JPH0888936A - Leakage voltage compensator for electric apparatus - Google Patents

Leakage voltage compensator for electric apparatus

Info

Publication number
JPH0888936A
JPH0888936A JP6219310A JP21931094A JPH0888936A JP H0888936 A JPH0888936 A JP H0888936A JP 6219310 A JP6219310 A JP 6219310A JP 21931094 A JP21931094 A JP 21931094A JP H0888936 A JPH0888936 A JP H0888936A
Authority
JP
Japan
Prior art keywords
voltage
phase
conductor container
winding
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6219310A
Other languages
Japanese (ja)
Inventor
Akira Naito
昭 内藤
Yoshiaki Kumon
良昭 公文
Akira Takamizawa
彰 高見沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Soshin Electric Co Ltd
Original Assignee
Mitsubishi Electric Corp
Soshin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Soshin Electric Co Ltd filed Critical Mitsubishi Electric Corp
Priority to JP6219310A priority Critical patent/JPH0888936A/en
Publication of JPH0888936A publication Critical patent/JPH0888936A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE: To obtain a leakage voltage compensator for an electrical apparatus at low cost that makes it possible to conveniently reduce leakage voltage. CONSTITUTION: The voltage between the ground phase 12 and the other phase 11 of an a.c. power supply 1, is applied to the primary winding 81 of a transformer 8 through a capacitor 83. Anti-phase voltage generated in its secondary winding 82 with its one end grounded, is applied to a conductor case 3 through a capacitor 84. Leakage voltage from a load 6 that is generated in the conductor case 3 is thus canceled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、一相が接地された交
流電源に接続された負荷を導電体容器に収納した空気調
和機等の電気機器において、導電体容器に生ずる上記負
荷からの漏洩電圧を打消す漏洩電圧補償装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric device such as an air conditioner in which a load connected to an AC power source with one phase grounded is housed in a conductor container, and leakage from the load occurs in the conductor container. The present invention relates to a leakage voltage compensator for canceling a voltage.

【0002】[0002]

【従来の技術】図22は従来の空気調和機等のインバー
タ制御機器を示す構成図で、図において、(1)は一相が
接地された単相商用交流電源で、(11)はそれの高圧側電
源線、(12)は接地側電源線、(2)は空気調和機等の電気
機器、(21)(22)は電気機器(2)の電源接続端子、(3)はそ
れの導電体容器、(31)はそれの接地端子、(4)は、直列
重畳ノイズ除去用のコンデンサ(40)、鉄心に巻回された
巻線(41a)(41b)を備えた対地ノイズ除去用の同相チョー
ク(41)、コンデンサ(42a)(42b)及び接地線(43)からなる
ノイズフィルタ、(5)は、整流器(51)、平滑コンデンサ
(52)及びスイッチング素子(53)からなるインバータ回
路、(6)は圧縮機等の負荷で、内部のモータ巻線等の給
電導体(61)とケース(62)間に浮遊容量(63)を有し、それ
のケース(62)が接地線(64)で導電体容器(3)に接続され
ている。(7)は空気調和機(2)の接地電流を測定する電流
計である。
2. Description of the Related Art FIG. 22 is a block diagram showing an inverter control device such as a conventional air conditioner. In the figure, (1) is a single-phase commercial AC power source with one phase grounded, and (11) is its High voltage side power line, (12) ground side power line, (2) electric equipment such as air conditioner, (21) and (22) power equipment connection terminal of electric equipment (2), (3) its conductive A body container, (31) its ground terminal, (4) a capacitor (40) for eliminating series superimposed noise, and a winding (41a) (41b) wound around an iron core for eliminating ground noise. A noise filter consisting of an in-phase choke (41), capacitors (42a) (42b) and a ground wire (43), (5) a rectifier (51), a smoothing capacitor
An inverter circuit consisting of (52) and a switching element (53), (6) is a load such as a compressor, and a stray capacitance (63) is placed between the power feeding conductor (61) such as the internal motor winding and the case (62). It has a case (62) connected to the conductor container (3) by a ground wire (64). (7) is an ammeter for measuring the ground current of the air conditioner (2).

【0003】次に動作について説明する。交流電源(1)
からノイズフィルタ(4)でノイズが除去された交流負荷
電流はインバータ回路(5)の整流器(51)及び平滑コンデ
ンサ(52)で直流に変換され、スイッチング素子(53)で所
定周波数の交流に変換されて負荷(6)に供給される。ス
イッチング素子(53)のオンオフ周波数により負荷(6)の
能力(出力、回転数等)が制御される。
Next, the operation will be described. AC power supply (1)
The AC load current from which noise has been removed by the noise filter (4) is converted to DC by the rectifier (51) and smoothing capacitor (52) of the inverter circuit (5) and converted to AC of a specified frequency by the switching element (53). Is supplied to the load (6). The capacity (output, rotation speed, etc.) of the load (6) is controlled by the on / off frequency of the switching element (53).

【0004】このような電気機器(2)においては、負荷
(6)の内部給電導体(61)と導電体容器(3)間の浮遊容量(6
3)は避けることができず、特に空調機器では負荷(6)で
ある圧縮機の給電導体(61)のモータ巻線が冷媒に浸漬さ
れるため、冷媒の誘電率(εs≧4)の影響により、更
に浮遊容量(63)は大となる。従ってその浮遊容量(63)に
よる漏洩電圧は接地線(64)を経由して導電体容器(3)に
現われる。この漏洩電圧による危険から保護するため導
電体容器(3)の接地端子(31)を大地接続し、事故防止に
務めている。
In such an electric device (2), the load
Stray capacitance (6) between the internal power supply conductor (61) and the conductor container (3)
3) is unavoidable. Especially in the air conditioner, the motor winding of the power feeding conductor (61) of the compressor, which is the load (6), is immersed in the refrigerant, so that the permittivity of the refrigerant (ε s ≧ 4) Due to the influence, the stray capacitance (63) becomes larger. Therefore, the leakage voltage due to the stray capacitance (63) appears in the conductor container (3) via the ground wire (64). In order to protect from danger due to this leakage voltage, the ground terminal (31) of the conductor container (3) is connected to the ground to prevent accidents.

【0005】昨今インバータ回路(5)による制御性向上
のため、スイッチング素子(53)の制御周波数が高周波化
する傾向にあり、その結果浮遊容量(63)による漏洩電圧
も大となり、それだけ接地端子(31)と大地間の接地電流
も大となる。しかし、その接地電流の大きさは法的上限
が規定されており(例えば1mA以下)、また、感電事
故防止対策上も漏洩電圧は極力低減する必要があった。
In order to improve the controllability by the inverter circuit (5), the control frequency of the switching element (53) tends to be high frequency these days, and as a result, the leakage voltage due to the stray capacitance (63) also becomes large, and the ground terminal ( The ground current between 31) and the ground is also large. However, the magnitude of the ground current has a legal upper limit (for example, 1 mA or less), and it is necessary to reduce the leakage voltage as much as possible in order to prevent electric shock accidents.

【0006】[0006]

【発明が解決しようとする課題】上述のような漏洩電圧
による接地電流の上昇や、感電事故を防止するために
は、電気機器(2)を交流電源(1)と独立させるために絶縁
変成器を介して給電するようにするか、導電体容器(3)
を絶縁ケース中に収納し、電気機器(2)を大地から絶縁
する等の手段がとられてきたが、何れも、大形で高価な
絶縁変成器や、絶縁ケースを用意する必要があり、価格
的、構造的な制約が大きく実用的でなかった。
In order to prevent an increase in the ground current due to the above-mentioned leakage voltage and an electric shock accident, the insulation transformer is used to separate the electric device (2) from the AC power source (1). Power through the conductor container (3)
However, it has been necessary to prepare a large and expensive insulation transformer and an insulation case for the electric equipment (2) to be insulated from the ground. It was impractical due to large price and structural restrictions.

【0007】この発明は上記のような問題点を解消する
ためになされたもので、低価格で箇便に漏洩電圧を低減
することができる電気機器の漏洩電圧補償装置を得るこ
とを目的とする。
The present invention has been made in order to solve the above problems, and an object thereof is to obtain a leakage voltage compensator for an electric device which can easily reduce the leakage voltage at a low price. .

【0008】[0008]

【課題を解決するための手段】この発明に係る電気機器
の漏洩電圧補償装置は、交流電源の接地相と他相間の電
圧の逆相電圧を、電気機器の導電体容器に印加し、上記
導電体容器に生ずる負荷からの漏洩電圧を打消すように
したものである。また、交流電源電圧をコンデンサを介
して変成器一次巻線に印加し、一端が接地されたこれの
二次巻線に発生した逆相電圧を、コンデンサを介して導
電体容器に印加するよう構成したものである。
A leakage voltage compensating apparatus for an electric device according to the present invention applies a reverse phase voltage of a voltage between a ground phase and another phase of an AC power source to a conductor container of the electric device, and conducts the above-mentioned conduction. It is designed to cancel the leakage voltage from the load generated in the body container. In addition, an AC power supply voltage is applied to the transformer primary winding via a capacitor, and the reverse-phase voltage generated in the secondary winding of which one end is grounded is applied to the conductor container via the capacitor. It was done.

【0009】さらに、ノイズフィルタの同相チョークに
発生した電圧の逆相電圧を導電体容器に印加し、この導
電体容器に生ずる負荷からの漏洩電圧を打消すようにし
たものである。また、同相チョークと磁気的に結合し一
端が接地された巻線を付加し、この付加巻線に発生した
逆相電圧をコンデンサを介して上記導電体容器に印加す
るよう構成したものである。
Further, a reverse phase voltage of the voltage generated in the in-phase choke of the noise filter is applied to the conductor container to cancel the leakage voltage from the load generated in the conductor container. In addition, a winding, which is magnetically coupled to the in-phase choke and has one end grounded, is added, and a reverse-phase voltage generated in the additional winding is applied to the conductor container through a capacitor.

【0010】さらに、高調波除去リアクトルに発生した
電圧の逆相電圧を導電体容器に印加し、この導電体容器
に生ずる負荷からの漏洩電圧を打消すようにしたもので
ある。また、高調波除去リアクトルと磁気的に結合し一
端が接地された巻線を付加し、この付加巻線に発生した
逆相電圧をコンデンサを介して導電体容器に印加するよ
う構成したものである。
Further, a reverse phase voltage of the voltage generated in the harmonic wave removing reactor is applied to the conductor container to cancel the leakage voltage from the load generated in the conductor container. Further, it is configured such that a winding whose one end is grounded is magnetically coupled to the harmonic elimination reactor is added, and the reverse phase voltage generated in this additional winding is applied to the conductor container through the capacitor. .

【0011】さらに、負荷整合リアクトルに発生した電
圧の逆相電圧を導電体容器に印加し、この導電体容器に
生ずる負荷からの漏洩電圧を打消すようにしたものであ
る。また、負荷整合リアクトルと磁気的に結合し一端が
接地された巻線を付加し、この付加巻線に発生した逆相
電圧をコンデンサを介して導電体容器に印加するよう構
成したものである。
Further, a reverse phase voltage of the voltage generated in the load matching reactor is applied to the conductor container to cancel the leakage voltage from the load generated in the conductor container. In addition, a winding, which is magnetically coupled to the load matching reactor and has one end grounded, is added, and the reverse phase voltage generated in the additional winding is applied to the conductor container through the capacitor.

【0012】さらにまた、接地される逆相電圧発生用巻
線の一端と、これの他端に接続されるコンデンサの導電
体容器に接続される端子との間に、ネオン管等の発光器
と保護抵抗との直列回路を接続したものである。
Further, a light emitting device such as a neon tube is provided between one end of the anti-phase voltage generating winding grounded and the terminal connected to the conductor container of the capacitor connected to the other end thereof. A series circuit with a protection resistor is connected.

【0013】[0013]

【作用】以上のように構成された電気機器の漏洩電圧補
償装置においては、交流電源の接地相と他相間の電圧の
逆相電圧が電気機器に発生する漏洩電圧を相殺する。コ
ンデンサを介して変成器一次巻線に印加された交流電源
電圧の、これの二次巻線に発生した逆相電圧が、コンデ
ンサを介して導電体容器に印加される。
In the leakage voltage compensator for electric equipment constructed as described above, the reverse voltage of the voltage between the ground phase and the other phase of the AC power source cancels the leakage voltage generated in the electric equipment. An AC power supply voltage applied to the primary winding of the transformer via the capacitor and a negative phase voltage generated in the secondary winding of the AC power supply voltage are applied to the conductor container via the capacitor.

【0014】さらに、ノイズフィルタの同相チョークに
発生した電圧の逆相電圧が電気機器に発生する漏洩電圧
を相殺する。この同相チョークに結合した付加巻線に発
生した逆相電圧がコンデンサを介して導電体容器に印加
される。
Further, the anti-phase voltage of the voltage generated in the in-phase choke of the noise filter cancels the leakage voltage generated in the electric equipment. The anti-phase voltage generated in the additional winding coupled to this in-phase choke is applied to the conductor container via the capacitor.

【0015】さらに、高調波除去リアクトルに発生した
電圧の逆相電圧が電気機器に発生する漏洩電圧を相殺す
る。この高調波除去リアクトルに結合した付加巻線に発
生した逆相電圧がコンデンサを介して導電体容器に印加
される。
Further, the anti-phase voltage of the voltage generated in the harmonic wave removing reactor cancels the leakage voltage generated in the electric equipment. The negative phase voltage generated in the additional winding coupled to the harmonic elimination reactor is applied to the conductor container via the capacitor.

【0016】さらに、負荷整合リアクトルに発生した電
圧の逆相電圧が電気機器に発生する漏洩電圧を相殺す
る。この負荷整合リアクトルに結合した付加巻線に発生
した逆相電圧がコンデンサを介して導電体容器に印加さ
れる。
Further, the anti-phase voltage of the voltage generated in the load matching reactor cancels the leakage voltage generated in the electric equipment. The negative phase voltage generated in the additional winding coupled to the load matching reactor is applied to the conductor container via the capacitor.

【0017】さらにまた、導電体容器に漏洩電圧相殺用
電圧の印加回路が誤って接続されると、この回路のネオ
ン管等の発光器が点灯し、誤配線が防止される。
Furthermore, if the circuit for applying the voltage for canceling the leakage voltage is erroneously connected to the conductor container, the light emitting device such as the neon tube of this circuit is turned on to prevent erroneous wiring.

【0018】[0018]

【実施例】【Example】

実施例1.以下この発明の一実施例を図について説明す
る。図1はこの発明の実施例1を示す構成図で、図にお
いて、(1)は一相が接地された単相商用交流電源、(11)
はそれの高圧側電源線、(12)は接地側電源線、(2)は空
気調和機等の電気機器、(21)(22)は電源接続端子、(3)
はそれの導電体容器、(31)はそれの接地端子、(4)はノ
イズフィルタ、(5)はインバータ回路、(6)は圧縮機等の
負荷、(64)はそれの接地線、(7)は電気機器(2)の接地電
流を測定する電流計で、以上は図22で示す従来例と同
様のものである。
Example 1. An embodiment of the present invention will be described below with reference to the drawings. 1 is a configuration diagram showing a first embodiment of the present invention. In the figure, (1) is a single-phase commercial AC power source with one phase grounded, (11)
Is its high-voltage side power line, (12) is the ground side power line, (2) is an electric device such as an air conditioner, (21) (22) is a power connection terminal, (3)
Is its conductor case, (31) is its ground terminal, (4) is a noise filter, (5) is an inverter circuit, (6) is a load such as a compressor, (64) is its ground wire, ( 7) is an ammeter for measuring the ground current of the electric device (2), and the above is the same as the conventional example shown in FIG.

【0019】(8)は巻数比1:1の変成器、(81)はそれ
の一次巻線、(82)は一端が接地され一次電圧と逆相の電
圧を発生する二次巻線、(83)は一次巻線(81)と高圧側電
源線(11)との間に接続されたコンデンサ、(84)は二次巻
線(82)の非接地端子と導電体容器接地端子(31)との間に
接続されたコンデンサである。コンデンサ(83)(84)の容
量は電気機器(2)の制御周波数により定められ、インバ
ータ制御が行なわれない商用周波数機器ではμFオー
ダ、数KHz以下のインバータ制御では100nFオー
ダ、数KHz以上では10nF以下が、変成器(8)の磁芯
の周波数特性を考慮して選択される。
(8) is a transformer having a winding ratio of 1: 1, (81) is its primary winding, (82) is a secondary winding whose one end is grounded and which generates a voltage in antiphase with the primary voltage, ( 83) is a capacitor connected between the primary winding (81) and the high voltage side power line (11), (84) is the non-grounded terminal of the secondary winding (82) and the conductor container ground terminal (31) Is a capacitor connected between and. The capacities of the capacitors (83) and (84) are determined by the control frequency of the electric device (2), and are in the order of μF for commercial frequency devices without inverter control, 100 nF for inverter control of several KHz or less, and 10 nF for several KHz or more. The following is selected in consideration of the frequency characteristics of the magnetic core of the transformer (8).

【0020】次にその動作を説明する。電源(1)からの
単相商用交流電圧は、コンデンサ(83)をへて変成器(8)
の一次巻線(81)に印加され、それの二次巻線(82)に発生
する逆相電圧がコンデンサ(84)をへて、導電体容器(3)
の接地端子(31)に印加される。一方、漏洩電圧の高周波
成分、即ちインバータ回路を使用している場合、そのイ
ンバータによる制御周波数成分は、接地端子(31)からコ
ンデンサ(84)、変成器(8)の二次巻線(82)、一次巻線(8
1)及びコンデンサ(83)をへて電気機器(2)の電源接続端
子(21)(22)に帰還される。
Next, the operation will be described. Single-phase commercial AC voltage from the power supply (1) is passed through the capacitor (83) to the transformer (8).
A negative voltage applied to the primary winding (81) of the primary winding (81) and generated in the secondary winding (82) of the primary winding (81) passes through the capacitor (84) and the conductive container (3).
Applied to the ground terminal (31) of the. On the other hand, if a high frequency component of the leakage voltage, that is, if an inverter circuit is used, the frequency component controlled by the inverter is the ground terminal (31) to the capacitor (84) and the secondary winding (82) of the transformer (8). , Primary winding (8
It is returned to the power supply connection terminals (21) and (22) of the electric device (2) through the capacitor (83) and the capacitor (83).

【0021】以上のように、電気機器(2)の導電体容器
接地端子(31)に電源対地電圧の逆相電圧が印加されるの
で、負荷(6)の浮遊容量により導電体容器(3)に現われる
漏洩電圧の商用電源周波数成分は上記逆相電圧と相殺さ
れて打消され、それの高周波成分は、コンデンサ(84)、
変成器(8)の二次巻線(82)、一次巻線(81)及びコンデン
サ(83)を介して電源接続端子(21)(22)に帰還され、それ
のフィードバック効果により漏洩電圧の高周波成分は低
減される。
As described above, since the reverse phase voltage of the power source ground voltage is applied to the conductor container ground terminal (31) of the electric device (2), the conductor container (3) is caused by the stray capacitance of the load (6). The commercial power supply frequency component of the leakage voltage appearing at is canceled out by the opposite phase voltage, and the high frequency component is the capacitor (84),
It is fed back to the power supply connection terminals (21) and (22) via the secondary winding (82), primary winding (81) and capacitor (83) of the transformer (8), and the high frequency of leakage voltage due to the feedback effect. The ingredients are reduced.

【0022】図2はこの実施例1におけるコンデンサ(8
4)の容量値による、改善され低減された漏洩電圧の変化
の一例を示した特性図で、それの容量増大と共に電圧が
低下する傾向にあり、要求される電圧値及び許される価
格により、コンデンサ(84)の容量値を選択すればよい。
FIG. 2 shows the capacitor (8
4) A characteristic diagram showing an example of the improved and reduced change in leakage voltage due to the capacitance value, in which the voltage tends to decrease with the increase in the capacitance, and depending on the required voltage value and the allowable price, the capacitor The capacitance value of (84) may be selected.

【0023】図3はこの実施例1におけるコンデンサ(8
3)、変成器(8)及びコンデンサ(84)を、ノイズフィルタ
(4)とともに導電体容器(3)中に配設した構成例を示す斜
視図で、図中(40)(41)(42a)(42b)及び(43)は、図22に
示すようなノイズフィルタ(4)を構成する直列重畳ノイ
ズ除去用のコンデンサ、対地ノイズ除去用の同相チョー
ク、コンデンサ及び接地線である。
FIG. 3 shows the capacitor (8
3), transformer (8) and capacitor (84) with noise filter
(4) is a perspective view showing a configuration example arranged in a conductor container (3), and (40) (41) (42a) (42b) and (43) in the figure are noises as shown in FIG. A capacitor for eliminating series superimposed noise, a common-mode choke for eliminating noise to ground, a capacitor, and a ground wire which constitute the filter (4).

【0024】実施例2.なお、上記実施例1では電源が
単相の場合を示したが、三相電源の場合でも同等の効果
を有する。図4はこの場合の実施例を示す構成図で、図
中(10)は三相商用電源、(11)(12)(13)は三相の電源線
で、(12)が接地されている。(8a)(8b)は変成器、(81a)
(81b)はそれらの一次巻線、(82a)(82b)はそれぞれ一端
が接地され一次電圧と逆相の電圧を発生する二次巻線、
(83a)(83b)はそれぞれ一次巻線(81a)(81b)と高圧側三相
電源線(11)(13)との間に接続されたコンデンサ、(84a)
(84b)はそれぞれ二次巻線(82a)(82b)の非接地端子と導
電体容器接地端子(31)との間に接続されたコンデンサで
ある。
Example 2. In addition, although the case where the power source is a single-phase power source is shown in the first embodiment, the same effect can be obtained even in the case of a three-phase power source. FIG. 4 is a configuration diagram showing an embodiment of this case. In the figure, (10) is a three-phase commercial power source, (11), (12) and (13) are three-phase power lines, and (12) is grounded. . (8a) (8b) are transformers, (81a)
(81b) is those primary windings, (82a) and (82b) are secondary windings whose one end is grounded and which generate a voltage of opposite phase to the primary voltage,
(83a) and (83b) are capacitors respectively connected between the primary windings (81a) and (81b) and the high voltage side three-phase power lines (11) and (13), and (84a)
Reference numerals (84b) are capacitors respectively connected between the non-grounded terminals of the secondary windings (82a) and (82b) and the conductor container grounded terminal (31).

【0025】実施例3.実施例2では2個の変成器(8a)
(8b)を使用した例を示したが、複数の巻線を有する単一
の変成器を使用するようにしてもよい。図5はこの場合
の実施例を示す構成図で、単一の変成器(8)に2個の一
次巻線(81a)(81b)と1個の二次巻線(82)を備え、これら
の一次巻線(81a)(81b)を2個のコンデンサ(83a)(83b)を
介して高圧側三相電源線(11)(13)に接続し、二次巻線(8
2)をコンデンサ(84)を介して接地端子(31)に接続してい
る。
Example 3. In the second embodiment, two transformers (8a)
Although the example using (8b) is shown, a single transformer having a plurality of windings may be used. FIG. 5 is a block diagram showing an embodiment of this case, in which a single transformer (8) is provided with two primary windings (81a) (81b) and one secondary winding (82). Connect the primary windings (81a) (81b) to the high voltage side three-phase power line (11) (13) via two capacitors (83a) (83b),
2) is connected to the ground terminal (31) via the capacitor (84).

【0026】実施例4.実施例3では変成器(8)の2個
の一次巻線(81a)(81b)をそれぞれ2個のコンデンサ(83
a)(83b)を介して高圧側三相電源線(11)(13)に接続した
が、図6の構成図で示すように、一次巻線(81a)(81b)の
中性点を単一のコンデンサ(83)を介して接地側電源線(1
2)に接続するようにしてもよい。
Example 4. In the third embodiment, the two primary windings (81a) (81b) of the transformer (8) are connected to two capacitors (83).
Although it was connected to the high-voltage side three-phase power supply lines (11) and (13) via a) and (83b), as shown in the configuration diagram of FIG. 6, the neutral point of the primary windings (81a) and (81b) was isolated. Grounding side power line (1
It may be connected to 2).

【0027】実施例5.実施例4では変成器(8)の二次
巻線(82)を単一のコンデンサ(84)を介して接地端子(31)
に接続したが、図7の構成図で示すように、2個の二次
巻線(82a)(82b)の非接地端子を2個のコンデンサ(84a)
(84b)を介して接地端子(31)に接続するようにしてもよ
い。
Example 5. In the fourth embodiment, the secondary winding (82) of the transformer (8) is connected to the ground terminal (31) via the single capacitor (84).
However, as shown in the configuration diagram of FIG. 7, the ungrounded terminals of the two secondary windings (82a) and (82b) are connected to the two capacitors (84a).
It may be connected to the ground terminal (31) via (84b).

【0028】実施例6.図8はこの発明の実施例6を示
す構成図で、図において、(1)は単相商用交流電源、(1
1)はそれの高圧側電源線、(12)は接地側電源線、(2)は
空気調和機等の電気機器、(21)(22)は電源接続端子、
(3)はそれの導電体容器、(31)はそれの接地端子、(4)は
ノイズフィルタ、(40)はそれの直列重畳ノイズ除去用の
コンデンサ、(41)は鉄心に巻回された巻線(41a)(41b)を
備えた対地ノイズ除去用の同相チョーク、(42a)(42b)は
対地ノイズ除去用のコンデンサ、(43)は接地線、(5)は
インバータ回路、(6)は圧縮機等の負荷、(64)はそれの
接地線、(7)は電気機器(2)の接地電流を測定する電
流計で、以上は図22で示す従来例と同様のものであ
る。
Example 6. FIG. 8 is a block diagram showing a sixth embodiment of the present invention. In the figure, (1) is a single-phase commercial AC power supply, and (1
1) is its high-voltage side power line, (12) is ground side power line, (2) is air conditioner and other electrical equipment, (21) and (22) are power connection terminals,
(3) is its conductor container, (31) is its ground terminal, (4) is a noise filter, (40) is its series superimposed noise elimination capacitor, (41) is wound around an iron core Common-mode choke with windings (41a) (41b) for ground noise elimination, (42a) (42b) capacitors for ground noise elimination, (43) ground wire, (5) inverter circuit, (6) Is a load such as a compressor, (64) is its ground wire, and (7) is an ammeter for measuring the ground current of the electric device (2). The above is the same as the conventional example shown in FIG.

【0029】(44)は、ノイズフィルタ(4)の同相チ
ョーク(41)に付加され、巻線(41a)(41b)と磁気的に結合
するよう同一鉄心に巻回された三次巻線である付加巻線
で一端が単相電源(1)の接地側電源線(12)に接続されて
いる。(45)は付加巻線(44)の非接地側端子と接地端子(3
1)との間に接続されたコンデンサである。
Reference numeral (44) is a tertiary winding added to the in-phase choke (41) of the noise filter (4) and wound around the same iron core so as to be magnetically coupled to the windings (41a) and (41b). One end of the additional winding is connected to the ground side power supply line (12) of the single-phase power supply (1). (45) is the non-grounded side terminal of the additional winding (44) and the ground terminal (3
It is a capacitor connected between 1).

【0030】次にノイズフィルタ(4)の動作について説
明する。ノイズフィルタ(4)の同相巻線(41a)(41b)によ
る磁界は通常の負荷電流に対して打消す方向となり低イ
ンピーダンスを呈するが、電源(1)側から混入したり、
負荷(6)、インバータ回路(5)で発生した雑音電流の内の
対地ノイズ成分に対しては高インピーダンスを呈する。
従って、この対地ノイズ電流の負荷側、電源側への伝播
が阻止され、コンデンサ(42a)(42b)を介して大地に流出
される。一方電源(1)や負荷(6)に直列に重畳される雑音
電流の直列重畳ノイズ成分は、コンデンサ(40)によりバ
イパスされて除去される。
Next, the operation of the noise filter (4) will be described. The magnetic field generated by the in-phase windings (41a) and (41b) of the noise filter (4) tends to cancel the normal load current and exhibits low impedance.
It has a high impedance with respect to the ground noise component of the noise current generated in the load (6) and the inverter circuit (5).
Therefore, the ground noise current is prevented from propagating to the load side and the power source side, and is discharged to the ground through the capacitors (42a) and (42b). On the other hand, the series superposed noise component of the noise current superposed on the power supply (1) and the load (6) in series is bypassed and removed by the capacitor (40).

【0031】ノイズフィルタ(4)の付加巻線(44)には、同
相巻線(41a)(41b)に発生するアンバランス電圧が誘起さ
れ、このアンバランス電圧は電気機器(2)に発生する漏
洩電圧に比例する。従って、この付加巻線(44)に発生す
るアンバランス電圧を逆相で取り出し、コンデンサ(45)
を介して導電体容器(3)の接地端子(31)に印加するよう
にすれば、上記各実施例と同様、電気機器(2)に発生す
る漏洩電圧を打消すことができる。しかも、従来のノイ
ズフィルタ(4)を有する電気機器(2)に、単に1個の付加
巻線(44)を新たに設けるのみでよく、安価に得られる利
点がある。
The unbalanced voltage generated in the in-phase windings (41a) and (41b) is induced in the additional winding (44) of the noise filter (4), and this unbalanced voltage is generated in the electric device (2). Proportional to leakage voltage. Therefore, the unbalanced voltage generated in this additional winding (44) is taken out in the opposite phase, and the capacitor (45)
If it is applied to the ground terminal (31) of the conductor container (3) via the, the leak voltage generated in the electric device (2) can be canceled, as in the above-mentioned embodiments. Moreover, the electric device (2) having the conventional noise filter (4) only needs to be additionally provided with one additional winding (44), which is advantageous in that it can be obtained at low cost.

【0032】図9は同相チョーク(41)の一例を示す平面
図、図10はノイズフィルタ(4)の構成例を示す斜視図
で、図において、(11)(12)は電源線、(21)(22)は電源接
続端子、(3)は導電体容器、(4)はノイズフィルタ、(40)
は直列重畳ノイズ除去用コンデンサ、(41)は同相チョー
ク、(41a)(41b)は同相チョーク巻線、(42a)(42b)は対地
ノイズ除去用コンデンサ、(43)は接地線、(44)は付加巻
線、(45)は逆相電圧印加用コンデンサである。図示のよ
うに構成配置することにより、単一基板上でノイズ及び
漏洩電圧対策が極めて簡単に実現できる。
FIG. 9 is a plan view showing an example of the in-phase choke (41), and FIG. 10 is a perspective view showing an example of the configuration of the noise filter (4). In the figure, (11) and (12) are power lines and (21) ) (22) is a power supply connection terminal, (3) is a conductor container, (4) is a noise filter, (40)
Is a series superimposed noise elimination capacitor, (41) is a common mode choke, (41a) (41b) is a common mode choke winding, (42a) (42b) is a ground noise elimination capacitor, (43) is a ground wire, (44) Is an additional winding, and (45) is a capacitor for applying an anti-phase voltage. By configuring and arranging as shown in the figure, measures against noise and leakage voltage can be realized very easily on a single substrate.

【0033】実施例7.図11及び図12は同相チョー
ク(41)への付加巻線(44)をシールド線で構成した実施例
7を示す斜視図及び一部を等価回路で示した構成図であ
る。図において、(46)は付加巻線(44)に施こした網状の
金属線で構成したシールド線で一端が、コンデンサ(45)
に接続されている。(47)は芯線で一端が接地電源線(12)
に他端がコンデンサ(45)に接続されている。(48)はシー
ルド線(46)と芯線(47)間の絶縁体で、誘電率の大(例え
ば4以上)のものを用い、分布容量(49)として機能す
る。このように構成することにより、付加巻線(44)と同
相チョーク巻線(41a)(41b)との静電結合が排除され周波
数特性が改善されるとともに、分布容量(49)のためコン
デンサ(45)を小容量または除去することもでき安価に構
成できる。なお、シールド線(46)として網状の金属線を
使用したが、撚り線でもよい。
Example 7. 11 and 12 are a perspective view showing a seventh embodiment in which the additional winding (44) to the in-phase choke (41) is composed of a shield wire, and a configuration diagram partially showing an equivalent circuit. In the figure, (46) is a shield wire composed of a net-like metal wire applied to the additional winding (44), and one end of which is a capacitor (45)
It is connected to the. (47) is a core wire and one end is the ground power wire (12)
The other end is connected to the capacitor (45). Reference numeral (48) is an insulator between the shield wire (46) and the core wire (47), which has a large dielectric constant (for example, 4 or more) and functions as a distributed capacitance (49). With this configuration, electrostatic coupling between the additional winding (44) and the in-phase choke windings (41a) (41b) is eliminated, the frequency characteristics are improved, and the capacitor ( 45) can be constructed at low cost because it can be removed in a small capacity or removed. Although the mesh wire is used as the shield wire (46), it may be a twisted wire.

【0034】実施例8.図13は同相チョーク(41)への
付加巻線(44)を分割巻きして構成した実施例8を示す斜
視図で、各巻線(41a)(41b)(44)間の浮遊容量が均等とな
り、本来の同相チョークの機能が高められるとともに、
充分な漏洩対策も維持できる。
Example 8. FIG. 13 is a perspective view showing an eighth embodiment in which an additional winding (44) is wound around the in-phase choke (41) in a divided manner, and the stray capacitances between the windings (41a) (41b) (44) are equalized. , While improving the function of the original in-phase choke,
Sufficient leakage measures can be maintained.

【0035】実施例9.実施例6〜8は電源が単相であ
る場合を示したが、三相電源の場合に適用しても同様の
効果が得られることはもちろんである。図14及び図1
5は、この場合の実施例9を示す構成図及び同相チョー
クの平面図である。図において、(10)は三相商用電源、
(11)(12)(13)は三相の電源線、(2)は電気機器、(21)(2
2)(23)は電源接続端子、(3)は導電体容器、(31)は接地
端子、(4)はノイズフィルタ、(40a)(40b)(40c)は直列重
畳ノイズ除去用のコンデンサ、(41)は同相チョーク、(4
1a)(41b)(41c)は同相チョーク巻線、(42a)(42b)(42c)は
対地ノイズ除去用コンデンサ、(43)は接地線、(44)は付
加巻線、(45)は逆相電圧印加用コンデンサ、(5)はイン
バータ回路、(6)は圧縮機等の負荷、(64)はそれの接地
線、(7)は接地電流測定用電流計である。
Example 9. Although Examples 6 to 8 show the case where the power supply is a single phase, it is needless to say that the same effect can be obtained even when applied to the case of a three-phase power supply. 14 and 1
FIG. 5 is a configuration diagram showing a ninth embodiment in this case and a plan view of an in-phase choke. In the figure, (10) is a three-phase commercial power supply,
(11) (12) (13) are three-phase power lines, (2) is electrical equipment, and (21) (2
2) (23) power supply connection terminal, (3) conductor case, (31) ground terminal, (4) noise filter, (40a) (40b) (40c) series superimposed noise removal capacitor, (41) is an in-phase choke, (4
1a) (41b) (41c) are common-mode choke windings, (42a) (42b) (42c) are capacitors for ground noise elimination, (43) is ground wire, (44) is additional winding, and (45) is reverse winding. A capacitor for applying a phase voltage, (5) is an inverter circuit, (6) is a load such as a compressor, (64) is its ground wire, and (7) is an ammeter for measuring ground current.

【0036】実施例10.実施例6〜9ではノイズフィ
ルタ(4)が電気機器(2)内に配設されていたが、図16に
示すように、三相電源線(11)(12)(13)を一括してまとめ
た線(17)を鉄心に巻回した同相チョーク(41)に、一端を
接地電源線(12)に接続した付加巻線(44)を施し、直列に
コンデンサ(45)を接続して、それの一端を接地端子(31)
に接続するようにしても、図17Aに示すような電源線
(17)に重畳したインパルスノイズが同図Bに示すように
低減し、上記各実施例と同様雑音対策と同時に漏洩電圧
の補償をも行なうことができる。
Example 10. In Examples 6 to 9, the noise filter (4) was provided in the electric device (2), but as shown in FIG. 16, the three-phase power supply lines (11), (12), and (13) were collectively included. An in-phase choke (41) in which the collected wires (17) are wound around an iron core is provided with an additional winding (44) whose one end is connected to the ground power supply wire (12), and a capacitor (45) is connected in series. Ground one end of it (31)
17A, even if connected to
The impulse noise superimposed on (17) is reduced as shown in FIG. 9B, and the leakage voltage can be compensated at the same time as the noise countermeasure as in the above embodiments.

【0037】実施例11.実施例6〜10はノイズフィ
ルタを使用した電気機器に漏洩電圧の補償を施した例を
示したが、高調波除去リアクトルを備えた電気機器にも
この発明を適用することができる。図18及び図19は
この場合の実施例11を示す構成図及び斜視図である。
図において、(10)は三相商用電源、(11)(12)(13)は三相
の電源線、(2)は電気機器、(21)(22)(23)は電源接続端
子、(31)は接地端子、(7)は接地電流測定用電流計、(9)
は高調波除去リアクトル、(91a)(91b)(91c)は高調波除
去リアクトル巻線、(92)はこの高調波除去リアクトル
(9)に施された付加巻線、(93)は逆相電圧印加用コンデ
ンサである。
Example 11. Although Examples 6 to 10 show examples in which leakage voltage is compensated for an electric device using a noise filter, the present invention can be applied to an electric device equipped with a harmonic elimination reactor. 18 and 19 are a structural view and a perspective view showing an eleventh embodiment in this case.
In the figure, (10) is a three-phase commercial power source, (11) (12) (13) is a three-phase power line, (2) is an electric device, (21) (22) (23) is a power connection terminal, and 31) is the ground terminal, (7) is the ammeter for measuring the ground current, (9)
Is the harmonic elimination reactor, (91a) (91b) (91c) is the harmonic elimination reactor winding, and (92) is this harmonic elimination reactor.
The additional winding applied to (9), and (93) is a capacitor for applying an anti-phase voltage.

【0038】高調波除去リアクトル(9)は負荷の状態に
よって発生する同相の高調波に対して高ィンピーダンス
を呈し、これを減衰させるために通常使用されている
が、この高調波除去リアクトル(9)に付加巻線(92)を施
して、これに誘起された逆相電圧をコンデンサ(93)を介
して接地端子(31)に印加するという極めて簡単な手段に
より、高調波の除去と同時に漏洩電圧の補償をも行なう
ことができる。
The harmonic elimination reactor (9) has a high impedance with respect to the in-phase harmonics generated by the load condition and is usually used for attenuating this, but this harmonic elimination reactor (9) ) Is applied with an additional winding (92), and the reverse phase voltage induced in this is applied to the ground terminal (31) via the capacitor (93). Voltage compensation can also be performed.

【0039】実施例12.図20は負荷の不平衡を整合
するために負荷整合リアクトルが使用されている電気機
器にこの発明を適用した場合の実施例12を示す構成図
で、図において、(10)は三相商用電源、(11)(12)(13)は
三相の電源線、(2)は電気機器、(21)(22)(23)は電源接
続端子、(31)は接地端子、(7)は接地電流測定用電流
計、(94)は負荷整合リアクトル、(94a)(94b)(94c)は負
荷整合リアクトル巻線、(95)はこの負荷整合リアクトル
(94)に施された付加巻線、(96)は逆相電圧印加用コンデ
ンサである。この実施例においても、極めて簡単な手段
により、電力系の負荷整合動作と同時に上記各実施例と
同様の漏洩電圧の補償を行なうことができる。
Example 12 FIG. 20 is a configuration diagram showing Embodiment 12 in the case where the present invention is applied to an electric device in which a load matching reactor is used to match a load unbalance, and (10) in the figure is a three-phase commercial power source. , (11), (12) and (13) are three-phase power lines, (2) is electrical equipment, (21), (22) and (23) are power connection terminals, (31) is a ground terminal, and (7) is a ground terminal. Ammeter for current measurement, (94) is a load matching reactor, (94a) (94b) (94c) is a load matching reactor winding, and (95) is this load matching reactor.
(94) is an additional winding, and (96) is a capacitor for applying a negative phase voltage. Also in this embodiment, it is possible to perform the load matching operation of the electric power system and the same compensation of the leakage voltage as in the above-mentioned embodiments by an extremely simple means.

【0040】実施例13.上記各実施例では逆相電圧発
生用巻線(変成器二次巻線(82)、付加巻線(44)(92)(9
5))の一端は必ず接地側電源線に接続される必要があ
る。従って逆相電圧発生用巻線の誤接続により電気機器
の導電体容器に高電圧が印加されるのを防止する手段が
必要である。図21はこの誤接続防止手段を施した実施
例13を示す構成図である。
Example 13. In each of the above-mentioned embodiments, the negative-phase voltage generating winding (transformer secondary winding (82), additional winding (44) (92) (9
One end of 5)) must always be connected to the ground side power line. Therefore, it is necessary to provide a means for preventing a high voltage from being applied to the conductor container of the electric device due to incorrect connection of the negative-phase voltage generating winding. FIG. 21 is a configuration diagram showing an embodiment 13 in which this erroneous connection preventing means is applied.

【0041】図において、(10)は三相商用電源、(11)(1
2)(13)は三相の電源線、(14)(15)(16)は電源線接続器、
(2)は電気機器、(21)(22)(23)は電源接続端子、(31)は
接地端子、(7)は接地電流測定用電流計、(91a)(91b)(91
c)はリアクトル巻線、(92)は付加巻線、(93)は逆相電圧
印加用コンデンサ、(97)はネオン管等の発光器、(98)は
保護抵抗、(99)は付加巻線(92)とコンデンサ(93)に並列
に接続される発光器と保護抵抗の直列回路である。
In the figure, (10) is a three-phase commercial power source, and (11) (1
2) (13) is a three-phase power line, (14) (15) (16) is a power line connector,
(2) is electrical equipment, (21) (22) (23) is power connection terminal, (31) is ground terminal, (7) is ammeter for ground current measurement, (91a) (91b) (91
c) reactor winding, (92) additional winding, (93) capacitor for negative-phase voltage application, (97) light emitting device such as neon tube, (98) protective resistance, (99) additional winding It is a series circuit of a light emitting device and a protection resistor connected in parallel to the line (92) and the capacitor (93).

【0042】上記のように構成することにより、付加巻
線(92)の一端が誤って非接地電源線、例えば電源線(11)
に接続されると、直列回路(99)の両端に電源電圧が印加
され、発光器(97)が点灯し発光する。従って、この発光
器(97)が発光しないように電源線接続器(14)(15)(16)の
接続を切換えることにより、誤接続を防止することがで
きる。
With the above structure, one end of the additional winding (92) is erroneously connected to a non-grounded power line, for example, the power line (11).
Then, the power supply voltage is applied to both ends of the series circuit (99), and the light emitter (97) lights up and emits light. Therefore, erroneous connection can be prevented by switching the connection of the power supply line connectors (14), (15) and (16) so that the light emitter (97) does not emit light.

【0043】なお、図では逆相電圧発生用巻線として高
調波除去リアクトルの付加巻線(92)の場合を示したが、
同相チョークの付加巻線(44)や、負荷整合リアクトルの
付加巻線(95)であっても、変成器(8)の二次巻線(82)で
あってもよいことはもちろんである。また、直列回路(9
9)を付加巻線(92)等とともに電気機器(2)中に収納する
ようにしてもよい。
Although the drawing shows the case of the additional winding (92) of the harmonic elimination reactor as the winding for generating the anti-phase voltage,
Of course, it may be the additional winding (44) of the in-phase choke, the additional winding (95) of the load matching reactor, or the secondary winding (82) of the transformer (8). In addition, the series circuit (9
9) may be housed in the electric device (2) together with the additional winding (92) and the like.

【0044】[0044]

【発明の効果】以上のようにこの発明によれば、交流電
源の接地相と他相間の電圧の逆相電圧を、電気機器の導
電体容器に印加し、上記導電体容器に生ずる負荷からの
漏洩電圧を打消すようにし、また、交流電源電圧をコン
デンサを介して変成器一次巻線に印加し、一端が接地さ
れたこれの二次巻線に発生した逆相電圧を、コンデンサ
を介して導電体容器に印加するよう構成したので、変成
器等最小限の小形部品を追加するのみという極めて安価
な手段で、電気機器の漏洩電圧補償装置が得られる効果
がある。
As described above, according to the present invention, the reverse phase voltage of the voltage between the ground phase and the other phase of the AC power supply is applied to the conductor container of the electric equipment, and the load from the load generated in the conductor container is applied. The leakage voltage is canceled out, and the AC power supply voltage is applied to the transformer primary winding via a capacitor, and the reverse phase voltage generated in the secondary winding of which one end is grounded is passed through the capacitor. Since the voltage is applied to the electric conductor container, there is an effect that the leakage voltage compensator for electric equipment can be obtained by an extremely inexpensive means of only adding a minimum of small parts such as a transformer.

【0045】さらに、ノイズフィルタの同相チョークに
発生した電圧の逆相電圧を導電体容器に印加し、この導
電体容器に生ずる負荷からの漏洩電圧を打消すように
し、また、同相チョークと磁気的に結合し一端が接地さ
れた巻線を付加し、この付加巻線に発生した逆相電圧を
コンデンサを介して上記導電体容器に印加するよう構成
したので、ノイズフィルタに付加巻線を施すのみという
極めて安価な手段で、電気機器の漏洩電圧補償装置が得
られる効果がある。
Further, a reverse phase voltage of the voltage generated in the in-phase choke of the noise filter is applied to the conductor case so as to cancel the leakage voltage from the load generated in the conductor case, and the in-phase choke and the magnetic field are magnetically coupled. It is configured to add a winding whose one end is grounded to the noise filter and to apply the negative-phase voltage generated in this additional winding to the above-mentioned conductor container through a capacitor. That is, there is an effect that a leakage voltage compensator for electric equipment can be obtained by the extremely inexpensive means.

【0046】さらに、高調波除去リアクトルに発生した
電圧の逆相電圧を導電体容器に印加し、この導電体容器
に生ずる負荷からの漏洩電圧を打消すようにし、また、
高調波除去リアクトルと磁気的に結合し一端が接地され
た巻線を付加し、この付加巻線に発生した逆相電圧をコ
ンデンサを介して導電体容器に印加するよう構成したの
で、高調波除去リアクトルに付加巻線を施すのみという
極めて安価な手段で、電気機器の漏洩電圧補償装置が得
られる効果がある。
Further, a reverse phase voltage of the voltage generated in the harmonic elimination reactor is applied to the conductor container so as to cancel the leakage voltage from the load generated in the conductor container, and
Harmonic elimination Since a winding that is magnetically coupled to the reactor and has one end grounded is added and the negative-phase voltage generated in this additional winding is applied to the conductor container via the capacitor, harmonic elimination is performed. There is an effect that a leakage voltage compensator for electric equipment can be obtained by an extremely inexpensive means of only providing an additional winding on the reactor.

【0047】さらに、負荷整合リアクトルに発生した電
圧の逆相電圧を導電体容器に印加し、この導電体容器に
生ずる負荷からの漏洩電圧を打消すようにし、また、負
荷整合リアクトルと磁気的に結合し一端が接地された巻
線を付加し、この付加巻線に発生した逆相電圧をコンデ
ンサを介して導電体容器に印加するよう構成したので、
負荷整合リアクトルに付加巻線を施すのみという極めて
安価な手段で、電気機器の漏洩電圧補償装置が得られる
効果がある。
Further, a reverse phase voltage of the voltage generated in the load matching reactor is applied to the conductor container so as to cancel the leakage voltage from the load generated in the conductor container, and the load matching reactor is magnetically coupled. Since it is configured to add a winding coupled to one end and grounded, and to apply the reverse-phase voltage generated in this additional winding to the conductor container via the capacitor,
There is an effect that a leakage voltage compensator for electric equipment can be obtained by an extremely inexpensive means of only providing an additional winding to the load matching reactor.

【0048】さらにまた、接地される逆相電圧発生用巻
線の一端と、これの他端に接続されるコンデンサの導電
体容器に接続される端子との間に、ネオン管等の発光器
と保護抵抗との直列回路を接続するよう構成したので、
極めて安価な手段で誤接続が有効に阻止することがで
き、安価で安全な電気機器の漏洩電圧補償装置が得られ
る効果がある。
Furthermore, a light emitting device such as a neon tube is provided between one end of the anti-phase voltage generating winding grounded and the terminal connected to the conductor container of the capacitor connected to the other end thereof. Since it is configured to connect a series circuit with a protection resistor,
Erroneous connection can be effectively prevented by an extremely inexpensive means, and there is an effect that an inexpensive and safe leakage voltage compensator for electric equipment can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施例1を示す構成図。FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】 実施例1におけるコンデンサ容量値と改善漏
洩電圧との関係を示す特性図。
FIG. 2 is a characteristic diagram showing a relationship between a capacitor capacitance value and an improved leakage voltage in the first embodiment.

【図3】 実施例1における変成器及びコンデンサを、
ノイズフィルタとともに導電体容器中に配設した構成例
を示す斜視図。
FIG. 3 illustrates the transformer and the capacitor in the first embodiment,
The perspective view which shows the structural example arrange | positioned with the noise filter in the conductor container.

【図4】 この発明の実施例2を示す構成図。FIG. 4 is a configuration diagram showing a second embodiment of the present invention.

【図5】 この発明の実施例3を示す構成図。FIG. 5 is a configuration diagram showing a third embodiment of the present invention.

【図6】 この発明の実施例4を示す構成図。FIG. 6 is a configuration diagram showing a fourth embodiment of the present invention.

【図7】 この発明の実施例5を示す構成図。FIG. 7 is a configuration diagram showing a fifth embodiment of the present invention.

【図8】 この発明の実施例6を示す構成図。FIG. 8 is a configuration diagram showing a sixth embodiment of the present invention.

【図9】 実施例6における同相チョークの一例を示す
平面図。
FIG. 9 is a plan view showing an example of an in-phase choke according to the sixth embodiment.

【図10】 実施例6におけるノイズフィルタの構成例
を示す斜視図。
FIG. 10 is a perspective view showing a configuration example of a noise filter according to the sixth embodiment.

【図11】 この発明の実施例7における同相チョーク
を示す斜視図。
FIG. 11 is a perspective view showing an in-phase choke according to a seventh embodiment of the present invention.

【図12】 実施例7の同相チョークの一部を等価回路
で示した構成図。
FIG. 12 is a configuration diagram showing a part of an in-phase choke according to a seventh embodiment by an equivalent circuit.

【図13】 この発明の実施例8における同相チョーク
を示す斜視図。
FIG. 13 is a perspective view showing an in-phase choke according to an eighth embodiment of the present invention.

【図14】 この発明の実施例9を示す構成図。FIG. 14 is a configuration diagram showing a ninth embodiment of the present invention.

【図15】 実施例9における同相チョークの平面図。FIG. 15 is a plan view of an in-phase choke according to a ninth embodiment.

【図16】 この発明の実施例10における同相チョー
クを示す斜視図。
FIG. 16 is a perspective view showing an in-phase choke according to Embodiment 10 of the present invention.

【図17】 実施例10における同相チョークのノイズ
除去効果を示す電圧波形図。
FIG. 17 is a voltage waveform diagram showing the noise removal effect of the common mode choke according to the tenth embodiment.

【図18】 この発明の実施例11を示す構成図。FIG. 18 is a configuration diagram showing an eleventh embodiment of the present invention.

【図19】 実施例11における高調波除去リアクトル
の構成を示す斜視図。
FIG. 19 is a perspective view showing a configuration of a harmonic wave removing reactor according to an eleventh embodiment.

【図20】 この発明の実施例12を示す構成図。FIG. 20 is a configuration diagram showing a twelfth embodiment of the present invention.

【図21】 この発明の実施例13を示す構成図。FIG. 21 is a configuration diagram showing Embodiment 13 of the present invention.

【図22】 従来の空気調和機等のインバータ制御機器
を示す構成図。
FIG. 22 is a configuration diagram showing an inverter control device such as a conventional air conditioner.

【符号の説明】[Explanation of symbols]

1 単相商用交流電源、2 電気機器、3 導電体容
器、4 ノイズフィルタ、6 負荷、8、8a、8b
変成器、9 高調波除去リアクトル、10 三相商用電
源、41 同相チョーク、44 同相チョーク付加巻
線、45 逆相電圧印加用コンデンサ、81、81a、
81b 一次巻線、82、82a、82b二次巻線、8
3、83a、83b 交流電源電圧印加用コンデンサ、
84、84a、84b 逆相電圧印加用コンデンサ、9
2 高調波除去リアクトル付加巻線、93 逆相電圧印
加用コンデンサ、94 負荷整合リアクトル、95 負
荷整合リアクトル付加巻線、96 逆相電圧印加用コン
デンサ、97 発光器、98保護抵抗、99 直列回
路。
1 Single-Phase Commercial AC Power Supply, 2 Electric Equipment, 3 Conductor Container, 4 Noise Filter, 6 Load, 8, 8a, 8b
Transformer, 9 harmonic elimination reactor, 10 three-phase commercial power supply, 41 in-phase choke, 44 in-phase choke additional winding, 45 anti-phase voltage applying capacitor, 81, 81a,
81b primary winding, 82, 82a, 82b secondary winding, 8
3, 83a, 83b AC power supply voltage applying capacitor,
84, 84a, 84b Reverse-phase voltage applying capacitors, 9
2 Harmonic elimination reactor additional winding, 93 Reverse phase voltage applying capacitor, 94 Load matching reactor, 95 Load matching reactor additional winding, 96 Reverse phase voltage applying capacitor, 97 Light emitter, 98 Protection resistor, 99 Series circuit.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 9375−5E H01F 33/00 K 9375−5E G (72)発明者 公文 良昭 長野県佐久市長土呂800−38 双信電機株 式会社浅間工場内 (72)発明者 高見沢 彰 長野県佐久市長土呂800−38 双信電機株 式会社浅間工場内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication location 9375-5E H01F 33/00 K 9375-5EG (72) Inventor Koubun Yoshiaki 800 Doro, Saku City, Nagano Prefecture −38 Soshin Electric Co., Ltd.Asama Factory (72) Inventor Akira Takamizawa 800-38 Mayor Toro, Saku City, Nagano Prefecture Soshin Electric Co., Ltd. Asama Factory

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 一相が接地された交流電源に接続された
負荷を導電体容器に収納した電気機器において、上記交
流電源の接地相と他相間の電圧の逆相電圧を、上記導電
体容器に印加し、上記導電体容器に生ずる上記負荷から
の漏洩電圧を打消すようにしたことを特徴とする電気機
器の漏洩電圧補償装置。
1. In an electric device in which a load connected to an AC power supply whose one phase is grounded is housed in a conductor container, a reverse phase voltage of a voltage between the ground phase and the other phase of the AC power supply is set to the conductor container. A leakage voltage compensator for electric equipment, characterized in that the leakage voltage from the load generated in the conductor container is canceled by applying the leakage voltage to the electric conductor container.
【請求項2】 交流電源電圧をコンデンサを介して変成
器一次巻線に印加し、一端が接地されたこれの二次巻線
に発生した逆相電圧を、コンデンサを介して導電体容器
に印加するよう構成したことを特徴とする請求項1記載
の電気機器の漏洩電圧補償装置。
2. An AC power supply voltage is applied to a transformer primary winding through a capacitor, and a reverse phase voltage generated in a secondary winding of which one end is grounded is applied to a conductor container through the capacitor. The leakage voltage compensator for electric equipment according to claim 1, wherein
【請求項3】 交流電源に、同相チョークを有するノイ
ズフィルタを介して接続された負荷を導電体容器に収納
した電気機器において、上記同相チョークに発生した電
圧の逆相電圧を上記導電体容器に印加し、上記導電体容
器に生ずる上記負荷からの漏洩電圧を打消すようにした
ことを特徴とする電気機器の漏洩電圧補償装置。
3. In an electric device in which a load connected to an AC power source through a noise filter having an in-phase choke is housed in a conductor container, a reverse phase voltage of a voltage generated in the in-phase choke is supplied to the conductor container. A leakage voltage compensator for an electric device, characterized in that the leakage voltage from the load applied to the conductor container is canceled.
【請求項4】 同相チョークと磁気的に結合し一端が接
地された巻線を付加し、この付加巻線に発生した逆相電
圧をコンデンサを介して上記導電体容器に印加するよう
構成したことを特徴とする請求項3記載の電気機器の漏
洩電圧補償装置。
4. A structure in which a winding, which is magnetically coupled to the in-phase choke and has one end grounded, is added, and a reverse-phase voltage generated in the additional winding is applied to the conductor container through a capacitor. The leakage voltage compensator for electric equipment according to claim 3.
【請求項5】 交流電源に、高調波除去リアクトルを介
して接続された負荷を導電体容器に収納した電気機器に
おいて、上記高調波除去リアクトルに発生した電圧の逆
相電圧を上記導電体容器に印加し、上記導電体容器に生
ずる上記負荷からの漏洩電圧を打消すようにしたことを
特徴とする電気機器の漏洩電圧補償装置。
5. In an electric device in which a load connected to an AC power source via a harmonic elimination reactor is housed in a conductor container, a reverse phase voltage of a voltage generated in the harmonic elimination reactor is applied to the conductor container. A leakage voltage compensator for an electric device, characterized in that the leakage voltage from the load applied to the conductor container is canceled.
【請求項6】 高調波除去リアクトルと磁気的に結合し
一端が接地された巻線を付加し、この付加巻線に発生し
た逆相電圧をコンデンサを介して導電体容器に印加する
よう構成したことを特徴とする請求項5記載の電気機器
の漏洩電圧補償装置。
6. A structure in which a winding, which is magnetically coupled to the harmonic elimination reactor and has one end grounded, is added, and a reverse-phase voltage generated in the additional winding is applied to a conductor container through a capacitor. The leakage voltage compensating device for an electric device according to claim 5, wherein:
【請求項7】 交流電源とこれに接続された負荷間に並
列に負荷整合リアクトルを接続し、上記負荷を導電体容
器に収納した電気機器において、上記負荷整合リアクト
ルに発生した電圧の逆相電圧を上記導電体容器に印加
し、上記導電体容器に生ずる上記負荷からの漏洩電圧を
打消すようにしたことを特徴とする電気機器の漏洩電圧
補償装置。
7. In an electric device in which a load matching reactor is connected in parallel between an AC power source and a load connected to the AC power source and the load is housed in a conductor container, a reverse phase voltage of a voltage generated in the load matching reactor. Is applied to the conductor container to cancel the leakage voltage from the load generated in the conductor container.
【請求項8】 負荷整合リアクトルと磁気的に結合し一
端が接地された巻線を付加し、この付加巻線に発生した
逆相電圧をコンデンサを介して導電体容器に印加するよ
う構成したことを特徴とする請求項7記載の電気機器の
漏洩電圧補償装置。
8. A structure in which a winding, which is magnetically coupled to the load matching reactor and has one end grounded, is added, and a reverse-phase voltage generated in the additional winding is applied to a conductor container through a capacitor. The leakage voltage compensator for electric equipment according to claim 7.
【請求項9】 接地される逆相電圧発生用巻線の一端
と、これの他端に接続されるコンデンサの導電体容器に
接続される端子との間に、ネオン管等の発光器と保護抵
抗との直列回路を接続したことを特徴とする請求項2、
4、6及び8の何れかに記載の電気機器の漏洩電圧補償
装置。
9. A light emitting device such as a neon tube and a protection are provided between one end of the anti-phase voltage generating winding grounded and the terminal connected to the conductor container of the capacitor connected to the other end of the winding. 3. A series circuit with a resistor is connected,
9. A leakage voltage compensating device for an electric device according to any one of 4, 6, and 8.
JP6219310A 1994-09-14 1994-09-14 Leakage voltage compensator for electric apparatus Pending JPH0888936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6219310A JPH0888936A (en) 1994-09-14 1994-09-14 Leakage voltage compensator for electric apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6219310A JPH0888936A (en) 1994-09-14 1994-09-14 Leakage voltage compensator for electric apparatus

Publications (1)

Publication Number Publication Date
JPH0888936A true JPH0888936A (en) 1996-04-02

Family

ID=16733489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6219310A Pending JPH0888936A (en) 1994-09-14 1994-09-14 Leakage voltage compensator for electric apparatus

Country Status (1)

Country Link
JP (1) JPH0888936A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114126A1 (en) * 2006-03-31 2007-10-11 Matsushita Electric Industrial Co., Ltd. Circuit and method for reducing noise
WO2022111893A1 (en) * 2020-11-30 2022-06-02 Robert Bosch Gmbh Circuit arrangement for reducing common-mode interference of a power-electronic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114126A1 (en) * 2006-03-31 2007-10-11 Matsushita Electric Industrial Co., Ltd. Circuit and method for reducing noise
US8290451B2 (en) 2006-03-31 2012-10-16 Panasonic Corporation Noise reduction circuit for canceling leakage signal
WO2022111893A1 (en) * 2020-11-30 2022-06-02 Robert Bosch Gmbh Circuit arrangement for reducing common-mode interference of a power-electronic device

Similar Documents

Publication Publication Date Title
US5619079A (en) EMI line filter
US5892667A (en) Symmetrical power system
JP5022236B2 (en) Active electromagnetic compatibility filter for machine tools
US4667173A (en) Line filter
US8174810B2 (en) Method and apparatus for reducing differential mode and common mode reflections in motor drives
JP2008530964A5 (en)
USRE39108E1 (en) Symmetrical power generator and method of use
US4602308A (en) Circuit for suppressing transients occurring in either common or transverse modes
JP4017343B2 (en) Power adjustment circuit
US4725739A (en) AC branch power distribution filter
JPS6177409A (en) Noise filter
Sharaf Harmonic interference from distribution systems
JPH0888936A (en) Leakage voltage compensator for electric apparatus
JP2008530836A (en) Active EMC filters for medical applications
JP2009148045A (en) Leak current reducing device
US5093641A (en) Rectifier smoothing filter
US20040047092A1 (en) Active ground current reduction device
JPH0522985A (en) Noise preventing device
RU2402130C1 (en) Device for protection against ground short circuit in networks with compensation of capacitance circuit
US5508673A (en) High frequency transformer apparatus
JP2001045767A (en) Inverter
US3386003A (en) Ground protective circuit
JP3159459B2 (en) Line filter to prevent electric shock in electrical equipment
JP3087434B2 (en) Switching power supply
JPS5911262B2 (en) High voltage generator