JPH0891293A - Bearing device for contra-rotating propeller - Google Patents

Bearing device for contra-rotating propeller

Info

Publication number
JPH0891293A
JPH0891293A JP25160594A JP25160594A JPH0891293A JP H0891293 A JPH0891293 A JP H0891293A JP 25160594 A JP25160594 A JP 25160594A JP 25160594 A JP25160594 A JP 25160594A JP H0891293 A JPH0891293 A JP H0891293A
Authority
JP
Japan
Prior art keywords
bearing
peripheral surface
oil supply
shaft
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25160594A
Other languages
Japanese (ja)
Inventor
Keiichi Nitta
啓一 新田
Masayasu Matsuda
正康 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP25160594A priority Critical patent/JPH0891293A/en
Publication of JPH0891293A publication Critical patent/JPH0891293A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H23/00Transmitting power from propulsion power plant to propulsive elements
    • B63H23/32Other parts
    • B63H23/321Bearings or seals specially adapted for propeller shafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H23/00Transmitting power from propulsion power plant to propulsive elements
    • B63H23/32Other parts
    • B63H23/321Bearings or seals specially adapted for propeller shafts
    • B63H2023/323Bearings for coaxial propeller shafts, e.g. for driving propellers of the counter-rotative type

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE: To generate the loading capacity by a static pressure positively, and to suppress the oil feed pressure and to stabilize the loading capacity by the static pressure, by forming non-cylindrical taper lands on the inner peripheral surface of an inner side bearing, and making lands where radial oil feeding holes are opposed directly, in a cylindrical form. CONSTITUTION: A central oil feeding passage 28 is formed to an inner shaft 23 in the center axial direction, where a lubricating oil is fed at a specific pressure. Plural lines of radial oil feeding holes 29 are formed to the parts of the inner shaft 23 communicating with the central oil passage 28, so as to feed the lubricating oil to the bearing surface between the outer peripheral surface of the inner shaft 23, and the inner peripheral surface of the inner side bearing 26. Furthermore, on the surface square to the axial direction on the inner peripheral surface of the inner side bearing 26, taper lands 42 composed by providing curved surface form taper surfaces 40 (non-cylindrical parts) and land surfaces 41 (cylindrical parts) alternatively, are formed at the same angular intervals. The land surfaces 41 are formed in a grid form on the inner peripheral surface of the inner side bearing 26, and the curved surface form taper surfaces 40 are provided at the parts between them, and the radial oil feeding holes 29 are opposed to the land surfaces in the direction of the inner peripheral surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は船舶などの二重反転プロ
ペラを支持する二重反転プロペラ用軸受装置にかかるも
ので、とくに内軸と外軸との間の軸受部分を改良した二
重反転プロペラ用軸受装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing device for a counter-rotating propeller for supporting a counter-rotating propeller for ships and the like, and more particularly to a counter-rotating propeller having an improved bearing portion between an inner shaft and an outer shaft. The present invention relates to a propeller bearing device.

【0002】[0002]

【従来の技術】従来から、プロペラの推進エネルギーを
有効に活用するために、前方プロペラを有する外軸と、
この外軸に内嵌するとともに後方プロペラを有する内軸
とを互いに反対方向に回転駆動する二重反転プロペラが
知られている。
2. Description of the Related Art Conventionally, in order to effectively utilize the propelling energy of a propeller, an outer shaft having a front propeller,
There is known a counter rotating propeller that is fitted in the outer shaft and rotationally drives the inner shaft having a rear propeller in mutually opposite directions.

【0003】たとえば図14は、従来の二重反転プロペ
ラ1の一部切欠き側面図、図15は、図14のXV−X
V線断面図であって、二重反転プロペラ1は、前方プロ
ペラ2を有する外軸3と、後方プロペラ4を有する内軸
5と、外軸3および内軸5をそれぞれ反対方向に回転駆
動する主機関6と、を有する。
For example, FIG. 14 is a partially cutaway side view of a conventional counter-rotating propeller 1, and FIG. 15 is an XV-X of FIG.
FIG. 2 is a cross-sectional view taken along line V, in which the contra-rotating propeller 1 rotationally drives the outer shaft 3 having the front propeller 2, the inner shaft 5 having the rear propeller 4, and the outer shaft 3 and the inner shaft 5 in opposite directions. The main engine 6 is provided.

【0004】外軸3は、これを円筒状に形成してあるも
ので、船舶本体の船尾部分7に外側軸受8および外側シ
ール9を介してこれを回転可能に設ける。内軸5は、こ
の外軸3の内方に内側軸受10および内側シール11を
介して反対方向に回転可能に設ける。
The outer shaft 3 is formed in a cylindrical shape, and is rotatably provided on the stern portion 7 of the main body of the ship via an outer bearing 8 and an outer seal 9. The inner shaft 5 is provided inside the outer shaft 3 via an inner bearing 10 and an inner seal 11 so as to be rotatable in opposite directions.

【0005】外軸3、内軸5、外側軸受8および内側軸
受10部分に潤滑油を供給する潤滑油供給機構12を設
けてある。なお、前方プロペラ2および後方プロペラ4
に対向してラダーホーン13および舵板14を設けてあ
る。
A lubricating oil supply mechanism 12 for supplying lubricating oil to the outer shaft 3, the inner shaft 5, the outer bearing 8 and the inner bearing 10 is provided. Incidentally, the front propeller 2 and the rear propeller 4
A rudder horn 13 and a rudder blade 14 are provided opposite to.

【0006】こうした構成の二重反転プロペラ1におい
て、外軸3と船尾部分7との間の外側軸受8は通常の軸
受機構を採用可能であるが、とくに内軸5と外軸3との
間に介装する内側軸受10は、内方で回転する内軸5
と、外方で反転する外軸3との回転方向が互いに反対で
あるため、潤滑油供給機構12からの潤滑油による油膜
の形成によって流体滑り軸受作用を行うことに問題があ
る。
In the counter-rotating propeller 1 having such a structure, the outer bearing 8 between the outer shaft 3 and the stern portion 7 can adopt a normal bearing mechanism, but especially between the inner shaft 5 and the outer shaft 3. The inner bearing 10 installed on the inner side of the inner shaft 5 rotates inward.
Since the rotation directions of the outer shaft 3 and the outer shaft 3 which are reversed outward are opposite to each other, there is a problem in that the fluid slide bearing action is performed by forming an oil film by the lubricating oil from the lubricating oil supply mechanism 12.

【0007】つまり、図15に示すように、内軸5が時
計方向に回転し、外軸3およびこの外軸3の内周面に固
定してある滑り軸受などの内側軸受10が反時計方向に
回転する場合に、外軸3と内軸5とがほぼ等速度で回転
すると、内軸5の外周面と内側軸受10の内周面との間
の潤滑油がこの間に油膜を形成することができなくなる
という問題がある。
That is, as shown in FIG. 15, the inner shaft 5 rotates clockwise, and the outer shaft 3 and the inner bearing 10 such as a slide bearing fixed to the inner peripheral surface of the outer shaft 3 rotate counterclockwise. When the outer shaft 3 and the inner shaft 5 rotate at substantially the same speed in the case of rotating, the lubricating oil between the outer peripheral surface of the inner shaft 5 and the inner peripheral surface of the inner bearing 10 forms an oil film therebetween. There is a problem that you can not do.

【0008】そこで、内側軸受10の内面にテーパーラ
ンド部(図示せず)を設けて、動圧による負荷容量によ
り内軸5を持ち上げようとする軸受が提案されている
が、主機関6の始動時ないし低速回転時には動圧による
負荷容量が小さいため、油膜が薄くなり、軸受面におい
て内軸5および内側軸受10が金属接触して内側軸受1
0が焼け付くという問題がある。
Therefore, there is proposed a bearing in which a tapered land portion (not shown) is provided on the inner surface of the inner bearing 10 to try to lift the inner shaft 5 by the load capacity caused by the dynamic pressure. Since the load capacity due to the dynamic pressure is small at the time of low speed or low speed rotation, the oil film becomes thin, and the inner shaft 5 and the inner bearing 10 come into metal contact with each other on the bearing surface and the inner bearing 1
There is a problem that 0 burns.

【0009】こうした問題を解消するための従来の技術
として、たとえば図16に示すような、静圧軸受を基本
とした「二重反転プロペラ用船尾管軸受」(特公平5−
45479号)がある。この軸受においては、内軸5内
に油圧同芯穴15およびこの油圧同芯穴15から放射状
に延びる放射状給油孔16を形成し、また放射状給油孔
16にはオリフィス形成用のあるいは毛細管絞り用の小
穴付きネジ17をはめ込んで、内軸5と、外軸3ないし
内側軸受10との間に放射状給油孔16から内側軸受1
0に向かって高圧の油を噴出することにより均等に圧力
を付与して、内軸5を持ち上げようとする静圧による負
荷容量を発生させ、内軸5の片当たりなどを防止しよう
としている。
As a conventional technique for solving such a problem, for example, as shown in FIG. 16, "a stern tube bearing for counter-rotating propeller" based on a hydrostatic bearing (Japanese Patent Publication No.
45479). In this bearing, a hydraulic concentric hole 15 and a radial oil supply hole 16 extending radially from the hydraulic concentric hole 15 are formed in the inner shaft 5, and the radial oil supply hole 16 is used for forming an orifice or for capillary drawing. Insert the small hole screw 17 into the inner bearing 1 from the radial oil supply hole 16 between the inner shaft 5 and the outer shaft 3 or the inner bearing 10.
By injecting high-pressure oil toward 0, pressure is evenly applied to generate a load capacity due to static pressure that attempts to lift the inner shaft 5, thereby preventing uneven contact of the inner shaft 5.

【0010】しかしながら、この船尾管軸受の場合に
は、外軸3の内側軸受10が真円軸受であるため、内軸
5および外軸3が等速度で互いに反転した場合、理論上
この真円軸受では潤滑油の動圧による負荷容量が発生し
ない。
However, in the case of this stern tube bearing, since the inner bearing 10 of the outer shaft 3 is a true circular bearing, when the inner shaft 5 and the outer shaft 3 are inverted at a constant speed, theoretically, this true circle is formed. The bearing does not generate load capacity due to the dynamic pressure of the lubricating oil.

【0011】したがって、内軸5と外軸3(内側軸受1
0)とがほぼ等速度で反転する高回転数比の場合に、ブ
ラックアウトや潤滑油供給機構12の給油ポンプの故障
などにより放射状給油孔16からの静圧給油が失われた
ときには、油膜が形成されず、焼付けを起こしやすいと
いう問題がある。
Therefore, the inner shaft 5 and the outer shaft 3 (the inner bearing 1
In the case of a high rotational speed ratio in which 0) and 0) are reversed at almost the same speed, when static pressure oil supply from the radial oil supply holes 16 is lost due to blackout or failure of the oil supply pump of the lubricating oil supply mechanism 12, the oil film is There is a problem that it is not formed and is prone to baking.

【0012】また、上述のように高回転数比においては
動圧による負荷容量が不足するため、放射状給油孔16
から比較的高い静圧をかけて潤滑油を供給する必要があ
り、潤滑油供給機構12が大型化するという問題があ
る。
Further, as described above, since the load capacity due to the dynamic pressure is insufficient at a high rotational speed ratio, the radial oil supply holes 16
Therefore, it is necessary to supply the lubricating oil by applying a relatively high static pressure, and there is a problem that the lubricating oil supply mechanism 12 becomes large.

【0013】[0013]

【発明が解決しようとする課題】本発明は以上のような
諸問題にかんがみなされたもので、内軸と外軸とが反対
方向にほぼ等速度で回転する等速二重反転時、あるいは
これに近い状態のときにも、とくに内側軸受に負荷容量
を与えることができる二重反転プロペラ用軸受装置を提
供することを課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems. When the inner shaft and the outer shaft rotate in the opposite directions at a substantially constant speed, or at the constant speed double inversion, or An object of the present invention is to provide a contra-rotating propeller bearing device capable of giving a load capacity especially to an inner bearing even in a state close to.

【0014】また本発明は、エンジンの高回転域におい
ては、潤滑油の動圧による負荷容量のみで内軸を支え、
動圧のみでは十分な負荷容量を発生することが困難な低
回転域においては給油圧力を高くして静圧を付加するこ
とによって負荷容量を確保することができる二重反転プ
ロペラ用軸受装置を提供することを課題とする。
Further, according to the present invention, in the high engine speed range, the inner shaft is supported only by the load capacity due to the dynamic pressure of the lubricating oil,
A bearing device for counter-rotating propellers that can secure the load capacity by increasing the oil supply pressure and adding static pressure in the low rotation range where it is difficult to generate sufficient load capacity only with dynamic pressure The task is to do.

【0015】また本発明は、内側軸受の非真円形状を利
用し、低い給油圧力で十分な負荷容量を発生させること
ができる二重反転プロペラ用軸受装置を提供することを
課題とする。
It is another object of the present invention to provide a bearing device for a counter-rotating propeller, which utilizes the non-round shape of the inner bearing and can generate a sufficient load capacity at a low oil supply pressure.

【0016】また本発明は、潤滑油供給機構を大型化す
ることなく、船内電力を節約することができる二重反転
プロペラ用軸受装置を提供することを課題とする。
Another object of the present invention is to provide a bearing device for a contra-rotating propeller, which is capable of saving onboard electric power without increasing the size of the lubricating oil supply mechanism.

【0017】[0017]

【課題を解決するための手段】すなわち本発明は、内側
軸受の内周面を非真円形状にすることにより内軸との間
において動圧を発生させること、およびこの非真円形状
には放射状給油孔を対向させないことに着目したもの
で、前方プロペラを有する外軸と、この外軸に内嵌して
該外軸とは反対方向に回転駆動するとともに後方プロペ
ラを有する内軸と、この内軸と上記外軸との間に設けた
軸受と、を有する二重反転プロペラ用軸受装置であっ
て、上記内軸に中央給油通路と、この中央給油通路に連
通する複数本の放射状給油孔とを形成し、これら中央給
油通路および放射状給油孔を通して該内軸から上記軸受
の内周面に潤滑油を供給するとともに、この軸受の内周
面に複数の凹凸形状部を形成し、かつこれらの凹凸形状
部とは異なる上記軸受の内周面に上記放射状給油孔を対
向させたことを特徴とする二重反転プロペラ用軸受装置
である。
That is, according to the present invention, the inner peripheral surface of the inner bearing is formed into a non-round shape to generate dynamic pressure between the inner bearing and the inner shaft. Focusing on the fact that the radial oil supply holes are not opposed to each other, an outer shaft having a front propeller, an inner shaft fitted in the outer shaft and rotationally driven in a direction opposite to the outer shaft and having a rear propeller, A bearing device for a counter-rotating propeller having a bearing provided between an inner shaft and the outer shaft, wherein a central oil supply passage is provided in the inner shaft and a plurality of radial oil supply holes communicating with the central oil supply passage. Are formed, and lubricating oil is supplied from the inner shaft to the inner peripheral surface of the bearing through the central oil supply passage and the radial oil supply hole, and a plurality of uneven portions are formed on the inner peripheral surface of the bearing. The above bearing different from the uneven part A bearing device for a contra-rotating propeller, characterized in that the inner circumferential surface are opposed to the radial oil supply hole.

【0018】上記凹凸形状部は、これをテーパーランド
あるいは多円弧軸受面とすることができる。
The concavo-convex portion can be a tapered land or a multi-circle bearing surface.

【0019】上記軸受の内周面に真円部を形成すること
ができる。
A perfect circle portion can be formed on the inner peripheral surface of the bearing.

【0020】上記放射状給油孔と上記凹凸形状部とを軸
方向に交互に複数列形成することができる。
A plurality of rows of the radial oil supply holes and the concave and convex portions can be formed alternately in the axial direction.

【0021】[0021]

【作用】本発明による二重反転プロペラ用軸受装置にお
いては、内軸の内部から放射状給油孔を通じて内側軸受
の表面に潤滑油を供給するとともに、この内側軸受の内
周面に複数のテーパーランドあるいは多円弧軸受面など
の凹凸形状部を形成することにより非真円形状とし、か
つこの非真円形状ではない内周面に放射状給油孔を対向
させたので、内軸の内方から内側軸受方向に向かって供
給される潤滑油による静圧負荷容量の変化を小さくする
ことができる。
In the bearing device for counter-rotating propeller according to the present invention, lubricating oil is supplied from the inside of the inner shaft to the surface of the inner bearing through the radial oil supply holes, and a plurality of taper lands or a plurality of taper lands are formed on the inner peripheral surface of the inner bearing. A non-round shape is created by forming uneven parts such as a multi-circle bearing surface, and the radial lubrication holes are opposed to the inner circumferential surface that is not a non-round shape, so It is possible to reduce the change in the static pressure load capacity due to the lubricating oil supplied toward.

【0022】さらに、テーパーランド部あるいは多円弧
軸受面などの凹凸形状部を形成してあるため、回転数比
によらず内軸および内側軸受の間に動圧による負荷容量
がほぼ一定に発生し、したがって、放射状給油孔からの
静圧を大きくする必要がない。
Further, since the concavo-convex portion such as the tapered land portion or the multi-circular bearing surface is formed, the load capacity due to the dynamic pressure is generated almost constantly between the inner shaft and the inner bearing regardless of the rotation speed ratio. Therefore, it is not necessary to increase the static pressure from the radial oil supply holes.

【0023】結果的に、ブラックアウト時などにおいて
給油が行われずに静圧による負荷容量を発生させること
ができない場合でも、あるいはプロペラが低速度の遊転
状態となった場合にも、回転数比によらず動圧による負
荷容量を発生することができるので、軸の焼付きなどを
回避して安全性を高めることが可能となる。
As a result, even when the load capacity cannot be generated due to static pressure due to no oil supply during blackout, or when the propeller is in a low speed idling state, the rotational speed ratio is Since it is possible to generate a load capacity by dynamic pressure regardless of the above, it is possible to avoid seizure of the shaft and improve safety.

【0024】[0024]

【実施例】つぎに、本発明の実施例による二重反転プロ
ペラ用軸受装置を図1ないし図13にもとづき説明す
る。ただし、図14ないし図16と同様の部分には同一
符号を付し、その詳述はこれを省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a bearing device for a counter-rotating propeller according to an embodiment of the present invention will be described with reference to FIGS. However, the same parts as those in FIGS. 14 to 16 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0025】図1は、二重反転プロペラ20用の軸受装
置21の断面図、図2は、図1のII−II線断面図で
あって、図1に示すように、二重反転プロペラ20は前
方プロペラ2を有する外軸22と、後方プロペラ4を有
する内軸23とを有する。
FIG. 1 is a sectional view of a bearing device 21 for the counter-rotating propeller 20, and FIG. 2 is a sectional view taken along the line II-II of FIG. 1. As shown in FIG. Has an outer shaft 22 having a front propeller 2 and an inner shaft 23 having a rear propeller 4.

【0026】外軸22は、これを円筒状に形成してある
もので、前方プロペラ2の前方プロペラボス24および
連結部材25と一体的に、外側軸受8を介してこれを回
転可能に設けてある。
The outer shaft 22 is formed into a cylindrical shape, and is rotatably provided through the outer bearing 8 integrally with the front propeller boss 24 of the front propeller 2 and the connecting member 25. is there.

【0027】内軸23は、この外軸22の内方に内側軸
受26を介して、後方プロペラ4の後方プロペラボス2
7と一体的に、外軸22とは反対方向に回転可能に設け
てある。
The inner shaft 23 is arranged inside the outer shaft 22 via an inner bearing 26, and the rear propeller boss 2 of the rear propeller 4 is engaged.
It is provided integrally with 7 so as to be rotatable in the direction opposite to the outer shaft 22.

【0028】上記内軸23および内側軸受26部分に本
発明の二重反転プロペラ用軸受装置21を設けてある。
すなわち、内軸23の中央軸方向に中央給油通路28を
形成し、ここに潤滑油供給機構12から所定圧力で潤滑
油を供給する。
The inner shaft 23 and the inner bearing 26 are provided with the counter rotating propeller bearing device 21 of the present invention.
That is, the central oil supply passage 28 is formed in the central axis direction of the inner shaft 23, and the lubricating oil is supplied from the lubricating oil supply mechanism 12 at a predetermined pressure.

【0029】図2にも示すように、中央給油通路28に
連通して内軸23の部分に複数本の放射状給油孔29
(図2に示すように軸方向に直角な断面部分に8本、図
1に示すように軸方向に3列、計一箇所の内軸23に2
4本の放射状給油孔29)を形成し、内軸23の外周面
と内側軸受26の内周面との間の軸受表面に潤滑油を供
給可能としてある。
As shown in FIG. 2, a plurality of radial oil supply holes 29 are provided in the inner shaft 23 so as to communicate with the central oil supply passage 28.
(8 in the cross section perpendicular to the axial direction as shown in FIG. 2, 3 rows in the axial direction as shown in FIG. 1, 2 in the inner shaft 23 at one place in total)
Four radial oil supply holes 29) are formed so that lubricating oil can be supplied to the bearing surface between the outer peripheral surface of the inner shaft 23 and the inner peripheral surface of the inner bearing 26.

【0030】この軸受表面に供給された潤滑油のうちの
一部は、内側軸受26の軸方向油路30を通り、隔離用
円筒部材31と内軸23との間の円筒通路32を通り、
隔離用円筒部材31の直径方向連通孔33、および外軸
22の排油孔34を通って、船尾部分7の排出口35か
ら潤滑油供給機構12のタンク(図示せず)へ還流す
る。
A part of the lubricating oil supplied to the bearing surface passes through the axial oil passage 30 of the inner bearing 26 and the cylindrical passage 32 between the isolating cylindrical member 31 and the inner shaft 23.
The oil flows through the diametrical communication hole 33 of the isolating cylindrical member 31 and the oil drain hole 34 of the outer shaft 22 to the tank (not shown) of the lubricating oil supply mechanism 12 from the outlet 35 of the stern portion 7.

【0031】軸受表面に供給された潤滑油のうち円筒通
路32の方向に流れたものは、上述の一部の潤滑油と合
流して、円筒通路32、隔離用円筒部材31の直径方向
連通孔33、外軸22の排油孔34、船尾部分7の排出
口35から上記タンクへ還流する。
Of the lubricating oil supplied to the bearing surface, the lubricating oil flowing in the direction of the cylindrical passage 32 merges with the above-mentioned part of the lubricating oil to form a diametrical communicating hole between the cylindrical passage 32 and the isolating cylindrical member 31. 33, the oil drain hole 34 of the outer shaft 22, and the drain port 35 of the stern portion 7 flow back to the tank.

【0032】つぎに図2ないし図8を参照して本発明の
二重反転プロペラ用軸受装置21部分について説明す
る。図2に示すように二重反転プロペラ用軸受装置21
は、内側軸受26の内周面においてその軸方向に直角な
面に、曲面状テーパー面40(非真円部)およびランド
面41(真円部)を交互に配置してなるテーパーランド
42を等角度間隔で形成してある。
Next, with reference to FIGS. 2 to 8, a description will be given of the portion of the counter rotating propeller bearing device 21 of the present invention. As shown in FIG. 2, the bearing device 21 for the counter-rotating propeller
Is a tapered land 42 formed by alternately arranging a curved tapered surface 40 (non-round portion) and a land surface 41 (round portion) on a surface orthogonal to the axial direction on the inner peripheral surface of the inner bearing 26. It is formed at equal angular intervals.

【0033】曲面状テーパー面40は、内軸23の外周
面の曲率より小さな曲率の円弧によってリセス状にこれ
を形成してある。ランド面41は、内軸23の外周面と
同心円状にこれを形成してある。
The curved tapered surface 40 is formed in a recess shape by an arc having a curvature smaller than that of the outer peripheral surface of the inner shaft 23. The land surface 41 is formed concentrically with the outer peripheral surface of the inner shaft 23.

【0034】図3は、曲面状テーパー面40およびラン
ド面41をより具体的に示す断面図であって、内側軸受
26の中心から任意の半径R1の円周上において等中心
角に分割する点(図では八箇所)を中心としてさらに半
径R2で円を描くことにより内側軸受26の内周面にラ
ンド面41を残しつつ曲面状テーパー面40を形成す
る。
FIG. 3 is a cross-sectional view showing the curved tapered surface 40 and the land surface 41 more specifically, and dividing points from the center of the inner bearing 26 into an equal center angle on the circumference of an arbitrary radius R1. By further forming a circle with a radius R2 around (in the figure, eight locations), a curved tapered surface 40 is formed on the inner peripheral surface of the inner bearing 26 while leaving the land surface 41.

【0035】半径R1、R2を任意に選択かつ組み合わ
せることにより、所定の形状および深さを有する曲面状
テーパー面40および所定長さのランド面41を得るこ
とができる。
By arbitrarily selecting and combining the radii R1 and R2, it is possible to obtain the curved tapered surface 40 having a predetermined shape and depth and the land surface 41 having a predetermined length.

【0036】内軸23の半径をR、内軸23の外周面と
内側軸受26の内周面との間の間隙をCとすれば、曲面
状テーパー面40の最大深さHは、R1+R2−(R+
C)となる。
If the radius of the inner shaft 23 is R and the gap between the outer peripheral surface of the inner shaft 23 and the inner peripheral surface of the inner bearing 26 is C, the maximum depth H of the curved tapered surface 40 is R1 + R2- (R +
C).

【0037】曲面状テーパー面40の最大深さHは、軸
受パッド数すなわちテーパーランド42の数や運転条件
などで若干変更することがあるが、1.0〜3.0×内
側軸受26の径/10000程度である。
The maximum depth H of the curved tapered surface 40 may vary slightly depending on the number of bearing pads, that is, the number of taper lands 42, operating conditions, etc., but is 1.0 to 3.0 × diameter of the inner bearing 26. It is about / 10,000.

【0038】ただし、内軸23に形成した三列の放射状
給油孔29を軸方向に沿ってテーパーランド42に同等
に対向させる構成のままでは、内軸23の回転に応じて
放射状給油孔29がテーパーランド42における曲面状
テーパー面40に対向するとき、およびランド面41に
対向するときにおいて、それぞれ三列の放射状給油孔2
9ともその相対位置関係が互いに同様なので、放射状給
油孔29からの潤滑油により発生する静圧による負荷容
量が軸方向において同様に変化することになり、全体と
して内軸23の軸心位置が若干不安定になるという問題
がある。
However, with the structure in which the three rows of radial oil supply holes 29 formed in the inner shaft 23 are equally opposed to the taper land 42 along the axial direction, the radial oil supply holes 29 are formed in accordance with the rotation of the inner shaft 23. When the taper land 42 faces the curved taper surface 40 and the land surface 41, the radial oil supply holes 2 are arranged in three rows.
Since the relative positional relationship of 9 is similar to each other, the load capacity due to the static pressure generated by the lubricating oil from the radial oil supply holes 29 also changes in the axial direction, and the axial center position of the inner shaft 23 is slightly a little as a whole. There is a problem of becoming unstable.

【0039】そこで本発明においては、図4および図5
に示すようなテーパーランド42を形成することとし
た。まず図4は、放射状給油孔29を一列に形成した場
合の、内側軸受26の内周面の展開図であり、放射状給
油孔29に対向する内周面上に一周して中央部のランド
面41Cを形成するとともに、その図中左右端部側に
は、テーパーランド42の曲面状テーパー面40および
左右端部のランド面41L、41Rを交互に形成してい
る。
Therefore, in the present invention, FIG. 4 and FIG.
It was decided to form the tapered land 42 as shown in FIG. First, FIG. 4 is a development view of the inner peripheral surface of the inner bearing 26 when the radial oil supply holes 29 are formed in one row. 41C is formed, and the curved tapered surface 40 of the tapered land 42 and the land surfaces 41L and 41R at the left and right ends are alternately formed on the left and right end sides in the figure.

【0040】なおランド面41の幅は、この非真円形状
の動圧による負荷容量を極端に減少しない程度の、たと
えば放射状給油孔29の直径の2〜4倍程度としてあ
る。
The width of the land surface 41 is such that the load capacity due to the dynamic pressure of the non-round shape is not extremely reduced, for example, about 2 to 4 times the diameter of the radial oil supply hole 29.

【0041】また図5は、放射状給油孔29を三列に形
成した場合であって、図4と同様の内側軸受26の当該
内周面の展開した状態を示し、図示のように内側軸受2
6の内周面においてランド面41を格子状に形成すると
ともに、その間の部分に曲面状テーパー面40を配置
し、内周面方向のランド面41に放射状給油孔29を対
向させている。
FIG. 5 shows a case where the radial oil supply holes 29 are formed in three rows, and the inner peripheral surface of the inner bearing 26 is expanded as in FIG. 4, and the inner bearing 2 as shown in FIG.
The land surface 41 is formed in a lattice shape on the inner peripheral surface of 6, and the curved taper surface 40 is arranged between the land surfaces 41, and the radial oil supply holes 29 are opposed to the land surface 41 in the inner peripheral surface direction.

【0042】かくして、図4に示したような構成の場合
には、非真円形状である曲面状テーパー面40と真円形
状である左右端部のランド面41L、41Rを交互に配
置するとともに、真円形状である中央部のランド面41
Cに放射状給油孔29を対向させたので、放射状給油孔
29は常に真円部である中央部のランド面41Cに臨む
ため静圧による負荷容量が変化することなく、軸方向に
おける負荷容量を全体として均一化し、負荷容量の変動
を小さくすることができる。
Thus, in the case of the structure shown in FIG. 4, the curved surface 40 having a non-round shape and the land surfaces 41L and 41R at the left and right ends having a perfect circle are alternately arranged. , The central land surface 41 having a perfect circular shape
Since the radial oil supply hole 29 is opposed to C, the radial oil supply hole 29 always faces the central land surface 41C, which is a perfect circle, so that the load capacity due to static pressure does not change, and the load capacity in the axial direction is not changed. As a result, it is possible to reduce the fluctuation of the load capacity.

【0043】また図5に示したような構成の場合にも同
様に、内周面方向のランド面41に放射状給油孔29を
対向させたので、静圧による負荷容量が変化することな
く、軸方向における負荷容量を全体として均一化し、負
荷容量の変動を小さくすることができる。
Similarly, in the case of the structure shown in FIG. 5, since the radial oil supply holes 29 are opposed to the land surface 41 in the inner peripheral surface direction, the load capacity due to the static pressure does not change, and the shaft does not change. The load capacity in the direction can be made uniform as a whole, and the fluctuation of the load capacity can be reduced.

【0044】図6は、内側軸受26の内周面における非
真円形状の他の例を示す図3と同様の断面図であって、
テーパーランド42と同様の非真円形状を形成する構成
が図3の場合と若干異なる。内側軸受26の内周面を等
分(たとえば八等分)するとともに、これら隣合う等分
点の間において当該内周面に凹部を形成する。
FIG. 6 is a sectional view similar to FIG. 3, showing another example of the non-round shape on the inner peripheral surface of the inner bearing 26.
The configuration for forming the non-round shape similar to the taper land 42 is slightly different from the case of FIG. The inner peripheral surface of the inner bearing 26 is equally divided (e.g., into eight equal parts), and a recess is formed in the inner peripheral surface between these adjacent equal points.

【0045】すなわち、内軸23の中心から任意の半径
R1の円周上において等中心角に分割する点(図では八
箇所)のうち互いに隣り合う二点を中心としてさらに半
径R3でふたつの円を描きこれらの円弧が上記内周面と
交差するとともに互いに隣合う等分点の間において、テ
ーパーランド42に相当する多円弧軸受面43(凹部)
を所定の深さおよび形状に形成する。半径R1、R3を
任意に選択かつ組み合わせることにより、所定の形状お
よび深さを有する多円弧軸受面43を得ることができ
る。
That is, two circles with a radius R3 are further centered at two points adjacent to each other among the points (eight locations in the figure) that are divided into equal center angles on the circumference of an arbitrary radius R1 from the center of the inner shaft 23. A multi-arc bearing surface 43 (recess) corresponding to the taper land 42 is formed between the equal points where these arcs intersect the inner peripheral surface and are adjacent to each other.
To a predetermined depth and shape. By arbitrarily selecting and combining the radii R1 and R3, it is possible to obtain the multi-arc bearing surface 43 having a predetermined shape and depth.

【0046】図7に示すように、図4のテーパーランド
42の場合と同様に、放射状給油孔29を一列に形成し
た場合に、この放射状給油孔29を真円部であるランド
面41に対向させるとともに、その左右端部側に多円弧
軸受面43を形成してある。
As shown in FIG. 7, when the radial oil supply holes 29 are formed in a line, as in the case of the tapered land 42 of FIG. 4, the radial oil supply holes 29 are opposed to the land surface 41 which is a perfect circle. At the same time, the multi-circular bearing surfaces 43 are formed on the left and right ends thereof.

【0047】また図8に示す例では、放射状給油孔29
を三列に形成した場合に、ランド面41もこれに合わせ
て三列に形成したものである。
Further, in the example shown in FIG. 8, the radial oil supply holes 29 are provided.
When three rows are formed, the land surface 41 is also formed in three rows in accordance with this.

【0048】図9は、放射状給油孔29を一列に形成す
るとともに、放射状給油孔29に対向する真円部として
ランド面41を設けた場合と、真円部を設けない場合
(内側軸受26の内周全面にテーパーランド42を形成
した場合)の静圧および動圧による負荷容量の安定性
を、軸の回転数に対する油膜の厚さで定性的に示したグ
ラフである。なお、図において「最大回転数」とは、連
続最大出力回転数、いわば定格出力時の回転数であり、
「最小回転数」とは、これ以下の回転数では運転不可能
となってエンジンが停止してしまう最低回転数のことを
言う。
In FIG. 9, the radial oil supply holes 29 are formed in a line, and the land surface 41 is provided as a perfect circular portion facing the radial oil supply holes 29, and the case where the perfect circular portion is not provided (in the inner bearing 26). 6 is a graph qualitatively showing the stability of the load capacity due to static pressure and dynamic pressure (when the tapered land 42 is formed on the entire inner circumference) by the thickness of the oil film with respect to the rotation speed of the shaft. In the figure, the "maximum speed" is the continuous maximum output speed, that is, the speed at the rated output,
The "minimum rotational speed" is the minimum rotational speed at which the engine stops because the engine cannot be operated at a rotational speed lower than this.

【0049】図9に示すように、真円部を有するテーパ
ーランドの場合の方が、真円部のない場合に比較して、
最大負荷容量と最小負荷容量との間の幅が小さく、油膜
の厚さが安定していること、および最小負荷容量は真円
部を有するテーパーランドの場合の方が大きいことがわ
かる。
As shown in FIG. 9, in the case of a tapered land having a perfect circle portion, as compared with the case where there is no perfect circle portion,
It can be seen that the width between the maximum load capacity and the minimum load capacity is small, the thickness of the oil film is stable, and that the minimum load capacity is larger in the case of a tapered land having a perfect circle portion.

【0050】図10は、テーパーランド42あるいは多
円弧軸受面43および放射状給油孔29を形成した場合
の内軸23の回転数に対する最小油膜厚さ(負荷容量)
の関係を示すグラフであって、内軸23および内側軸受
26が高速度で回転している場合には、動圧による負荷
容量が十分に発生するため、必要な油膜の厚さを得るこ
とができ、潤滑油の温度上昇が許容される限界まで給油
圧力を下げることができる。
FIG. 10 shows the minimum oil film thickness (load capacity) with respect to the rotational speed of the inner shaft 23 when the tapered land 42 or the multi-circular bearing surface 43 and the radial oil supply hole 29 are formed.
When the inner shaft 23 and the inner bearing 26 are rotating at a high speed, a sufficient load capacity is generated by the dynamic pressure, so that the required oil film thickness can be obtained. Therefore, the oil supply pressure can be reduced to the limit where the temperature rise of the lubricating oil is allowed.

【0051】また、動圧による負荷容量が不足する低回
転域で運転されるときには、静圧による負荷容量を増加
するように制御する。
Further, when the engine is operated in a low rotation range where the load capacity due to the dynamic pressure is insufficient, the load capacity due to the static pressure is controlled to increase.

【0052】ただし、潤滑油供給機構12の給油ポンプ
(図示せず)が「ON/OFF」される回転数付近で長
い時間運転すると、海象(海上の気象条件)により回転
数がわずかに変動するたびに絶えず給油ポンプを「ON
/OFF」することになるので、図10に示すように、
軸回転数が上昇時はA−B−C−D−Eの経路を通って
軸回転数下降時はE−D−F−B−Aのようなヒステリ
シスを描く運転制御を行うことにより、一度給油ポンプ
を「ON」としたら多少回転数が上昇しても「OFF」
としないように設計する。
However, if the oil supply pump (not shown) of the lubricating oil supply mechanism 12 is operated for a long time in the vicinity of the rotation speed at which it is turned "ON / OFF", the rotation speed slightly fluctuates due to the sea condition (sea weather conditions). Always turn on the refueling pump "ON"
/ OFF ”, as shown in FIG.
When the shaft speed rises, it passes through the path of A-B-C-D-E, and when the shaft speed falls, it carries out operation control that draws hysteresis like E-D-F-B-A. If the oil pump is turned "ON", it will be "OFF" even if the rotation speed increases a little.
Design not to.

【0053】図11は、回転数比、(内側軸受26回転
数/内軸23回転数)×100に対する最小油膜厚さ
(負荷容量)の関係を示すグラフである。従来例として
図16に示したような内軸23および内側軸受26がと
もに真円の場合、互いに反転する内軸23および内側軸
受26がそれぞれ潤滑油を運び込む作用が相殺されるた
め、互いに全くの等速度で反転した場合には、負荷容量
はゼロとなる。
FIG. 11 is a graph showing the relationship between the minimum oil film thickness (load capacity) with respect to the rotational speed ratio, (internal bearing 26 rotational speed / inner shaft 23 rotational speed) × 100. When the inner shaft 23 and the inner bearing 26 are both perfect circles as shown in FIG. 16 as a conventional example, the action of the lubricating oil carried by the inner shaft 23 and the inner bearing 26, which are opposite to each other, is canceled out, so that the inner shaft 23 and the inner bearing 26 are completely opposed to each other. When it is reversed at a constant speed, the load capacity becomes zero.

【0054】しかしながら本発明のように、内軸23お
よび内側軸受26にテーパーランド42あるいは多円弧
軸受面43のような凹凸部ないし非真円形状部を複数個
形成することにより、内軸23および内側軸受26の回
転方向が反対であっても内軸23と内側軸受26との間
における新たな隙間によって、軸回転にともなう動圧に
よる負荷容量を新たに発生させることができる。
However, as in the present invention, the inner shaft 23 and the inner bearing 26 are formed with a plurality of uneven portions or non-round portions such as the tapered land 42 or the multi-circle bearing surface 43, so that the inner shaft 23 and the inner bearing 26 are formed. Even if the inner bearing 26 is rotated in the opposite direction, a new gap between the inner shaft 23 and the inner bearing 26 can generate a new load capacity due to the dynamic pressure accompanying the shaft rotation.

【0055】したがって図11に図示のように、回転数
比が低い領域では真円軸受の方が動圧による負荷容量が
高いが、二重反転プロペラ20においてプロペラ推進効
率の高くなる高回転数比の領域ではテーパーランド42
あるいは多円弧軸受面43を形成した内側軸受26の方
が動圧による負荷容量が高くなることがわかる。
Therefore, as shown in FIG. 11, the load capacity due to the dynamic pressure is higher in the true circular bearing in the region where the rotational speed ratio is low, but in the counter-rotating propeller 20, the propeller propulsion efficiency is high and the high rotational speed ratio is high. Taper land 42
Alternatively, it can be seen that the inner bearing 26 having the multi-circular bearing surface 43 has a higher load capacity due to dynamic pressure.

【0056】つぎに図12および図13にもとづき、静
圧による負荷容量および潤滑油の給油圧について説明す
る。図12は、図2ないし図3と同様の、ただし内軸2
3が内側軸受26に対して若干偏心した場合の断面図、
図13は、回転数比に対する油膜厚さの関係を示すグラ
フであって動圧と静圧との負荷容量を示す。
Next, the load capacity due to static pressure and the hydraulic pressure of lubricating oil will be described with reference to FIGS. 12 and 13. 12 is similar to FIGS. 2 to 3, but with the inner shaft 2
3 is a sectional view of the inner bearing 26 slightly eccentric,
FIG. 13 is a graph showing the relationship between the rotational speed ratio and the oil film thickness and shows the load capacity of dynamic pressure and static pressure.

【0057】図12に示すように、潤滑油の供給圧PS
に対して内側軸受26の圧力はオリフィス形成用の、あ
るいは毛細管形成用の***付きネジ17による絞りの抵
抗で内軸23の図中、下面でP1、内軸23の上面でP
2に低下する。
As shown in FIG. 12, the lubricating oil supply pressure PS
On the other hand, the pressure of the inner bearing 26 is the resistance of the throttle by the small hole screw 17 for forming the orifice or for forming the capillary tube, and in the figure of the inner shaft 23, P1 is on the lower surface and P is on the upper surface of the inner shaft 23.
Drop to 2.

【0058】内軸23の外周面と内側軸受26のランド
面41部分の内周面との間の間隔を下面でH1、上面で
H2とすると、内軸23と内側軸受26の中心がそれぞ
れ一致するときにはH1=H2となり、***付きネジ1
7による絞りと軸受隙間の絞りの抵抗とが同等となって
P1=P2となるため負荷容量はゼロとなる。
When the distance between the outer peripheral surface of the inner shaft 23 and the inner peripheral surface of the land surface 41 portion of the inner bearing 26 is H1 on the lower surface and H2 on the upper surface, the centers of the inner shaft 23 and the inner bearing 26 coincide with each other. When doing, H1 = H2 and screw with small hole 1
The resistance of the throttle by 7 and the resistance of the throttle in the bearing gap become equal and P1 = P2, so the load capacity becomes zero.

【0059】また内軸23が偏心して偏心距離eだけ図
中下方に沈むと、H1<H2、かつP2<P1となり、
この差圧(P1−P2)によって負荷容量が発生する。
When the inner shaft 23 is eccentric and sinks downward in the figure by the eccentric distance e, H1 <H2 and P2 <P1 are satisfied,
A load capacity is generated by this differential pressure (P1-P2).

【0060】図13に示すように、本発明におけるテー
パーランド42あるいは多円弧軸受面43のような非真
円形状を有する内軸23の方が動圧による負荷容量が高
いために、より低い給油圧で同等の負荷容量を得ること
ができ、図16に示した真円軸受に比較して給油圧力を
下げることができる。
As shown in FIG. 13, the inner shaft 23 having a non-round shape such as the tapered land 42 or the multi-circular bearing surface 43 in the present invention has a higher load capacity due to the dynamic pressure, and therefore a lower feed rate. An equivalent load capacity can be obtained by hydraulic pressure, and the oil supply pressure can be reduced as compared with the perfect circular bearing shown in FIG.

【0061】[0061]

【発明の効果】以上のように本発明によれば、内側軸受
の内周面に非真円形状のテーパーランドあるいは多円弧
軸受面などを形成するとともに放射状給油孔が直接対向
するランド部を真円部としたので、動圧による負荷容量
を積極的に発生させることが可能となるとともに、給油
圧力もこれを低く抑えることができ、かつ静圧による負
荷容量も安定させることができる。
As described above, according to the present invention, a non-round circular tapered land or a multi-circular bearing surface is formed on the inner peripheral surface of the inner bearing, and the land portion where the radial oil supply holes directly face each other is formed straight. Since it is a circular portion, it is possible to positively generate the load capacity due to the dynamic pressure, it is possible to suppress the refueling pressure to be low, and it is possible to stabilize the load capacity due to the static pressure.

【0062】したがって、潤滑油供給機構からの静圧給
油が不要あるいは低圧ですむため、船内電力を節約する
ことができる。
Therefore, the static pressure oil supply from the lubricating oil supply mechanism is unnecessary or low pressure is required, so that the electric power onboard the ship can be saved.

【0063】また、ブラックアウト時などにおいて静圧
給油が行われず、また前方プロペラおよび後方プロペラ
が低速度の遊転状態となった場合にも、回転数比によら
ず動圧による負荷容量を発生することができるので、真
円軸受構造の場合よりも耐焼き付け性を向上させて安全
性を向上させることができる。
Further, when static pressure oil supply is not performed during blackout and the front and rear propellers are in a low-speed idle state, load capacity is generated by dynamic pressure regardless of the rotation speed ratio. Therefore, it is possible to improve the seizure resistance and the safety as compared with the case of the perfect circular bearing structure.

【0064】[0064]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による二重反転プロペラ用軸受
装置21を装備した二重反転プロペラ20の断面図であ
る。
FIG. 1 is a sectional view of a counter-rotating propeller 20 equipped with a counter-rotating propeller bearing device 21 according to an embodiment of the present invention.

【図2】同、図1のII−II線断面図である。FIG. 2 is a sectional view taken along line II-II of FIG.

【図3】同、曲面状テーパー面40およびランド面41
をより具体的に示す断面図である。
[FIG. 3] Similarly, a curved tapered surface 40 and a land surface 41
FIG. 3 is a cross-sectional view showing more specifically.

【図4】同、放射状給油孔29を一列に形成する場合の
内側軸受26の内周面の展開図である。
FIG. 4 is a development view of the inner peripheral surface of the inner bearing 26 when the radial oil supply holes 29 are formed in a line.

【図5】同、放射状給油孔29を三列に形成する場合の
内側軸受26の内周面の展開図である。
FIG. 5 is a development view of the inner peripheral surface of the inner bearing 26 when the radial oil supply holes 29 are formed in three rows.

【図6】同、内側軸受26の内周面における非真円形状
の他の例(多円弧軸受面43)を示す図3と同様の断面
図である。
FIG. 6 is a sectional view similar to FIG. 3, showing another example (multi-circle bearing surface 43) of a non-round shape on the inner peripheral surface of the inner bearing 26.

【図7】同、放射状給油孔29を一列に形成する場合の
内側軸受26の内周面の展開図である。
FIG. 7 is a development view of the inner peripheral surface of the inner bearing 26 when the radial oil supply holes 29 are formed in a line.

【図8】同、放射状給油孔29を三列に形成する場合の
内側軸受26の内周面の展開図である。
FIG. 8 is a development view of the inner peripheral surface of the inner bearing 26 when the radial oil supply holes 29 are formed in three rows.

【図9】同、放射状給油孔29に対向する真円部として
ランド面41を設けた場合と、真円部を設けない場合と
の、軸の回転数に対する油膜の厚さの関係を示すグラフ
である。
FIG. 9 is a graph showing a relationship between the number of revolutions of the shaft and the thickness of the oil film when the land surface 41 is provided as a true circle portion facing the radial oil supply hole 29 and when the true circle portion is not provided. Is.

【図10】同、テーパーランド42あるいは多円弧軸受
面43および放射状給油孔29を形成した場合の内軸2
3の回転数に対する最小油膜厚さ(負荷容量)の関係を
示すグラフである。
FIG. 10 is an inner shaft 2 when a tapered land 42 or a multi-circle bearing surface 43 and a radial oil supply hole 29 are formed.
It is a graph which shows the relationship of the minimum oil film thickness (load capacity) with respect to the rotation speed of 3.

【図11】同、回転数比に対する最小油膜厚さの関係を
示すグラフである。
FIG. 11 is a graph showing the relationship between the minimum oil film thickness and the rotation speed ratio.

【図12】同、図2ないし図3と同様の、ただし内軸2
3が内側軸受26に対して若干偏心した場合の断面図で
ある。
FIG. 12 is the same as FIG. 2 to FIG. 3, except for the inner shaft 2;
3 is a cross-sectional view when 3 is slightly eccentric with respect to the inner bearing 26. FIG.

【図13】同、回転数比に対する油膜厚さの関係を示す
グラフである。
FIG. 13 is a graph showing the relationship between the oil film thickness and the rotation speed ratio.

【図14】従来の二重反転プロペラ1の一部切欠き側面
図である。
FIG. 14 is a partially cutaway side view of a conventional counter-rotating propeller 1.

【図15】同、図14のXV−XV線断面図である。15 is a sectional view taken along line XV-XV of FIG.

【図16】従来の静圧真円軸受を基本とした二重反転プ
ロペラ用船尾管軸受の要部断面図である。
FIG. 16 is a sectional view of a main part of a conventional stern tube bearing for a counter-rotating propeller based on a static pressure true circular bearing.

【符号の説明】[Explanation of symbols]

1 二重反転プロペラ 2 前方プロペラ 3 外軸 4 後方プロペラ 5 内軸 6 主機関 7 船舶本体の船尾部分 8 外側軸受 9 外側シール 10 内側軸受 11 内側シール 12 潤滑油供給機構 13 ラダーホーン 14 舵板 15 油圧同芯穴 16 放射状給油孔 17 オリフィス形成用の***付きネジ 20 二重反転プロペラ 21 二重反転プロペラ用軸受装置 22 外軸 23 内軸 24 前方プロペラボス 25 外軸22の連結部材 26 内側軸受 27 後方プロペラボス 28 中央給油通路 29 放射状給油孔 30 内側軸受26の軸方向油路 31 隔離用円筒部材 32 円筒通路 33 隔離用円筒部材31の直径方向連通孔 34 外軸22の排油孔 35 船尾部分7の排出口 40 曲面状テーパー面(非真円部) 41 ランド面(真円部) 41C 中央部のランド面 41L 左端部のランド面 41R 右端部のランド面 42 テーパーランド(曲面状テーパー面40およびラ
ンド面41) 43 多円弧軸受面 C 内軸23の外周面と内側軸受26の内周面との間の
間隙 H 曲面状テーパー面40の深さ R 内軸23の半径 R1 曲面状テーパー面40を形成するための内軸23
の中心からの任意の半径 R2 曲面状テーパー面40を形成するための半径R1
の円周上の点からの任意の半径 R3 多円弧軸受面43を形成するための半径R1の円
周上の点からの任意の半径 PS 潤滑油の供給圧 P1 内軸23の下面での圧力 P2 内軸23の上面での圧力 H1 内軸23の外周面と内側軸受26のランド面41
部分の内周面との間の下面での間隔 H2 内軸23の外周面と内側軸受26のランド面41
部分の内周面との間の上面での間隔 e 内軸23が内側軸受26に対して偏心した偏心距離
1 Double Reversal Propeller 2 Front Propeller 3 Outer Shaft 4 Rear Propeller 5 Inner Shaft 6 Main Engine 7 Stern of Ship Body 8 Outer Bearing 9 Outer Seal 10 Inner Bearing 11 Inner Seal 12 Lubricating Oil Supply Mechanism 13 Rudder Horn 14 Rudder 15 Hydraulic concentric hole 16 Radial oil supply hole 17 Screw with small hole for orifice formation 20 Double reversal propeller 21 Double reversal propeller bearing device 22 Outer shaft 23 Inner shaft 24 Front propeller boss 25 Outer shaft 22 connecting member 26 Inner bearing 27 Rear propeller boss 28 Central oil supply passage 29 Radial oil supply hole 30 Axial oil passage of the inner bearing 26 31 Cylindrical member for isolation 32 Cylindrical passage 33 Diameter communication hole of the isolation cylindrical member 31 Oil drain hole of the outer shaft 22 35 Stern part 7 outlet 40 curved tapered surface (non-round portion) 41 land surface (round portion) 41C central portion 41L Land surface at left end 41R Land surface at right end 42 Tapered land (curved taper surface 40 and land surface 41) 43 Multi-arc bearing surface C Outer peripheral surface of inner shaft 23 and inner peripheral surface of inner bearing 26 Gap between them H Depth of curved tapered surface 40 R Radius of inner shaft 23 R1 Inner shaft 23 for forming curved tapered surface 40
Radius R2 from the center of the radius R1 for forming the curved tapered surface 40
Radius R3 from a point on the circumference of R3 Arbitrary radius from a point on the circumference of radius R1 to form the multi-circle bearing surface 43 PS Supply pressure of lubricating oil P1 Pressure on the lower surface of the inner shaft 23 P2 pressure on the upper surface of the inner shaft 23 H1 outer peripheral surface of the inner shaft 23 and land surface 41 of the inner bearing 26
Distance between the inner peripheral surface of the portion and the lower surface H2 The outer peripheral surface of the inner shaft 23 and the land surface 41 of the inner bearing 26
Distance between the inner peripheral surface of the part and the upper surface e The eccentric distance by which the inner shaft 23 is eccentric with respect to the inner bearing 26

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 前方プロペラを有する外軸と、 この外軸に内嵌して該外軸とは反対方向に回転駆動する
とともに後方プロペラを有する内軸と、 この内軸と前記外軸との間に設けた軸受と、を有する二
重反転プロペラ用軸受装置であって、 前記内軸に中央給油通路と、この中央給油通路に連通す
る複数本の放射状給油孔とを形成し、これら中央給油通
路および放射状給油孔を通して該内軸から前記軸受の内
周面に潤滑油を供給するとともに、 この軸受の内周面に複数の凹凸形状部を形成し、かつこ
れらの凹凸形状部とは異なる前記軸受の内周面に前記放
射状給油孔を対向させたことを特徴とする二重反転プロ
ペラ用軸受装置。
1. An outer shaft having a front propeller, an inner shaft fitted in the outer shaft to be rotationally driven in a direction opposite to the outer shaft and having a rear propeller, and the inner shaft and the outer shaft. A bearing device for a counter-rotating propeller having a bearing provided therebetween, wherein a central oil supply passage and a plurality of radial oil supply holes communicating with the central oil supply passage are formed in the inner shaft. Lubricating oil is supplied from the inner shaft to the inner peripheral surface of the bearing through the passage and the radial oil supply hole, and a plurality of uneven portions are formed on the inner peripheral surface of the bearing. A bearing device for a counter-rotating propeller, wherein the radial oil supply holes are opposed to an inner peripheral surface of the bearing.
【請求項2】 前記凹凸形状部は、これをテーパーラ
ンドあるいは多円弧軸受面としたことを特徴とする請求
項1記載の二重反転プロペラ用軸受装置。
2. The bearing device for a counter-rotating propeller according to claim 1, wherein the uneven portion has a tapered land or a multi-arc bearing surface.
【請求項3】 前記軸受の内周面に真円部を形成した
ことを特徴とする請求項1記載の二重反転プロペラ用軸
受装置。
3. The bearing device for a counter-rotating propeller according to claim 1, wherein a perfect circle portion is formed on an inner peripheral surface of the bearing.
【請求項4】 前記放射状給油孔と前記凹凸形状部と
を軸方向に交互に複数列形成したことを特徴とする請求
項1記載の二重反転プロペラ用軸受装置。
4. The bearing device for counter-rotating propeller according to claim 1, wherein a plurality of rows of the radial oil supply holes and the concave and convex portions are alternately formed in the axial direction.
JP25160594A 1994-09-21 1994-09-21 Bearing device for contra-rotating propeller Pending JPH0891293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25160594A JPH0891293A (en) 1994-09-21 1994-09-21 Bearing device for contra-rotating propeller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25160594A JPH0891293A (en) 1994-09-21 1994-09-21 Bearing device for contra-rotating propeller

Publications (1)

Publication Number Publication Date
JPH0891293A true JPH0891293A (en) 1996-04-09

Family

ID=17225311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25160594A Pending JPH0891293A (en) 1994-09-21 1994-09-21 Bearing device for contra-rotating propeller

Country Status (1)

Country Link
JP (1) JPH0891293A (en)

Similar Documents

Publication Publication Date Title
EP1035013B1 (en) Contra-rotating bearing device for contra-rotating propeller
US5215439A (en) Arbitrary hub for centrifugal impellers
US5366398A (en) Marine dual propeller lower bore drive assembly
WO2014069125A1 (en) Stepless transmission
JPH0744499U (en) Ring propeller
JP2002349551A (en) Thrust bearing device and turbocharger
JP3498269B2 (en) Bearing device for contra-rotating propeller
US6019570A (en) Pressure balanced fuel pump impeller
JPH0891293A (en) Bearing device for contra-rotating propeller
JPH08219148A (en) Floating bush bearing
US5415576A (en) Counter-rotating surfacing marine drive with defined X-dimension
EP0221536B1 (en) Stern tube bearing system of contra-rotating propeller
JPH0891294A (en) Bearing device for contra-rotating propeller
JP3364735B2 (en) Bearing device for contra-rotating propeller
JP3432303B2 (en) Reversing bearing for contra-rotating propeller
US5462463A (en) Marine dual propeller lower bore drive assembly
KR20200093853A (en) Rotating blade structure and fluid machinery or ship including the same and method for constructing the same
JPS62110595A (en) Stern tube bearing for double reversal propeller
JP2018062950A (en) Differential device
KR102215297B1 (en) Bearing crankshaft
EP2612810B1 (en) Exhaust structure of outboard motor
JPH11336753A (en) Self-aligning roller bearing
JPS584695A (en) Marine reaction fine
JPS6288817A (en) Thrust slide bearing device
US20220154768A1 (en) Plain bearing and turbocharger