JPH0885805A - Production of sintered parts - Google Patents

Production of sintered parts

Info

Publication number
JPH0885805A
JPH0885805A JP27896393A JP27896393A JPH0885805A JP H0885805 A JPH0885805 A JP H0885805A JP 27896393 A JP27896393 A JP 27896393A JP 27896393 A JP27896393 A JP 27896393A JP H0885805 A JPH0885805 A JP H0885805A
Authority
JP
Japan
Prior art keywords
sintered body
shaving
powder
sizing
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27896393A
Other languages
Japanese (ja)
Inventor
Takayuki Tsukahara
隆行 塚原
Masahiro Kondo
雅弘 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HITACHI METAL EE F T KK
Original Assignee
HITACHI METAL EE F T KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HITACHI METAL EE F T KK filed Critical HITACHI METAL EE F T KK
Priority to JP27896393A priority Critical patent/JPH0885805A/en
Publication of JPH0885805A publication Critical patent/JPH0885805A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE: To easily impart high dimensional precision to a sintered body at a low cost by sintering an injection-molded body of metal powder and subjecting the resultant high density powder sintered compact to shaving as post-treatment. CONSTITUTION: Metal powder is injection-molded in a metal mold with an org. binder and the resultant injection-molded body is sintered to obtain a sintered compact having fine closed spherical pores and 95% relative density ratio. This powder sintered compact is subjected to shaving as post-treatment after sintering to cut part of the sintered compact by shear or it is subjected to the shaving and sizing not accompanied by a cubic change of the sintered compact. The shape and dimensional precision of the sintered compact can relatively easily be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属粉末を射出成形法
によって成形した後焼結する焼結部品の製造方法に関す
るものであり、焼結体の寸法精度を高める方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a sintered part in which metal powder is molded by an injection molding method and then sintered, and more particularly to a method for improving the dimensional accuracy of a sintered body.

【0002】[0002]

【従来の技術】金属粉末射出成形法は3次元の複雑な形
状の金属部品をニアネットシェープで成形することがで
きるので近年急速に普及しつつある。本製法では射出成
形する時の金属粉末に流動性を付与するために金属粉末
と多量のバインダーを混合して被成形材としており、そ
のため焼結時の寸法収縮が大きい。最終製品における寸
法精度を向上させるには焼結時の大きな収縮をいかに精
巧に管理するかが重要となるが、一般的には焼結のまま
で目的の呼び寸法に対し±0.5%の誤差があるといわ
れている。したがって更に高精度が要求される場合には
焼結後に何らかの後処理が必要となる。従来、金属粉末
射出成形品の寸法精度を向上させる後処理の方法として
一般的に焼結後にサイジング、またはコイニングが行わ
れている。前者は通常、相対密度比が高い焼結体に適用
され、後者は低い焼結体に適用され、その一例としては
特公平1−51521号公報に開示されたものが知られ
ている。
2. Description of the Related Art The metal powder injection molding method is rapidly becoming popular in recent years because it can mold a metal part having a complicated three-dimensional shape with a near net shape. In this manufacturing method, a metal powder and a large amount of a binder are mixed in order to impart fluidity to the metal powder at the time of injection molding, so that the material to be molded has a large dimensional shrinkage during sintering. In order to improve the dimensional accuracy of the final product, it is important to manage delicately the large shrinkage at the time of sintering, but generally it is ± 0.5% of the target nominal size with the sintering as it is. It is said that there is an error. Therefore, if higher precision is required, some kind of post-treatment is required after sintering. Conventionally, sizing or coining is generally performed after sintering as a post-treatment method for improving the dimensional accuracy of a metal powder injection molded product. The former is usually applied to a sintered body having a high relative density ratio, and the latter is applied to a low sintered body, and an example thereof is disclosed in Japanese Patent Publication No. 1-51521.

【0003】相対密度比が約93%以下の粉末焼結体
は、表層部と内部の空孔がつながっていて、空孔の形状
も不規則な形状を呈しており、このような状態の粉末焼
結体を外部から機械的に圧縮すると空孔が圧縮され焼結
体の体積が収縮する。特公平1−51521はこの原理
を利用して所望の形状,寸法に焼結体を仕上げようとす
るものである。
In the powder sintered body having a relative density ratio of about 93% or less, the surface layer portion and the internal voids are connected, and the voids have an irregular shape. When the sintered body is mechanically compressed from the outside, the pores are compressed and the volume of the sintered body shrinks. Japanese Examined Patent Publication No. 1-51521 aims to finish a sintered body into a desired shape and size by utilizing this principle.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前述し
た特公平1−51521号公報に開示された体積収縮を
伴う圧縮成形法を高密度の粉末焼結品に適用し使用した
場合、圧縮成形に使用する治工具類や装置が非常に高価
となる欠点を有する。一方で一般的に相対密度比93%
を越える粉末焼結体は空孔がそれぞれ独立しており、球
形または概ね球形に近い形となっている。このような粉
末焼結体に図4に示すように外部から圧縮力を加える
と、独立した微細な球状の空孔は金属マトリックスの流
動とともに圧縮力の加わらない方向に移動してしまうの
で粉末焼結体も変形はするが体積変化は実質的におこら
ない。したがって、高密度の粉末焼結体に体積変化を伴
う圧縮成形法、いわゆるコイニングを適用するには粉末
焼結体を全周から高圧で拘束する必要があり、特に複雑
な3次元形状の粉末焼結体を金型を用いて全周を拘束し
て圧縮するためには、射出成形に用いる金型以上の高強
度で高価な金型が必要となり実用性に欠ける。
However, when the compression molding method involving volume shrinkage disclosed in Japanese Patent Publication No. 1-51521 described above is applied to a high density powder sintered product and used, it is used for compression molding. It has the drawback that the tools and equipment used are very expensive. On the other hand, the relative density ratio is generally 93%
The pores of the powder sintered body exceeding the above are independent of each other, and have a spherical shape or a substantially spherical shape. When a compressive force is applied to such a powder sintered body from the outside as shown in FIG. 4, the independent fine spherical pores move in the direction in which the compressive force is not applied with the flow of the metal matrix. The aggregate also deforms, but the volume does not change substantially. Therefore, in order to apply a compression molding method involving volume change, that is, so-called coining, to a high-density powder sintered body, it is necessary to constrain the powder sintered body at a high pressure from the entire circumference, and particularly, the powder sintering of a complicated three-dimensional shape is required. In order to compress the bound body by restraining the entire circumference by using a mold, a mold having higher strength and higher than the mold used for injection molding is required, which is not practical.

【0005】したがって、高密度の粉末焼結体の成形に
対しては通常体積変化を伴わないプレス成形法、いわゆ
るサイジングが行われている。これは粉末焼結体の所望
の部位、通常、製品の機能上重要な部位のみを金型で拘
束し、製品の機能としてあまり重要でない個所は拘束し
ないでプレス成形するもので、金型による拘束部は金型
寸法どうり仕上がるのに対し、非拘束部の寸法ははみだ
した体積により大きくばらつく。そのほか、高密度の粉
末焼結体を体積変化を伴う圧縮成形で所望の形状,寸法
に仕上げる方法としては熱間または冷間での静水圧プレ
ス法があるが、粉末焼結体の部位間の僅かな密度差によ
って圧縮成形後にはより以上に寸法がばらつくという欠
点を有する。したがって本発明の目的は、微細な独立し
た球状の空孔を有する高密度の粉末焼結体を得たのち後
処理を加えることでこの焼結体の形状,寸法精度を向上
させることであり、この後処理の工程を導入した粉末焼
結体の製造方法を提供することである。
Therefore, a press-molding method without volume change, that is, so-called sizing is usually used for molding a high-density powder sintered body. This is because the desired part of the powder sintered body, usually only the part that is important for the function of the product, is constrained by the die, and the part that is not so important for the function of the product is pressed without being constrained by the die. While the part is finished according to the mold size, the size of the non-restraint part greatly varies due to the protruding volume. In addition, there is a hot or cold isostatic pressing method for finishing a high-density powder sintered body into a desired shape and size by compression molding with volume change. It has a drawback that the dimensions are more uneven after compression molding due to a slight difference in density. Therefore, an object of the present invention is to improve the shape and dimensional accuracy of this sintered body by adding post-treatment after obtaining a high-density powder sintered body having fine independent spherical pores, It is an object of the present invention to provide a method for producing a powder sintered body, in which this post-treatment step is introduced.

【0006】[0006]

【課題を解決するための手段】本発明者は前述した不具
合を解消するため検討を重ねた結果、粉末焼結体を寸法
的に高精度に仕上げる方法として、シェービングを施す
か、またはサイジングとシェービングの両方を施すこと
が有利であることを見いだして本発明を完成させたもの
である。より具体的に本発明は、前述した従来の課題を
解決するための製造方法として、金属粉末を射出成形法
によって成形し、焼結後の粉末焼結体に後処理を施す焼
結部品の製造方法において、焼結後の相対密度比が95
%以上を有する前記粉末焼結体に、前記焼結後の後処理
として前記焼結体の一部を剪断力によって切断するシェ
ービングまたは前記シェービングと前記焼結体が体積変
化を伴なわないサイジングを施すことを特長とする焼結
部品の製造方法である。すなわち本発明の最大の特徴は
高密度の粉末焼結体を得たのちこの粉末焼結体にシェー
ビングを施すことにある。
As a result of repeated studies to solve the above-mentioned problems, the present inventor has performed shaving or sizing and shaving as a method for finishing a powder sintered body with high dimensional accuracy. The present invention has been completed by finding that it is advantageous to apply both. More specifically, the present invention, as a manufacturing method for solving the above-mentioned conventional problems, manufactures a sintered component in which a metal powder is molded by an injection molding method and a post-treatment is performed on a powder sintered body after sintering. In the method, the relative density ratio after sintering is 95
% Or more, shaving that cuts a part of the sintered body by a shearing force or sizing that does not cause the volume change of the shaving and the sintered body as a post-treatment after the sintering. This is a method for manufacturing a sintered part, which is characterized by applying it. That is, the greatest feature of the present invention resides in that after obtaining a high-density powder sintered body, the powder sintered body is shaved.

【0007】[0007]

【作用】本発明においてシェービングとは、対向する1
対のパンチとダイスの間に被工作物である粉末焼結体を
載置し、パンチとダイスを嵌合させ、粉末焼結体の一部
を剪断力により切断して所望の形状,寸法に仕上げるこ
とをいい、切断により一部が除去される粉末焼結体の形
状や寸法は任意に選択できる。ここでサイジングとは、
金型もしくは治具内に粉末焼結体を載置し、プレス圧を
加えて金型もしくは治具に拘束される面を所望の形状,
寸法に仕上げすることであり、この中で体積変化を伴う
ものを特にコイニングという。本発明において。相対密
度比を95%以上に限定した理由は、95%未満では空
孔が大きいため、切断されたシェービング面の表面粗度
が極端に粗くなることによる。
In the present invention, shaving is the opposite of 1
Place the powder sintered body that is the work piece between the pair of punch and die, fit the punch and die, and cut a part of the powder sintered body by shearing force to obtain the desired shape and size. This means finishing, and the shape and dimensions of the powder sintered body, a part of which is removed by cutting, can be arbitrarily selected. What is sizing here?
Place the powder sintered body in a mold or jig and apply pressing pressure to make the surface constrained by the mold or jig a desired shape.
It is to finish to dimensions, and those involving volume change are called coining. In the present invention. The reason for limiting the relative density ratio to 95% or more is that if the ratio is less than 95%, the pores are large, and the surface roughness of the cut shaving surface becomes extremely rough.

【0008】本発明においてシェービングは単独、もし
くはサイジングと複合で用いることが可能である。複合
で使用する場合、シェービングとサイジングはいずれを
先に行ってもよい。シェービングを先に行う場合は、シ
ェービング面は寸法精度が良いので後工程のサイジング
時の金型もしくは治具にセットする時の基準面として利
用することができる。サイジングを先に行う場合には、
サイジングによりはみでた余肉部をシェービングするこ
とにより高寸法精度で仕上げることが可能となる。ま
た、高密度焼結体に施すサイジングのうち、圧縮成形す
る方法、すなわちコイニング法を行ったものはコイニン
グ型の摩耗が激しく成形後のバリが発生し易い。このバ
リ除去にもシェービングが適用できる。さらにシェービ
ングとサイジングは同時に行うことも可能である。
In the present invention, shaving can be used alone or in combination with sizing. When used in combination, either shaving or sizing may be performed first. When shaving is performed first, the shaving surface has good dimensional accuracy, and therefore can be used as a reference surface when setting in a mold or jig during sizing in a later step. If you do the sizing first,
It is possible to finish with high dimensional accuracy by shaving the excess thickness portion that is sizing. Further, among the sizings applied to the high-density sintered body, in the compression molding method, that is, the coining method is performed, the coining die is apt to be worn out easily and burrs are easily generated after the molding. Shaving can also be applied to remove this burr. Furthermore, shaving and sizing can be performed simultaneously.

【0009】[0009]

【実施例】以下に本発明を実施例にもとづき詳細に説明
する。 (実施例1)金属粉末射出成形法にて図3に示すような
スリットを有する直方体形状の焼結部品を、高い寸法精
度で得るために、まず平均粒径8.6μmのSUS31
6L水アトマイズ粉と有機バインダーからなるコンパウ
ンドを金型に射出成形して得た射出成形体を、加熱法に
より脱バインダーしたのち1280℃で2時間の焼結を
行い粉末焼結体を得た。この焼結体をアルキメデス法に
より密度測定をおこなったところ10個の平均値で相対
密度比が96.5%であった。また、寸法測定結果から
計算した10個平均の体積は1.84cm3であった。こ
の焼結体を上型,下型とも平面であるプレス治具を用い
て肉厚方向のみプレスするサイジングを伴わないプレス
加工を施し、素材の10個平均肉厚3.71mmを3.6
5mmに圧縮成形後、成形前と同様の方法で相対密度比と
体積を測定したところ、両者ともプレス前と同じ値を得
た。プレス成形した後この焼結体を図1に示す方法でひ
きつづきシェービングを施して肉厚を除く輪郭全周を成
形し、全寸法個所とも10個の寸法ばらつきが±3σの
値で0.018以下の高い寸法精度を有する焼結部品を
得ることができた。
EXAMPLES The present invention will be described in detail below based on examples. (Example 1) In order to obtain a rectangular parallelepiped-shaped sintered part having slits as shown in FIG. 3 by a metal powder injection molding method with high dimensional accuracy, first, SUS31 having an average particle size of 8.6 μm was used.
An injection-molded body obtained by injection-molding a compound consisting of 6 L water atomized powder and an organic binder into a mold was debindered by a heating method and then sintered at 1280 ° C. for 2 hours to obtain a powder sintered body. When the density of this sintered body was measured by the Archimedes method, the relative density ratio was 96.5% with an average value of 10 pieces. The average volume of 10 pieces calculated from the dimension measurement result was 1.84 cm 3 . This sintered body was subjected to press working without sizing in which only the thickness direction was pressed using a pressing jig whose upper and lower molds were flat, and 10 pieces of the raw material had an average wall thickness of 3.71 mm of 3.6.
After compression molding to 5 mm, the relative density ratio and volume were measured by the same method as before molding, and both obtained the same values as before pressing. After press molding, the sintered body is continuously shaving by the method shown in FIG. 1 to form the entire circumference of the contour excluding the wall thickness, and the dimensional variation of all 10 at all dimensions is 0.018 or less at a value of ± 3σ. It was possible to obtain a sintered part having high dimensional accuracy.

【0010】(実施例2)金属粉末射出成形法にて図3
に示すようなスリットを有する直方体形状の焼結部品
を、高い寸法精度で得るために、実施例1と同様の手順
で相対密度比96.5%の粉末焼結体を作製した。この
粉末焼結体を図2に示すように治具にセットし、1回の
プレス工程でシェービングとサイジング成形をほぼ同時
に行ったのち、成形体の相対密度比と寸法精度をそれぞ
れ10個測定したところ、相対密度比は成形前と同じ9
6.5%を示し、全個所の寸法ばらつきも±3σの値で
0.016mm以下の高い寸法精度に抑えることができ
た。次に図2の各部位の動作と機能を説明する。図2は
スリット部が途中までシェービングされた状態を示して
いる。本実施例は図3に示す形状の焼結体のスリット部
をシェービングにて成形し、他の部位をサイジングにて
成形する製造方法である。
(Embodiment 2) By the metal powder injection molding method, as shown in FIG.
In order to obtain a rectangular parallelepiped-shaped sintered part having a slit as shown in (1) with high dimensional accuracy, a powder sintered body having a relative density ratio of 96.5% was manufactured by the same procedure as in Example 1. This powder sintered body was set on a jig as shown in FIG. 2, and shaving and sizing molding were performed at approximately the same time in one pressing step, and then the relative density ratio and dimensional accuracy of each of the 10 molded bodies were measured. However, the relative density ratio was the same as before molding 9
The value was 6.5%, and the dimensional variation at all points could be suppressed to a high dimensional accuracy of 0.016 mm or less at a value of ± 3σ. Next, the operation and function of each part in FIG. 2 will be described. FIG. 2 shows a state in which the slit portion is shaving halfway. The present embodiment is a manufacturing method in which the slit portion of the sintered body having the shape shown in FIG. 3 is formed by shaving, and the other portion is formed by sizing.

【0011】まず、焼結体1を下型であるダイス6にセ
ットする。上型であるプレス主型2にはシェービングパ
ンチ4が固定され、さらにバネ7を介しプレスパンチ3
が収容されている。プレスストローク上端(待機位置)
においては、プレスパンチ面bはシェービングパンチ面
aの僅かに下方に突出するように設定されている。プレ
スストロークが開始されるとまず焼結体1の上面にプレ
スパンチ面bが接触して焼結体を固定し、ほぼ同時にシ
ェービングパンチ面aが焼結体1に接触して当たりシェ
ービング動作が開始され、シェービングパンチ4はパン
チガイド5に案内されながら下降し焼結体1のスリット
部のシェービングを完了する。引き続きプレス主型2が
下降するとプレスパンチ底面eとプレス主型のポケット
面fが合致し、プレス主型2のプレス圧力はプレスパン
チ3を介し焼結体1に伝達されサイジング動作を開始す
る。このときシェービングパンチ4は焼結体1の水平方
向の位置決めの働きもする。ストロークの進行とともに
焼結体1が変形し、最終的にストローク下端でプレスパ
ンチ面b,プレス主型面d,ダイス面cが一致するとと
もに、焼結体1はダイス6の型彫り形状に倣ってサイジ
ングが完了する。
First, the sintered body 1 is set in a die 6 which is a lower die. A shaving punch 4 is fixed to a press main mold 2 which is an upper mold, and a press punch 3 is further mounted via a spring 7.
Is housed. Upper end of press stroke (standby position)
In the above, the press punch surface b is set to project slightly below the shaving punch surface a. When the press stroke is started, the press punch surface b first contacts the upper surface of the sintered body 1 to fix the sintered body, and the shaving punch surface a contacts the sintered body 1 almost at the same time, and the shaving operation starts. Then, the shaving punch 4 is lowered while being guided by the punch guide 5 to complete the shaving of the slit portion of the sintered body 1. Then, when the press main mold 2 descends, the bottom surface e of the press punch and the pocket surface f of the press main mold match each other, and the press pressure of the press main mold 2 is transmitted to the sintered body 1 through the press punch 3 to start the sizing operation. At this time, the shaving punch 4 also functions to position the sintered body 1 in the horizontal direction. As the stroke progresses, the sintered body 1 is deformed, and finally the press punch surface b, the press main mold surface d, and the die surface c match at the lower end of the stroke, and the sintered body 1 follows the die-cutting shape of the die 6. And sizing is completed.

【0012】実施例2の製造方法を示す図2には焼結体
1に設けられたスリット部のシェービングが途中まで進
行した状態を示している。そして本実施例においてはプ
レス主型2のストロークを調整することによってサイジ
ングを伴わないシェービング加工が可能であること、シ
ェービングパンチを作動させプレス主型のストロークを
大きくすることによって、シェービングとサイジングが
ほぼ同時に行えることを示している。さらに実施例2に
示した型構造において上型のストロークに2段突き法を
採用し、まずプレスパンチ3,プレス主型2を先に下降
させてサイジングを行いスリット部に余肉を出させ、そ
の後シェービングパンチ4を下降させスリット部のシェ
ービングを行ってもよい。また、ダイス6にスライド機
構を設け、上下方向の圧縮のみでなく横方向からの圧縮
を加えるようなサイジングを行ってもよい。
FIG. 2 showing the manufacturing method of Example 2 shows a state in which the shaving of the slit portion provided in the sintered body 1 has progressed to the middle. In this embodiment, the shaving process without sizing can be performed by adjusting the stroke of the press main mold 2, and the shaving and sizing can be performed substantially by operating the shaving punch to increase the stroke of the press main mold. It shows that they can be done at the same time. Further, in the die structure shown in Example 2, the two-stage thrusting method is adopted for the stroke of the upper die, and first, the press punch 3 and the press main die 2 are first lowered to perform sizing, thereby leaving excess thickness in the slit portion, After that, the shaving punch 4 may be lowered to shave the slit portion. Further, the die 6 may be provided with a slide mechanism to perform sizing not only in the vertical compression but also in the lateral compression.

【0013】[0013]

【発明の効果】以上説明したように本発明によれば、高
密度の金属粉末焼結体に対し、シェービングを施すか、
またはシェービングとサイジングをほぼ同時に施すこと
によって、高い寸法精度を比較的容易に付与することが
できるので、得られた製品に対し性能的にもコスト的に
も非常に効果の大きい発明である。
As described above, according to the present invention, the high density metal powder sintered body is shaving or
Alternatively, by performing shaving and sizing substantially at the same time, high dimensional accuracy can be imparted relatively easily, so that the invention obtained is extremely effective in terms of both performance and cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示し、焼結体にシェービン
グ加工を施す状況を示しており、プレス下降ストローク
前(待機位置)における概念図である。
FIG. 1 shows an embodiment of the present invention, showing a state where a shaving process is performed on a sintered body, and is a conceptual diagram before a press lowering stroke (standby position).

【図2】本発明の一実施例を示し、焼結体にシェービン
グとサイジングをほぼ同時に1プレス工程で施す状況を
示しており、シェービング途中の概念図である。
FIG. 2 shows an example of the present invention, showing a situation in which shaving and sizing are performed on a sintered body almost simultaneously in one pressing step, and is a conceptual diagram during shaving.

【図3】本発明の一実施例に使用した焼結体の製品形状
を示す斜視図である。
FIG. 3 is a perspective view showing a product shape of a sintered body used in one example of the present invention.

【図4】空孔を有する焼結体に圧縮力を付加すると圧縮
力の加わらない方向に空孔が移動する状況を示す概念図
である。
FIG. 4 is a conceptual diagram showing a situation in which when a compressive force is applied to a sintered body having pores, the pores move in a direction in which the compressive force is not applied.

【符号の説明】[Explanation of symbols]

1 焼結体 2 プレス主型 3 プレスパンチ 4 シェービングパンチ 5 パンチガイド面 6 ダイス 7 バネ 8 製品位置決め 9 空孔 a シェービングパンチ面 b プレスパンチ面 c ダイス面 d プレス主型面 e プレスパンチ底面 f プレス主型のポケット面 1 Sintered Body 2 Press Main Mold 3 Press Punch 4 Shaving Punch 5 Punch Guide Surface 6 Die 7 Spring 8 Product Positioning 9 Void a Shaving Punch Surface b Press Punch Surface c Die Surface d Press Main Mold Surface e Press Punch Bottom f Press Main pocket side

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】金属粉末を射出成形法によって成形し、焼
結後の粉末焼結体に後処理を施す焼結部品の製造方法に
おいて、焼結後の相対密度比が95%以上を有する前記
粉末焼結体に、前記焼結後の後処理として前記焼結体の
一部をセン断力によって切断するシェービング、または
前記シェービングと前記焼結体が体積変化を伴なわない
サイジングを施すことを特徴とする焼結部品の製造方
法。
1. A method of manufacturing a sintered component, comprising molding a metal powder by an injection molding method and subjecting the powder sintered body after sintering to post-treatment, wherein the relative density ratio after sintering is 95% or more. As a post-treatment after the sintering, the powder sintered body is subjected to shaving for cutting a part of the sintered body by shearing force, or sizing where the shaving and the sintered body do not change in volume. A method for producing a characteristic sintered part.
JP27896393A 1993-10-12 1993-10-12 Production of sintered parts Pending JPH0885805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27896393A JPH0885805A (en) 1993-10-12 1993-10-12 Production of sintered parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27896393A JPH0885805A (en) 1993-10-12 1993-10-12 Production of sintered parts

Publications (1)

Publication Number Publication Date
JPH0885805A true JPH0885805A (en) 1996-04-02

Family

ID=17604512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27896393A Pending JPH0885805A (en) 1993-10-12 1993-10-12 Production of sintered parts

Country Status (1)

Country Link
JP (1) JPH0885805A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013115325A1 (en) * 2012-02-03 2015-05-11 日産自動車株式会社 Method and apparatus for manufacturing sintered magnet
CN115740092A (en) * 2022-11-18 2023-03-07 扬州保来得科技实业有限公司 Powder metallurgy thin flange part shaping die and shaping method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013115325A1 (en) * 2012-02-03 2015-05-11 日産自動車株式会社 Method and apparatus for manufacturing sintered magnet
CN115740092A (en) * 2022-11-18 2023-03-07 扬州保来得科技实业有限公司 Powder metallurgy thin flange part shaping die and shaping method
CN115740092B (en) * 2022-11-18 2024-02-06 扬州保来得科技实业有限公司 Shaping die and shaping method for powder metallurgy thin flange piece

Similar Documents

Publication Publication Date Title
US7147819B2 (en) Method for producing highly porous metallic moulded bodies close to the desired final contours
US8029724B2 (en) Method of making a cutting insert with a hole for clamping
US5403373A (en) Hard sintered component and method of manufacturing such a component
JP2002528644A (en) Method for manufacturing sintered member with secondary deformation of green compact
JP3215368B2 (en) Method of manufacturing indexable tip and indexable tip
JPH0885805A (en) Production of sintered parts
JP2003077769A (en) Method and device for manufacturing pellet for solid electrolytic capacitor
JPS59107003A (en) Production of stepped sintered and forged parts
EP0163718A1 (en) A method for manufacturing a tool suitable for cutting and/or shaping work, and a tool which has preferably been manufactured in accordance with the method
WO2022099686A1 (en) Cam component manufacturing method and use in textile machines
JPH06145715A (en) Production of parts from powder
KR20050115738A (en) Menufacturing method for metal casting moulds
SU1129028A1 (en) Method of making sintered articles
JP5312931B2 (en) Method for manufacturing sintered parts
JP3939671B2 (en) Three-dimensional cam manufacturing method and powder molding apparatus
JPH1182459A (en) Split nut and manufacture of the same
JP3763797B2 (en) Manufacturing method of sintered member with inner hole with excellent coaxial accuracy of inner and outer circumference
JPH0328302A (en) Manufacture of sintered body
JPH0641603A (en) Press-forming machine
JPH04314801A (en) Production of injection-sintered metal member
JPS59219401A (en) Production of sintered parts having undercut shape part
WO2010096013A1 (en) Method and pressing tools for making cutting inserts
JPH0645710U (en) Dust forming mold
JPH079589U (en) Dust forming mold
JPH0657841B2 (en) Powder molding method