搬送するロール
の下部の炉底壁を、周囲の炉底高さよりロール径の1倍
〜3倍の距離で局部的に拡張したことを特徴とする請求
項1記載の珪素鋼板の連続焼鈍炉。
2. A furnace bottom wall under a roll that supports and conveys a steel plate in an annealing furnace is locally expanded at a distance 1 to 3 times the roll diameter from the height of the surrounding furnace bottom. The continuous annealing furnace for a silicon steel sheet according to claim 1.
【請求項3】 鋼板の進行方向の最終部分に雰囲気ガス
を供給する装置を配設するとともに鋼板の進行方向の初
期部分に雰囲気ガスを排出する装置を配設したことを特
徴とする請求項1または2記載の珪素鋼板の連続焼鈍
炉。
3. A device for supplying atmospheric gas to the final portion of the steel plate in the traveling direction, and a device for discharging atmospheric gas to the initial portion of the steel plate in the traveling direction. Alternatively, a continuous annealing furnace for a silicon steel sheet as described in 2.
【請求項4】 鋼板の進行方向の最終部分に雰囲気ガス
を供給する装置を配設し、鋼板の進行方向の初期部分に
雰囲気ガスを排出する装置を配設するとともに、前記雰
囲気ガスの排出装置と前記雰囲気ガスの供給装置の間
に、雰囲気ガス精製装置と雰囲気ガス成分調整装置を配
設し、その間を連結管で連結したことを特徴とする請求
項1または2記載の珪素鋼板の連続焼鈍炉。
4. A device for supplying atmospheric gas to the final portion of the steel plate in the traveling direction, a device for discharging atmospheric gas to the initial portion of the steel plate in the traveling direction, and a device for discharging the atmospheric gas. The continuous annealing of the silicon steel sheet according to claim 1 or 2, wherein an atmosphere gas purifying device and an atmosphere gas component adjusting device are provided between the atmosphere gas supplying device and the atmosphere gas supplying device, and the space between them is connected by a connecting pipe. Furnace.
【請求項5】 請求項1ないし4のいずれかに記載の珪
素鋼板の連続焼鈍炉による方向性珪素鋼板の連続脱炭処
理時に、炉の雰囲気をH2 25%(ドライガス)以上、
残部不活性ガス、露点40〜70℃とし、該雰囲気のガ
ス量を〔100×(H1 +D)×(H1 +H2 )/H1
〕Nm3 /hr以上とすることを特徴とする珪素鋼板の連
続焼鈍方法。
5. The furnace atmosphere at the time of continuous decarburization treatment of the grain-oriented silicon steel sheet by the continuous annealing furnace for a silicon steel sheet according to claim 1, wherein the atmosphere of the furnace is H 2 25% (dry gas) or more,
The balance is an inert gas, the dew point is 40 to 70 ° C., and the gas amount in the atmosphere is [100 × (H1 + D) × (H1 + H2) / H1.
] A continuous annealing method for a silicon steel sheet, characterized by Nm 3 / hr or more.
【請求項6】 請求項1ないし4のいずれかに記載の珪
素鋼板の連続焼鈍炉による方向性珪素鋼板の連続窒化処
理時に、炉の雰囲気をH2 25%(ドライガス)以上、
NH3 2〜10%、残部不活性ガス、露点20℃以下と
し、該雰囲気のガス量を〔100×(H1 +D)×(H
1 +H2 )/H1 〕Nm3 /hr以上とすることを特徴とす
る珪素鋼板の連続焼鈍方法。
6. The furnace atmosphere during the continuous nitriding treatment of the grain-oriented silicon steel sheet by the continuous annealing furnace for a silicon steel sheet according to claim 1, wherein the atmosphere of the furnace is H 2 25% (dry gas) or more,
NH 3 2-10%, balance inert gas, dew point 20 ° C. or lower, and gas amount in the atmosphere is [100 × (H 1 + D) × (H
1 + H2) / H1] Nm 3 / hr or more continuous annealing process of the silicon steel sheet, characterized by.
【請求項7】 請求項1ないし4のいずれかに記載の珪
素鋼板の連続焼鈍炉による無方向性珪素鋼板の連続脱炭
処理時に、炉の雰囲気をH2 15〜40%(ドライガ
ス)以上、残部不活性ガス、露点25〜45℃とし、該
雰囲気のガス量を〔50×(H1 +D)×(H1 +H2
)/H1 〕Nm3 /hr以上とすることを特徴とする珪素
鋼板の連続焼鈍方法。
7. The furnace atmosphere at the time of the continuous decarburizing treatment of the non-oriented silicon steel sheet by the continuous annealing furnace for the silicon steel sheet according to any one of claims 1 to 4 is H 2 15-40% (dry gas) or more. , Balance inert gas, dew point 25 to 45 ° C., and the amount of gas in the atmosphere is [50 × (H1 + D) × (H1 + H2
) / H1] Nm 3 / hr or more continuous annealing process of the silicon steel sheet, characterized by.
JP23290894A 1994-09-28 1994-09-28 Continuous annealing furnace and continuous annealing method for silicon steel sheet Expired - Lifetime JP3394609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23290894A JP3394609B2 (en) 1994-09-28 1994-09-28 Continuous annealing furnace and continuous annealing method for silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23290894A JP3394609B2 (en) 1994-09-28 1994-09-28 Continuous annealing furnace and continuous annealing method for silicon steel sheet

Publications (2)

Publication Number Publication Date
JPH0892632A true JPH0892632A (en) 1996-04-09
JP3394609B2 JP3394609B2 (en) 2003-04-07

Family

ID=16946730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23290894A Expired - Lifetime JP3394609B2 (en) 1994-09-28 1994-09-28 Continuous annealing furnace and continuous annealing method for silicon steel sheet

Country Status (1)

Country Link
JP (1) JP3394609B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261033A (en) * 2007-04-13 2008-10-30 Nippon Steel Corp Manufacturing method of grain-oriented silicon steel sheet, and its continuous decarburizing-nitriding annealing apparatus
EP2330223A4 (en) * 2008-09-10 2017-01-18 Nippon Steel & Sumitomo Metal Corporation Directional electromagnetic steel plate manufacturing method
KR101864231B1 (en) * 2016-12-15 2018-06-05 주식회사 포스코 Annealing furnace for electrical steel sheet and method for supplying process gas
CN112536424A (en) * 2020-11-13 2021-03-23 华北理工大学 Device for rapidly decarbonizing and steelmaking by adjusting gas flow through segmented temperature control and using method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106435136B (en) * 2016-09-23 2019-01-18 武汉钢铁有限公司 Disengaging sampling device and application method for box-annealing furnace

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261033A (en) * 2007-04-13 2008-10-30 Nippon Steel Corp Manufacturing method of grain-oriented silicon steel sheet, and its continuous decarburizing-nitriding annealing apparatus
EP2330223A4 (en) * 2008-09-10 2017-01-18 Nippon Steel & Sumitomo Metal Corporation Directional electromagnetic steel plate manufacturing method
KR101864231B1 (en) * 2016-12-15 2018-06-05 주식회사 포스코 Annealing furnace for electrical steel sheet and method for supplying process gas
CN112536424A (en) * 2020-11-13 2021-03-23 华北理工大学 Device for rapidly decarbonizing and steelmaking by adjusting gas flow through segmented temperature control and using method
CN112536424B (en) * 2020-11-13 2022-05-17 华北理工大学 Device for rapidly decarbonizing and steelmaking by adjusting gas flow through segmented temperature control and using method

Also Published As

Publication number Publication date
JP3394609B2 (en) 2003-04-07

Similar Documents

Publication Publication Date Title
CN101768697B (en) Method for manufacturing oriented silicon steel with one-step cold rolling method
CN100381598C (en) Orientating silicon steel, manufacturing process and equipment
EP0400549B1 (en) Process for producing grainoriented electrical steel sheet having superior magnetic and surface film characteristics
US5082509A (en) Method of producing oriented electrical steel sheet having superior magnetic properties
JP3456862B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3394609B2 (en) Continuous annealing furnace and continuous annealing method for silicon steel sheet
US9815115B2 (en) Finish heat treatment method and finish heat treatment apparatus for iron powder
JP2008261033A (en) Manufacturing method of grain-oriented silicon steel sheet, and its continuous decarburizing-nitriding annealing apparatus
JP4142755B2 (en) Manufacturing method of grain-oriented silicon steel sheet and continuous decarburization / nitriding annealing equipment for grain-oriented silicon steel sheet
JPH03122227A (en) Decarburization continuous annealing furnace for grain oriented electrical steel sheet
JP2771634B2 (en) Decarburized continuous annealing furnace for grain-oriented electrical steel sheets
JPH07292420A (en) Production of grain oriented silicon steel and continuous decarburized annealing equipment
JP3228951B2 (en) Continuous decarburization annealing equipment for grain-oriented electrical steel sheets
JPH07150250A (en) Production of grain oriented silicon steel sheet
CN116287623B (en) Oriented silicon steel and preparation method thereof
JPH06192736A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH05230534A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPS60152634A (en) Manufacture of blank for shadow mask
JP2005177781A (en) Hot rolling method
JPS58491B2 (en) It&#39;s been a long time since I&#39;ve been in the middle of a long time since I&#39;ve been in the middle of a long time since I&#39;ve been in the middle of a long time.
JPH09111301A (en) Finish heat treatment of iron powder and apparatus therefor
JPH08109466A (en) Nitriding of steel sheet
JPH07278676A (en) Manufacture of grain-oriented silicon steel sheet with super low iron loss
JPH07179948A (en) Production of nonoriented silicon steel sheet
CN113667816A (en) Annealing process of drywall nail steel semi-finished steel wire

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090131

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100131

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110131

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120131

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130131

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130131

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130131

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130131

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130131

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140131

Year of fee payment: 11

EXPY Cancellation because of completion of term