JPH0886616A - Method and apparatus for measuring three-dimensional image - Google Patents

Method and apparatus for measuring three-dimensional image

Info

Publication number
JPH0886616A
JPH0886616A JP6248680A JP24868094A JPH0886616A JP H0886616 A JPH0886616 A JP H0886616A JP 6248680 A JP6248680 A JP 6248680A JP 24868094 A JP24868094 A JP 24868094A JP H0886616 A JPH0886616 A JP H0886616A
Authority
JP
Japan
Prior art keywords
slit light
measurement object
slit
laser head
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6248680A
Other languages
Japanese (ja)
Inventor
Shingo Ito
慎悟 伊藤
Hiroshi Arakawa
浩 荒川
Kazuaki Obayashi
和明 大林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6248680A priority Critical patent/JPH0886616A/en
Publication of JPH0886616A publication Critical patent/JPH0886616A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Input (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE: To reduce the photographing number of times for an object thereby shortening an identifying time, by photographing a cutting line formed by a plurality of slit lights case onto the object to be measured with a camera for every rotation of the slit lights. CONSTITUTION: A cross slit light 2 from a laser head 4 is cast on an object 1 to be measured. The laser head 4 is rotated up to 90 deg. by every constant angles from a reference position which is an initial position where the object 1 is illuminated first by the slit light. The object 1 illuminated by the slit light 2 is photographed at every angle by a CCD camera 6. Image signals 10 are sent to an image-processing part 8. The processing part 8 identifies the position or shape of the object 1 by a measuring method using a camera parameter and a conversion matrix. At this time, since a plurality of slit lights 2 intersecting the object 1 are cast, data of a plurality of cutting lines are obtained by one photographing, so that the photographing number of times for obtaining total shape data can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、画像処理により3次元
物体の位置及び形状を計測する3次元画像計測方法及び
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional image measuring method and apparatus for measuring the position and shape of a three-dimensional object by image processing.

【0002】[0002]

【従来の技術】従来、スリット光投影法を用いて3次元
物体の位置,形状等を計測する方法としては、図5,図
6模式図のような方法が知られており、図5はスリット
光源20からの1本のスリット光21を3次元の計測物
体1に照射する方法で、計測物体1の形状を識別するた
めにスリット光21を一定間隔で左右に走査させるもの
であり、図6は#1スリット光源20a,#2スリット
光源20bの2つの光源を用いて2本の直交する#1ス
リット光21a,#2スリット光21bを照射する方法
で、この方法では2本のスリット光21a,21bは走
査させない。
2. Description of the Related Art Conventionally, as a method for measuring the position, shape, etc. of a three-dimensional object using the slit light projection method, methods such as those shown in FIGS. 5 and 6 are known. A method of irradiating the one-dimensional slit light 21 from the light source 20 to the three-dimensional measurement object 1 is used to scan the slit light 21 left and right at regular intervals in order to identify the shape of the measurement object 1. Is a method of irradiating two orthogonal # 1 slit light 21a and # 2 slit light 21b by using two light sources of # 1 slit light source 20a and # 2 slit light source 20b. In this method, two slit light 21a are used. , 21b are not scanned.

【0003】しかしながら、図5に示す方法では、1本
のスリット光21を計測物体1に投影することで物体面
上の切断線像が得られ、この投影像を横方向に少しずつ
走査させることで3次元形状データを得て計測物体1の
形状を識別することができるが、あくまで1回の撮像で
物体面上の1本の切断線データしか得られないため、計
測物体1全体の形状データを得るにはかなりの処理時間
を要し、更に物体面の大きさにより撮像回数が変わるた
め、撮像回数の制御が必要になるとともに、スリット光
と同一方向の計測物体の輪郭線は、スリット光が走査時
に輪郭線上に来ないと検出できないためにスリット光と
同一方向の物体形状の識別精度が落ちる。また図6に示
す方法は、形状識別処理においてスリット光21a,2
1bは後の明暗画像による物体面の輪郭の線分化(物体
面の識別)のための物体面付近の小領域切り出しに使用
しているのみであり、スリット光の切断線データを直接
形状識別処理に使用しているわけではない。従ってこの
方法では、物体面の識別つまり形状識別において予め物
体面の頂点数等の情報が必要であり、特定形状の計測物
体の識別しか行えず、更に2つのスリット光源20a,
20bを使用しているため、十字スリット光の投影位置
の位置合わせに光源が1つの場合に比べて手間がかか
る。
However, in the method shown in FIG. 5, one slit light 21 is projected onto the measuring object 1 to obtain a cutting line image on the object plane, and this projected image is gradually scanned in the lateral direction. The shape of the measurement object 1 can be identified by obtaining the three-dimensional shape data, but since only one cutting line data on the object surface can be obtained by one imaging, the shape data of the entire measurement object 1 can be obtained. It takes a considerable amount of processing time to obtain, and since the number of times of imaging changes depending on the size of the object surface, it is necessary to control the number of times of imaging, and the contour line of the measurement object in the same direction as the slit light is the slit light. Cannot be detected unless it comes on the contour line during scanning, so that the accuracy of identifying the object shape in the same direction as the slit light decreases. In addition, the method shown in FIG.
1b is only used for cutting out a small area near the object plane for line segmentation of the contour of the object plane (identification of the object plane) by a bright and dark image, and the cutting line data of the slit light is directly subjected to the shape identification processing. Not used for. Therefore, in this method, information such as the number of vertices of the object surface is required in advance for the object surface identification, that is, the shape identification, and only the measurement object having the specific shape can be identified.
Since 20b is used, alignment of the projection position of the cross slit light is more troublesome than in the case where there is one light source.

【0004】[0004]

【発明が解決しようとする課題】本発明は、このような
事情に鑑みて提案されたもので、従来の1本のスリット
光を使用したスリット光投影法に比べてスリット光を照
射した計測物体の撮像回数が減り、識別処理時間の短縮
が図れるとともに、回転中心となる交差点が計測物体の
輪郭線上にのらない限り、スリット光の方向による形状
識別の精度低下が改善される3次元画像計測方法及び装
置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been proposed in view of the above circumstances, and a measuring object irradiated with slit light as compared with the conventional slit light projection method using one slit light. 3D image measurement that can reduce the number of times of imaging, shorten the identification processing time, and improve the accuracy of shape identification depending on the slit light direction unless the intersection that is the center of rotation is on the contour line of the measurement object. It is an object to provide a method and a device.

【0005】[0005]

【課題を解決するための手段】そのために本発明は、レ
ーザーによるスリット光を複数交差させ、これを3次元
の計測物体に照射するとともに次の照射では交差点付近
を中心に複数スリット光を回転させ、計測物体の前回と
は違う位置に照射していき、計測物体上に照射された複
数スリット光によりできる切断線をカメラで各回転毎に
撮像して切断線データにより計測物体の位置,形状を識
別することと、3次元の計測物体に交差する複数のスリ
ット光を照射するレーザーと、上記スリット光を発する
レーザーヘッドを交差点付近を中心の回転及び上下左右
の平行移動が可能に装架したレーザーヘッド架台と、上
記スリット光が照射されている計測物体を撮像するカメ
ラと、上記カメラで撮像された画像信号を処理する画像
処理部及び上記レーザーヘッドの作動を制御するレーザ
ーヘッド制御部を内蔵したコンピューターとを具えたこ
ととを、それぞれ特徴とする。
To this end, according to the present invention, a plurality of slit light beams by a laser intersect each other, and the three-dimensional measurement object is irradiated with the slit light beams, and in the next irradiation, the plural slit light beams are rotated around the intersection. , Irradiating the position of the measurement object different from the last time, the cutting line made by the multiple slit light irradiated on the measurement object is imaged by the camera for each rotation, and the position and shape of the measurement object is determined by the cutting line data. Laser for identifying and irradiating a plurality of slit lights intersecting a three-dimensional measurement object, and a laser head for emitting the slit lights so that the laser head can be rotated around an intersection and moved up and down and left and right in parallel. A head frame, a camera that captures an image of the measurement object illuminated by the slit light, an image processing unit that processes an image signal captured by the camera, and the laser. And that comprises a computer with a built-in laser head controller for controlling the operation of Zaheddo, respectively characterized.

【0006】[0006]

【作用】本発明3次元画像計測方法においては、3次元
の計測物体に交差する複数のスリット光を照射するので
1回の撮像で複数の切断線データを得られるため、全体
の形状データを得るのに1本のスリット光を投影する場
合に比べて少ない撮像回数ですむ。従って識別処理を行
う時間が大幅に短縮される。また走査方法が回転のた
め、スリット光の平行走査時のスリット光と同一方向の
識別精度低下の改善が得られる。なおスリット光の光源
が1つのため投影位置の設定が容易である。
In the three-dimensional image measuring method of the present invention, since a plurality of slit lights intersecting a three-dimensional measuring object are radiated, a plurality of cutting line data can be obtained by one image pickup, so that the entire shape data is obtained. However, the number of times of imaging is small compared to the case of projecting one slit light. Therefore, the time for performing the identification process is significantly shortened. Further, since the scanning method is rotated, it is possible to improve the deterioration of the identification accuracy in the same direction as the slit light when the slit light is scanned in parallel. Since there is only one slit light source, it is easy to set the projection position.

【0007】[0007]

【実施例】本発明3次元画像計測方法及び装置の一実施
例を図面について説明すると、図1は本方法を実施する
装置の模式図、図2は本装置の動作の際に使用する三角
測量の原理図、図3は本装置の動作を説明する概念図、
図4は画像処理部のフローチャートである。図1におい
て、3次元の計測物体1に十字スリット光2を照射する
レーザー3のレーザーヘッド4は、十字スリット光2が
照射できるものを使用し、レーザーヘッド架台5に十字
の交点を中心に90°程度の十字スリット光回転角θだ
け回転できるとともに、十字の交点が上下左右に適宜距
離移動できるように装架されている。このレーザーヘッ
ド架台5の傍には十字スリット光2が照射されている計
測物体1を撮像するCCDカメラ6が設置されている。
更にレーザーヘッド架台5及びCCDカメラ6に連結さ
れるコンピューター7が配置され、その内部には、CC
Dカメラ6から画像信号10を受け計測物体1の位置や
形状を計測する画像処理部8と、レーザーヘッド架台5
へ一定角度の間隔で回転させるための回転制御信号11
を送るレーザーヘッド制御部9が内蔵されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a three-dimensional image measuring method and device of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram of a device for carrying out the method, and FIG. 2 is a triangulation used in the operation of the device. Fig. 3 is a conceptual diagram for explaining the operation of this device,
FIG. 4 is a flowchart of the image processing unit. In FIG. 1, a laser head 4 of a laser 3 for irradiating a three-dimensional measurement object 1 with a cross slit light 2 is a laser head capable of irradiating the cross slit light 2, and a laser head pedestal 5 is provided with a cross point 90 at the center. It is mounted so that it can be rotated by a cross slit light rotation angle θ of about °, and the intersection of the cross can be moved up, down, left and right as appropriate. A CCD camera 6 for picking up an image of the measurement object 1 irradiated with the cross slit light 2 is installed near the laser head mount 5.
Further, a computer 7 connected to the laser head base 5 and the CCD camera 6 is arranged, and inside the computer 7 is a CC.
The image processing unit 8 that receives the image signal 10 from the D camera 6 and measures the position and shape of the measurement object 1, and the laser head mount 5.
Rotation control signal 11 for rotating at a constant angle interval
The laser head control unit 9 for sending the

【0008】このような装置において、レーザーヘッド
4から十字スリット光2を計測物体1に照射し最初の照
射位置を基準位置とし、レーザーヘッド制御部9によっ
て例えば5°おきのような一定角度の間隔で基準位置か
ら90°までレーザーヘッド4を回転させ、各角度にお
いて十字スリット光2が照射されている計測物体1をC
CDカメラ6で撮像し、画像信号10を画像処理部8へ
送ると、画像処理部8はカメラパラメーター及び変換マ
トリックスを用いる3次元画像計測方法により計測物体
1の位置や形状を識別する。
In such an apparatus, the laser head 4 irradiates the measuring object 1 with the cross slit light 2 and the first irradiation position is used as a reference position. The laser head 4 is rotated by 90 ° from the reference position, and the measuring object 1 irradiated with the cross slit light 2 at each angle is C
When the image is captured by the CD camera 6 and the image signal 10 is sent to the image processing unit 8, the image processing unit 8 identifies the position and shape of the measurement object 1 by a three-dimensional image measuring method using camera parameters and a conversion matrix.

【0009】以下に図2〜図4により3次元画像計測の
動作を説明する。まず前提条件について述べると、一
部、三角測量の原理を用いて計測物体1の3次元座標位
置を求めるため、図2に示すように、CCDカメラ6の
レンズ15とレーザーヘッド4の先端中心部が3次元絶
対座標系のx軸上にくるように設置する。更にCCDカ
メラ6の撮像面14は、図2のようにx−y平面に平行
になるようにする。(設置したCCDカメラ6のカメラ
パラメータを求めれば、実際に平行でなくても平行にな
るよう補正できる。)またレーザーヘッド4の角度θb
(レーザーの光軸のx−y平面への投影とx軸のなす
角)の値は、y軸方向を中心に回転させても常に分かる
ものとし、レーザーヘッド4から照射される十字スリッ
ト光2の初期状態は常に1本のスリット光(縦スリット
光)がy軸に平行とする。計測物体1は、構成する面に
曲面はないものに限定する。即ち計測物体1の輪郭線は
全て直線である。
The operation of three-dimensional image measurement will be described below with reference to FIGS. First, to describe the preconditions, in order to obtain the three-dimensional coordinate position of the measurement object 1 in part using the principle of triangulation, as shown in FIG. 2, the lens 15 of the CCD camera 6 and the center of the tip of the laser head 4 are arranged. Is placed so that it is on the x-axis of the three-dimensional absolute coordinate system. Further, the image pickup surface 14 of the CCD camera 6 is made parallel to the xy plane as shown in FIG. (By obtaining the camera parameters of the installed CCD camera 6, it is possible to make corrections so that they are parallel even if they are not actually parallel.) Also, the angle θb of the laser head 4
The value of (projection of the optical axis of the laser on the xy plane and the angle formed by the x-axis) is always known even when rotated about the y-axis direction, and the cross slit light 2 emitted from the laser head 4 is used. In the initial state of, one slit light (longitudinal slit light) is always parallel to the y-axis. The measurement object 1 is limited to one having no curved surface. That is, the contour lines of the measurement object 1 are all straight lines.

【0010】次に図3により3次元画像計測処理の手順
を述べる。まず計測物体1の1面(図3の物体中心照射
面1−1)に十字スリット光を照射し、図2の三角測量
の原理を用いて十字光の中心点12−1の3次元座標位
置を求める。3次元位置は、十字光中心点の撮像面上の
2次元座標位置(x′,y′)を求め、図2の式(1−
1)〜(1−5)により決定される。この後、十字光の
中心位置を3次元座標系のx−y平面と平行を保ち移動
させる(図2θb方向の回転)。但し移動後の中心点も
必ず同一平面上にあるようにする。移動後、同様に三角
測量の原理を用いて、十字光の中心点12−2及び縦ス
リット光と物体中心照射面1−1の輪郭線との交点13
−1,13−2の3次元座標位置を求める。更に物体中
心照射面1−1の上あるいは下に隣接する面(図3では
隣接面1−3)の他端輪郭線と縦スリット光との交点
(図3での13−5)が撮像面上で識別できたら、同様
にこの点の3次元座標位置も求めておく。上記のように
物体中心照射面上の点(12−1,12−2,13−
1,13−2)の3次元座標位置が求められたので式
(2−1)を用いて、この平面の平面方程式を求める。 Ax+By+Cz+D=0 ・・・式(2−1) これと同時に、横スリット光と物体中心照射面あるいは
隣接面(図2の1−2)の輪郭線との交点(図3の13
−3,13−4あるいは13−6)の撮像面上の2次元
座標位置も後の処理のために格納しておく。次に十字ス
リット光の中心点を中心に一定角度θずつ回転させ、十
字スリット光と物体中心照射面及び全隣接面の輪郭線と
の交点の2次元座標位置(撮像面上)を格納し、回転角
の総和が90°になるまでこの操作を繰り返す。
Next, the procedure of the three-dimensional image measuring process will be described with reference to FIG. First, one surface of the measurement object 1 (object center irradiation surface 1-1 in FIG. 3) is irradiated with a cross slit light, and the three-dimensional coordinate position of the center point 12-1 of the cross light is irradiated using the principle of triangulation in FIG. Ask for. As for the three-dimensional position, the two-dimensional coordinate position (x ', y') on the image pickup surface of the center point of the cross beam is obtained, and the expression (1-
1) to (1-5). After that, the center position of the cross light is moved in parallel with the xy plane of the three-dimensional coordinate system (rotation in the θb direction in FIG. 2). However, make sure that the center point after movement is also on the same plane. After the movement, similarly using the principle of triangulation, the center point 12-2 of the cross beam and the intersection point 13 of the vertical slit beam and the contour line of the object center irradiation surface 1-1.
The three-dimensional coordinate positions of -1, 13-2 are obtained. Furthermore, the intersection (13-5 in FIG. 3) of the other end contour line of the adjacent surface (adjacent surface 1-3 in FIG. 3) above or below the object center irradiation surface 1-1 is the imaging surface. If the above can be identified, the three-dimensional coordinate position of this point is similarly obtained. As described above, the points (12-1, 12-2, 13-
Since the three-dimensional coordinate position of 1, 13-2) is obtained, the plane equation of this plane is obtained using the equation (2-1). Ax + By + Cz + D = 0 Equation (2-1) At the same time, the intersection point (13 in FIG. 3) between the lateral slit light and the contour line of the object center irradiation surface or the adjacent surface (1-2 in FIG. 2).
The two-dimensional coordinate position on the image pickup surface (-3, 13-4 or 13-6) is also stored for later processing. Next, the cross-slit light is rotated by a constant angle θ about the center point of the cross-slit light, and the two-dimensional coordinate position (on the imaging surface) of the intersection of the cross-slit light and the contour lines of the object center irradiation surface and all adjacent surfaces is stored. This operation is repeated until the total rotation angle reaches 90 °.

【0011】上の操作が終わると、図3の13−1及び
13−2を除く物体中心照射面の輪郭線と十字光の交点
(格納した全交点)の3次元座標位置を下記のように求
めていく。三角測量の原理が初期状態の縦スリット光上
の点の位置を算出するときしか使用できないのは、式
(1−1)〜(1−3)のθbが不明であるためであ
る。しかし、すでに算出してある物体中心照射面の平面
方程式(2−1)に式(1−1)〜式(1−3)を代入
し、更に交点の2次元座標位置(x′p,y′p)を代
入すればθbが求まる。θbを再び式(1−1)〜式
(1−3)に代入すれば、各交点の3次元座標位置が算
出される。(θaとφaは式(1−4)と式(1−5)
から求まる。)
When the above operation is completed, the three-dimensional coordinate positions of the intersections (all the stored intersections) of the contour line of the object center irradiation surface and the cross light except for 13-1 and 13-2 in FIG. 3 are as follows. To seek. The principle of triangulation can be used only when calculating the position of a point on the vertical slit light in the initial state, because θb in equations (1-1) to (1-3) is unknown. However, the equations (1-1) to (1-3) are substituted into the already calculated plane equation (2-1) of the object center irradiation surface, and the two-dimensional coordinate position (x′p, y) of the intersection is further calculated. By substituting'p), θb can be obtained. By substituting θb into equations (1-1) to (1-3) again, the three-dimensional coordinate position of each intersection is calculated. (Θa and φa are equations (1-4) and (1-5)
Can be obtained from )

【0012】交点の3次元位置の算出により、物体中心
照射面の輪郭線の3次元空間上の直線方程式を求める。
物体中心照射面(図3中1−1)の輪郭線の直線方程式
と、隣接面上の輪郭線(物体中心照射面と共有する輪郭
線以外)とスリット光の交点(例:図3中13−6)の
2次元座標位置を用いて以下の方法により各交点の3次
元座標位置を算出する。求めた物体中心照射面の輪郭線
の直線方程式を (x−x0)/L=(y−y0)/M=(z−z0)/N ・・・式(2−2) (x0,y0,z0,L,M,Nは計算済み) とする。また輪郭線上の交点(図3中13−6)の座標
を(x1,y1,z1)と仮定すると、隣接面の平面方
程式は下式のようにおける。 A(x−x1)+B(y−y1)+C(z−z1)=0 ・・・式(2−3) 式(2−2)は式(2−3)上にあるため、以下の2式
が得られる。 A・L+B・M+C・N=0 ・・・式(2−4) (∵直線の方向べクトル⊥平面の法線べクトル) A(x0−x1)+B(y0−y1)+C(z0−z1)=0 ・・・式(2−5) (∵直線上の点(x0,y0,z0)は平面上にある) 式(2−3),式(2−4),式(2−5)の3式から
A,B,Cを消去すると式(2−8)が得られる。 Fa・x+Fb・y+Fc・z+Fd=0 ・・・式(2−8) (Fa,Fb,Fc,Fdはx1,y1,z1の関数) x1,y1,z1はまた式(1−1)〜(1−3)で表
わされるため、これらを式(2−8)に代入し、更に式
(2−2)の直線上の(x0,y0,z0)以外の点を
代入すると式(2−8)はθbのみの式で表わされるか
ら、θbを解けばこの交点の3次元座標位置(x1,y
1,z1)が求まる。同様にして隣接面上の全交点の3
次元座標が求まる。他の隣接面についても上記と同様の
方法で輪郭線とスリット光の交点の3次元座標位置が求
まり、計測物体の形状及び位置を識別することができ
る。
By calculating the three-dimensional position of the intersection, a linear equation in the three-dimensional space of the contour line of the object center irradiation surface is obtained.
A straight line equation of the contour line of the object-center-irradiated surface (1-1 in FIG. 3) and an intersection of the contour line on the adjacent surface (other than the contour line shared with the object-center-irradiated surface) and the slit light (example: 13 in FIG. 3) The three-dimensional coordinate position of each intersection is calculated by the following method using the two-dimensional coordinate position of -6). The linear equation of the contour line of the object center irradiation surface obtained is (x−x0) / L = (y−y0) / M = (z−z0) / N (2-2) (x0, y0, z0, L, M and N have been calculated). Further, assuming that the coordinates of the intersection (13-6 in FIG. 3) on the contour line are (x1, y1, z1), the plane equation of the adjacent surface is as in the following equation. A (x−x1) + B (y−y1) + C (z−z1) = 0 Formula (2-3) Since Formula (2-2) is on Formula (2-3), the following 2 The formula is obtained. A ・ L + B ・ M + C ・ N = 0 equation (2-4) (∵ straight line direction vector ⊥ plane normal vector) A (x0-x1) + B (y0-y1) + C (z0-z1 ) = 0 Equation (2-5) (Point (x0, y0, z0) on the ∵ straight line is on the plane) Equation (2-3), Equation (2-4), Equation (2-5) (2-8) is obtained by eliminating A, B, and C from the three expressions in (1). Fa · x + Fb · y + Fc · z + Fd = 0 Equation (2-8) (Fa, Fb, Fc, Fd are functions of x1, y1, z1) x1, y1, z1 are also equations (1-1) to ( 1-3), these are substituted into equation (2-8), and if points other than (x0, y0, z0) on the straight line of equation (2-2) are substituted, equation (2-8) ) Is expressed only by θb, so if θb is solved, the three-dimensional coordinate position (x1, y) of this intersection is obtained.
1, z1) is obtained. Similarly, 3 of all intersections on the adjacent surface
Dimensional coordinates are obtained. With respect to the other adjacent surfaces, the three-dimensional coordinate position of the intersection of the contour line and the slit light can be obtained by the same method as above, and the shape and position of the measurement object can be identified.

【0013】[0013]

【発明の効果】要するに本発明によれば、レーザーによ
るスリット光を複数交差させ、これを3次元の計測物体
に照射するとともに次の照射では交差点付近を中心に複
数スリット光を回転させ、計測物体の前回とは違う位置
に照射していき、計測物体上に照射された複数スリット
光によりできる切断線をカメラで各回転毎に撮像して切
断線データにより計測物体の位置,形状を識別すること
と、3次元の計測物体に交差する複数のスリット光を照
射するレーザーと、上記スリット光を発するレーザーヘ
ッドを交差点付近を中心の回転及び上下左右の平行移動
が可能に装架したレーザーヘッド架台と、上記スリット
光が照射されている計測物体を撮像するカメラと、上記
カメラで撮像された画像信号を処理する画像処理部及び
上記レーザーヘッドの作動を制御するレーザーヘッド制
御部を内蔵したコンピューターとを具えたこととによ
り、従来の1本のスリット光を使用したスリット光投影
法に比べてスリット光を照射した計測物体の撮像回数が
減り、識別処理時間の短縮が図れるとともに、回転中心
となる交差点が計測物体の輪郭線上にのらない限り、ス
リット光の方向による形状識別の精度低下が改善される
3次元画像計測方法及び装置を得るから、本発明は産業
上極めて有益なものである。
In summary, according to the present invention, a plurality of slit light beams by a laser are crossed, and the three-dimensional measurement object is irradiated with this, and in the next irradiation, a plurality of slit light beams are rotated around the intersection to measure the measurement object. Irradiate a position different from the previous one, and take a picture of the cutting line formed by the multiple slit light irradiated on the measurement object for each rotation with the camera, and identify the position and shape of the measurement object from the cutting line data. A laser for irradiating a three-dimensional measurement object with a plurality of slit light beams, and a laser head mount on which a laser head for emitting the slit light beams is mounted so as to be capable of rotating around an intersection and moving vertically and horizontally. A camera for capturing an image of the measurement object illuminated by the slit light, an image processing unit for processing an image signal captured by the camera, and the laser head. Since it has a computer with a built-in laser head control unit to control the operation of the, the number of imaging of the measurement object irradiated with slit light is reduced compared with the conventional slit light projection method using one slit light. A three-dimensional image measuring method and apparatus that can shorten the identification processing time and can improve the accuracy of shape identification depending on the direction of the slit light is improved unless the intersection serving as the center of rotation lies on the contour line of the measurement object. Therefore, the present invention is extremely useful in industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明3次元画像計測方法の一実施例における
実施装置の模式図である。
FIG. 1 is a schematic diagram of an implementation device in an embodiment of a three-dimensional image measuring method of the present invention.

【図2】本装置の動作の際に使用する三角測量の原理図
である。
FIG. 2 is a principle diagram of triangulation used when the apparatus operates.

【図3】本装置の動作を説明する概念図である。FIG. 3 is a conceptual diagram illustrating the operation of the present apparatus.

【図4】画像処理部のフローチャートである。FIG. 4 is a flowchart of an image processing unit.

【図5】従来のスリット光投影法の模式図である。FIG. 5 is a schematic diagram of a conventional slit light projection method.

【図6】従来の他のスリット光投影法の模式図である。FIG. 6 is a schematic view of another conventional slit light projection method.

【符号の説明】[Explanation of symbols]

1 計測物体 2 十字スリット光 3 レーザー 4 レーザーヘッド 5 レーザーヘッド架台 6 CCDカメラ 7 コンピューター 8 画像処理部 9 レーザーヘッド制御部 10 画像信号 11 回転制御信号 1 Measurement object 2 Cross slit light 3 Laser 4 Laser head 5 Laser head mount 6 CCD camera 7 Computer 8 Image processing unit 9 Laser head control unit 10 Image signal 11 Rotation control signal

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G06T 1/00 (72)発明者 大林 和明 名古屋市港区大江町6番地19号 MHIエ アロスペースシステムズ株式会社内Continuation of front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location G06T 1/00 (72) Inventor Kazuaki Obayashi 6-19 Oemachi, Minato-ku, Nagoya MHI Aerospace Systems Stocks In the company

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 レーザーによるスリット光を複数交差さ
せ、これを3次元の計測物体に照射するとともに次の照
射では交差点付近を中心に複数スリット光を回転させ、
計測物体の前回とは違う位置に照射していき、計測物体
上に照射された複数スリット光によりできる切断線をカ
メラで各回転毎に撮像して切断線データにより計測物体
の位置,形状を識別することを特徴とする3次元画像計
測方法。
1. A plurality of slit lights by a laser are crossed, and the three-dimensional measurement object is irradiated with the slit lights, and in the next irradiation, the slit lights are rotated around the intersection,
Irradiate the measurement object at a position different from the previous time, image the cutting line formed by the multiple slit light irradiated on the measurement object with each camera with each rotation, and identify the position and shape of the measurement object from the cutting line data. A three-dimensional image measuring method characterized by:
【請求項2】 3次元の計測物体に交差する複数のスリ
ット光を照射するレーザーと、上記スリット光を発する
レーザーヘッドを交差点付近を中心の回転及び上下左右
の平行移動が可能に装架したレーザーヘッド架台と、上
記スリット光が照射されている計測物体を撮像するカメ
ラと、上記カメラで撮像された画像信号を処理する画像
処理部及び上記レーザーヘッドの作動を制御するレーザ
ーヘッド制御部を内蔵したコンピューターとを具えたこ
とを特徴とする3次元画像計測装置。
2. A laser for irradiating a three-dimensional measurement object with a plurality of slit light beams intersecting with each other, and a laser head for emitting the slit light beams mounted such that the laser head can rotate about an intersection and move in parallel vertically and horizontally. A head frame, a camera for capturing an image of a measurement object illuminated by the slit light, an image processing unit for processing an image signal captured by the camera, and a laser head control unit for controlling the operation of the laser head are incorporated. A three-dimensional image measuring device characterized by having a computer.
JP6248680A 1994-09-16 1994-09-16 Method and apparatus for measuring three-dimensional image Withdrawn JPH0886616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6248680A JPH0886616A (en) 1994-09-16 1994-09-16 Method and apparatus for measuring three-dimensional image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6248680A JPH0886616A (en) 1994-09-16 1994-09-16 Method and apparatus for measuring three-dimensional image

Publications (1)

Publication Number Publication Date
JPH0886616A true JPH0886616A (en) 1996-04-02

Family

ID=17181740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6248680A Withdrawn JPH0886616A (en) 1994-09-16 1994-09-16 Method and apparatus for measuring three-dimensional image

Country Status (1)

Country Link
JP (1) JPH0886616A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6243124B1 (en) 1997-06-25 2001-06-05 Ricoh Company, Ltd. Method of evaluating characteristics of a light beam, apparatus for evaluating the characteristics, and apparatus for adjusting a write unit by employing the evaluation method
JP2004077410A (en) * 2002-08-22 2004-03-11 Ishikawajima Harima Heavy Ind Co Ltd Target projection type three-dimensional geometry measuring method and target projection type three-dimensional geometry measuring apparatus
WO2006013635A1 (en) * 2004-08-03 2006-02-09 Techno Dream 21 Co., Ltd. Three-dimensional shape measuring method and apparatus for the same
CN100388127C (en) * 1998-06-23 2008-05-14 株式会社理光 Apparatus for adjusting a write unit by employing the method of evaluating characteristics of a light beam
JP2012527611A (en) * 2009-05-21 2012-11-08 サムスン ヘヴィ インダストリーズ カンパニー リミテッド Flatbed scan module, flatbed scan system, jig for measuring alignment error of flatbed scan module, and method of measuring alignment error of flatbed scan module using the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6243124B1 (en) 1997-06-25 2001-06-05 Ricoh Company, Ltd. Method of evaluating characteristics of a light beam, apparatus for evaluating the characteristics, and apparatus for adjusting a write unit by employing the evaluation method
US6268876B1 (en) 1997-06-25 2001-07-31 Ricoh Company, Ltd. Method of evaluating characteristics of a light beam apparatus for evaluating the characteristics and apparatus for adjusting a write unit by employing the evaluation method
US6275249B1 (en) 1997-06-25 2001-08-14 Ricoh Company, Ltd. Method of evaluating characteristics of a light beam, apparatus for evaluating the characteristics, and apparatus for adjusting a write unit by employing the evaluation method
US6353455B1 (en) 1997-06-25 2002-03-05 Ricoh Company, Ltd. Method of evaluating characteristics of a light beam, apparatus for evaluating the characteristics, and apparatus for adjusting a write unit by employing the evaluating method
CN100388127C (en) * 1998-06-23 2008-05-14 株式会社理光 Apparatus for adjusting a write unit by employing the method of evaluating characteristics of a light beam
JP2004077410A (en) * 2002-08-22 2004-03-11 Ishikawajima Harima Heavy Ind Co Ltd Target projection type three-dimensional geometry measuring method and target projection type three-dimensional geometry measuring apparatus
WO2006013635A1 (en) * 2004-08-03 2006-02-09 Techno Dream 21 Co., Ltd. Three-dimensional shape measuring method and apparatus for the same
EP1777485A1 (en) * 2004-08-03 2007-04-25 Techno Dream 21 Co., Ltd. Three-dimensional shape measuring method and apparatus for the same
US7876455B2 (en) 2004-08-03 2011-01-25 TechnoDream21 Co., Ltd. Three-dimensional shape measuring method and apparatus for the same
EP1777485A4 (en) * 2004-08-03 2012-09-19 Techno Dream 21 Co Ltd Three-dimensional shape measuring method and apparatus for the same
JP2012527611A (en) * 2009-05-21 2012-11-08 サムスン ヘヴィ インダストリーズ カンパニー リミテッド Flatbed scan module, flatbed scan system, jig for measuring alignment error of flatbed scan module, and method of measuring alignment error of flatbed scan module using the same

Similar Documents

Publication Publication Date Title
WO2016171263A1 (en) Shape measuring apparatus and shape measuring method
CN105190235A (en) Compensation of a structured light scanner that is tracked in six degrees-of-freedom
CN107202555B (en) Connecting rod machining rotating disc clamp visual detection device and detection method
JP2008241643A (en) Three-dimensional shape measuring device
JPH11166818A (en) Calibrating method and device for three-dimensional shape measuring device
US4760269A (en) Method and apparatus for measuring distance to an object
JP2007093412A (en) Three-dimensional shape measuring device
JP2007508557A (en) Device for scanning three-dimensional objects
JP2015072197A (en) Shape measurement device, structure manufacturing system, shape measurement method, structure manufacturing method, and shape measurement program
JP2623367B2 (en) Calibration method of three-dimensional shape measuring device
JPH0886616A (en) Method and apparatus for measuring three-dimensional image
JP2000205821A (en) Instrument and method for three-dimensional shape measurement
JP2680460B2 (en) Angle measuring device for bending machine
JP2009192483A (en) Three dimensional shape measuring method and three dimensional shape measuring device
JPH06109437A (en) Measuring apparatus of three-dimensional shape
JP2001304827A (en) Sectional shape measuring apparatus and sectional shape measuring method
JPS6298204A (en) Recognizing method for object
JPH10185514A (en) Coil position detector
JPH0560518A (en) Three-dimensional coordinate measurement device
JP3389804B2 (en) Shape measuring device and coil position detecting device
JPH02268207A (en) Shape recognizing apparatus
JPH11230718A (en) Ball height measuring method of ball grid array
JPH06221811A (en) Method for two-dimensional measurement of light and method and apparatus for measuring surface roughness
JPH06323820A (en) Three-dimensional profile measuring method
JPH05329793A (en) Visual sensor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011120