JPH0885783A - Working fluid - Google Patents

Working fluid

Info

Publication number
JPH0885783A
JPH0885783A JP6221759A JP22175994A JPH0885783A JP H0885783 A JPH0885783 A JP H0885783A JP 6221759 A JP6221759 A JP 6221759A JP 22175994 A JP22175994 A JP 22175994A JP H0885783 A JPH0885783 A JP H0885783A
Authority
JP
Japan
Prior art keywords
working fluid
weight
refrigerant
component ratio
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6221759A
Other languages
Japanese (ja)
Inventor
Hisanori Kataoka
久典 片岡
Masami Ikemoto
真佐美 池元
Kenji Nasako
賢二 名迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6221759A priority Critical patent/JPH0885783A/en
Publication of JPH0885783A publication Critical patent/JPH0885783A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE: To obtain a refrigerant that does not destruct ozone, has thermophysical properties that are the same as or better than those of chlorodifluoromethane, and can be used in existing apparatuses. CONSTITUTION: A refrigerant has a composition comprising 20 to 65wt.% (hereinafter referred to as %) trifluoroethane (R143a) and 35 to 80% cyclopropane (RC27 deg.), or 10 to 65% RC270 and 35 to 90% 1,1,2-tetrafluoroethane (R134a), or 65% or less R143a, 25 to 80% RC270, and the balance of R134a with the range excluding the part where the component ratio of R143a to RC270 is such that in the section enclosed by the points A1 to F1 in the figure and where the component ratio of any of R143a, RC270, and R134 becomes 0, or 30% or less R143a, 20% or less RC270, and the balance of R134a with the range excluding the part where the component ratio of R143a to RC270 is such that in the section enclosed by the points H1 to M1 in the figure and where the component ratio of any of R134a, RC270, and R134a becomes 0 with the composition having an ozone destruction coefficient being 0.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エアコン等のヒートポ
ンプ装置に使用され、且つオゾン層を破壊する危険性の
ない作動流体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a working fluid used in a heat pump device such as an air conditioner and having no risk of destroying the ozone layer.

【0002】[0002]

【従来の技術】従来、エアコン等のヒートポンプ装置に
於て、クロロジフルオロメタン(CHClF2、以下R2
2)が、冷媒として用いられている。R22は、単体か
らなる作動流体として優れている冷媒である。R22の
冷媒としての特性は、蒸発温度が略−5℃、凝縮温度が
略40℃であり、前記温度の範囲内で通常使用され、成績
係数が略4.81であり、冷凍効果が略155.75kJ/kgであ
る。又、R22は、不燃であり、化学的にも安定で熱力
学的性質が良いので、冷媒として広く実用に供されてい
る。
2. Description of the Related Art Conventionally, in heat pump devices such as air conditioners, chlorodifluoromethane (CHClF 2 , hereinafter R2
2) is used as a refrigerant. R22 is a refrigerant that is excellent as a working fluid composed of a simple substance. The characteristics of R22 as a refrigerant are such that the evaporation temperature is approximately -5 ° C and the condensation temperature is approximately 40 ° C, and it is normally used within the above temperature range, the coefficient of performance is approximately 4.81, and the refrigerating effect is approximately 155.75 kJ / It is kg. Further, R22 is nonflammable, chemically stable, and has good thermodynamic properties, so that it is widely used as a refrigerant.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、近年、
成層圏オゾン層を破壊する能力の大きい特定フロンの生
産及び使用の廃止が提唱されている。成層圏のオゾンを
破壊する能力は、トリクロロフルオロメタン(CCl
3F、「R11」)の成層圏オゾン破壊能力を1としたと
きの成層圏オゾン破壊能力の比であるオゾン破壊係数で
示される。特定フロンの代替冷媒として、成層圏オゾン
破壊係数が0.05と小さいクロロジフルオロメタン(CH
ClF2、以下「R22」)の生産及び使用の増大が予想
される。しかしながら、成層圏オゾン破壊係数が微小で
あっても、R22の使用量の増大により、R22の成層
圏オゾン層に与える影響は、無視できないものとなる。
そこで、R22の冷媒としての特性と同等、又はそれ以
上の特性を有する冷媒であって、成層圏オゾン破壊係数
が0、即ち分子構造に塩素を含まないものが求められて
いる。この要望に合う冷媒は、単体ではアンモニアがあ
るが、安全性に問題があるため、大形の冷凍システムに
しか用いられていない。従って、分子構造中に塩素を含
まない冷媒を2種又はそれ以上混合することによりR2
2の冷媒の特性に近い混合冷媒からなる作動流体の早期
開発が望まれている。本発明の目的は、オゾン破壊係数
が0である2種又は3種以上の成分からなり、冷媒の特
性が表1に挙げるR22と同等、又はそれ以上であり、
R22の代替となる作動流体を提供することである。
However, in recent years,
The abolition of the production and use of specific CFCs, which have a large capacity to destroy the stratospheric ozone layer, has been proposed. The ability to destroy ozone in the stratosphere is trichlorofluoromethane (CCl).
3 F, represented by ozone depletion is the ratio of the stratospheric ozone depletion potential when set to 1 stratospheric ozone depletion potential of "R11"). Chlorodifluoromethane (CH) with a stratospheric ozone depletion coefficient as small as 0.05
Increased production and use of ClF 2 , hereinafter "R22") is expected. However, even if the stratospheric ozone depletion coefficient is small, the effect of R22 on the stratospheric ozone layer cannot be ignored due to the increase in the amount of R22 used.
Therefore, there is a demand for a refrigerant having characteristics equal to or higher than the characteristics of R22 as a refrigerant, and having a stratospheric ozone depletion coefficient of 0, that is, a molecular structure containing no chlorine. A single refrigerant that meets this demand is ammonia, but it is only used in large refrigeration systems because of its safety problems. Therefore, by mixing two or more refrigerants containing no chlorine in the molecular structure, R2
There is a demand for early development of a working fluid composed of a mixed refrigerant having characteristics close to those of the second refrigerant. The object of the present invention is composed of two or more components having an ozone depletion potential of 0, and the characteristics of the refrigerant are equal to or higher than R22 listed in Table 1, and
It is to provide an alternative working fluid to R22.

【0004】[0004]

【表1】 [Table 1]

【0005】[0005]

【課題を解決する為の手段】上記課題を解決するため
に、本発明の作動流体は、トリフルオロエタン20〜6
5重量%、シクロプロパン35〜80重量%である少な
くとも二種を混合して成る。又、本発明の作動流体は、
シクロプロパン10〜65重量%、1,1,1,2−テ
トラフルオロエタン35〜90重量%である少なくとも
二種を混合して成る。更に、本発明の作動流体は、トリ
フルオロエタン65重量%以下、シクロプロパン25〜
80重量%であって、残部が1,1,1,2−テトラフ
ルオロエタンである少なくとも三種を混合して成る。
又、本発明の作動流体は、トリフルオロエタン30重量
%以下、シクロプロパン20重量%以下であって、残部
が1,1,1,2−テトラフルオロエタンである少なく
とも三種を混合して成る。
In order to solve the above-mentioned problems, the working fluid of the present invention comprises trifluoroethane 20-6.
5% by weight and 35 to 80% by weight of cyclopropane are mixed together. The working fluid of the present invention is
It is formed by mixing at least two kinds of 10 to 65% by weight of cyclopropane and 35 to 90% by weight of 1,1,1,2-tetrafluoroethane. Furthermore, the working fluid of the present invention comprises 65% by weight or less of trifluoroethane and 25 to 25% of cyclopropane.
80% by weight and the balance is at least three kinds of 1,1,1,2-tetrafluoroethane.
The working fluid of the present invention is a mixture of at least three kinds of trifluoroethane of 30% by weight or less, cyclopropane of 20% by weight or less, and the balance of 1,1,1,2-tetrafluoroethane.

【0006】[0006]

【作用及び効果】本発明の作動流体は、オゾン破壊係数
が0である冷媒1,1,1,2−テトラフルオロエタン
(CF3CH2F、以下R134a)、トリフルオロエタン
(CF3CH3、以下R143a)、シクロプロパン(C3
6、以下RC270)の少なくとも三種の混合物、又はR
143aとRC270の少なくとも二種の混合物、更に
はR134aとRC270の少なくとも二種の混合物か
ら構成されているので、オゾンを破壊することはない。
又、上記構成の作動流体の熱物性は、後述するとおりR
22と同等又はそれ以上であり、冷媒として優れてい
る。更に、R22を使用しているヒートポンプ装置から
R22を抜き取り、本発明の作動流体を装置に充填する
ことにより、現行の装置をそのまま使用することが出来
るので、装置を新たに交換する必要はない。
The working fluid of the present invention is a refrigerant 1,1,1,2-tetrafluoroethane having an ozone depletion potential of 0.
(CF 3 CH 2 F, hereinafter R134a), trifluoroethane
(CF 3 CH 3 , hereinafter R143a), cyclopropane (C 3 H
6 , a mixture of at least three of RC270), or R
Since it is composed of a mixture of at least two kinds of 143a and RC270 and further a mixture of at least two kinds of R134a and RC270, it does not destroy ozone.
In addition, the thermophysical properties of the working fluid having the above-mentioned structure are
It is equal to or more than 22 and is excellent as a refrigerant. Further, by removing R22 from the heat pump device using R22 and filling the device with the working fluid of the present invention, the existing device can be used as it is, so that it is not necessary to newly replace the device.

【0007】[0007]

【実施例】以下、本発明の一実施例につき、図面に沿っ
て詳述する。R134aは沸点が大気圧において−26.1
℃、R143aは沸点が同様に−47.4℃、RC270は
沸点が同様に−34℃の冷媒であり、共に分子構造中に塩
素を含んでおらず、オゾン破壊係数は0である。図13
は、本発明の作動流体を試験した冷凍システム(1)であ
って、循環路(18)中に圧縮器(11)、凝縮器(12)、膨張弁
(13)及び蒸発器(14)を順に設けて形成した密閉冷凍サイ
クル内に、作動流体を循環させている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. R134a has a boiling point of −26.1 at atmospheric pressure.
C., R143a is a refrigerant having a boiling point of −47.4 ° C. similarly, and RC270 is a refrigerant having a boiling point of −34 ° C. similarly. Both do not contain chlorine in the molecular structure, and the ozone depletion potential is 0. FIG.
Is a refrigeration system (1) for testing the working fluid of the present invention, wherein a compressor (11), a condenser (12) and an expansion valve are provided in a circulation path (18).
A working fluid is circulated in a closed refrigeration cycle formed by sequentially providing (13) and an evaporator (14).

【0008】冷凍システム(1)内での作動流体の流れを
図13及び図14の圧力−エンタルピ線図(p−i線図)
を用いて説明する。蒸発器(14)から供給される低温、低
圧の冷媒ガス(状態A)を圧縮器(11)により圧縮し、高
温、高圧に高め(状態B)、該冷媒ガスを凝縮器(12)に供
給する(段階1、断熱圧縮)。圧縮器(11)から凝縮器(12)
に吐出された高温、高圧の冷媒ガスは、高圧の凝縮器(1
2)内で放熱して液化し、高圧の冷媒液(状態C)となる
(段階2、等圧変化)。高圧の該冷媒液は、膨張弁(13)の
開放により蒸発器(14)に吐出される(状態D、段階3、
等エンタルピ変化)。吐出された冷媒液は、低圧の蒸発
器(14)内で気化し吸熱する。該吸熱により、蒸発器(14)
において、冷凍が発生する(段階4、等圧変化)。
The flow of the working fluid in the refrigeration system (1) is shown by the pressure-enthalpy diagram (pi diagram) of FIGS. 13 and 14.
Will be explained. The low temperature and low pressure refrigerant gas (state A) supplied from the evaporator (14) is compressed by the compressor (11) to a high temperature and high pressure (state B), and the refrigerant gas is supplied to the condenser (12). (Step 1, adiabatic compression). Compressor (11) to condenser (12)
The high-temperature, high-pressure refrigerant gas discharged to the high-pressure condenser (1
2) Dissipates heat and liquefies inside, and becomes a high-pressure refrigerant liquid (state C).
(Stage 2, constant pressure change). The high-pressure refrigerant liquid is discharged to the evaporator (14) by opening the expansion valve (13) (state D, stage 3,
Isenthalpy change). The discharged refrigerant liquid is vaporized and absorbs heat in the low pressure evaporator (14). Due to the heat absorption, the evaporator (14)
At, freezing occurs (stage 4, isobaric change).

【0009】上記動作を繰り返すことによって、非共沸
混合冷媒冷凍システム(1)の凝縮器(12)で放熱を行な
い、蒸発器(14)で吸熱により冷凍を発生させる。
By repeating the above operation, the condenser (12) of the non-azeotropic mixed refrigerant refrigeration system (1) radiates heat and the evaporator (14) absorbs heat to generate refrigeration.

【0010】上記構成の冷凍システム(1)を用い、本発
明の作動流体のRC270及びR32の重量%を5%づ
つ変化させ、5つの熱物性(成績係数、冷凍効果、吐出
圧力、蒸発時の温度差及び凝縮時の温度差)を夫々測定
し、R22の夫々の熱物性値と比較した。R22の熱物
性値は、蒸発温度−5℃、凝縮温度40℃の場合の値であ
る。結果の一部を表2に示し、以下及び図1乃至図12
で説明する。
Using the refrigeration system (1) having the above-mentioned structure, the weight% of RC270 and R32 of the working fluid of the present invention is changed in 5% steps, and five thermophysical properties (coefficient of performance, refrigeration effect, discharge pressure, evaporation time) are obtained. The temperature difference and the temperature difference at the time of condensation) were measured and compared with the respective thermophysical property values of R22. The thermophysical property value of R22 is a value when the evaporation temperature is -5 ° C and the condensation temperature is 40 ° C. Some of the results are shown in Table 2, below and in Figures 1-12.
Described in.

【0011】[0011]

【表2】 [Table 2]

【0012】尚、成績係数とは、冷凍効果を得るために
費やした仕事量(断熱圧縮(第1段階、b〜c)のエンタ
ルピの変化量)と、得られた仕事量(図14に示す等圧変
化(第4段階、a〜b)のエンタルピの変化量)の比((b-
a)/(c-b))であって、該成績係数の大きいほど冷凍シス
テムに於て、エネルギーの効率がよい。冷凍効果(以下
i)とは、1kgの冷媒液が蒸発器(14)で蒸気に変わると
きに吸収する熱量(図14に示す等圧変化(第4段階、a
〜b)のエンタルピ変化量)であり、該冷凍効果は、大き
いほど冷凍システムに於て、吸収する冷凍の熱量が大き
い。吸入圧力とは、図13の圧縮器(11)に作動流体が吸
入されるときの圧力である。
The coefficient of performance means the amount of work spent to obtain the refrigerating effect (the amount of change in enthalpy during adiabatic compression (first step, b to c)) and the obtained amount of work (shown in FIG. 14). Ratio of the equal pressure change (change in enthalpy at the 4th stage, ab) ((b-
a) / (cb)), and the larger the coefficient of performance, the better the energy efficiency in the refrigeration system. The refrigerating effect (hereinafter referred to as H i ) is the amount of heat absorbed when 1 kg of refrigerant liquid is changed to vapor in the evaporator (14) (equal pressure change shown in FIG. 14 (fourth step, a
˜b) enthalpy change amount), the larger the refrigerating effect, the larger the amount of refrigerating heat absorbed in the refrigerating system. The suction pressure is the pressure when the working fluid is sucked into the compressor (11) in FIG.

【0013】吐出圧力とは、図13の圧縮器(11)から作
動流体が吐出されるときの圧力である。蒸発時の温度差
(以下TV)とは、図13の蒸発器(14)を通過する前後の
作動流体の温度の差であり、この差が大きくなると冷凍
システムに霜等が付く可能性がある。凝縮時の温度差
(以下TC)とは、図13の凝縮器(12)を通過する前後の
作動流体の温度の差である。成績係数、冷凍効果、吐出
圧力、蒸発時の温度差及び凝縮時の温度差は、共に作動
流体として適しているか否かの判断基準となる。吐出温
度とは、圧縮器(11)から作動流体が吐出されるときの温
度である。
The discharge pressure is the pressure when the working fluid is discharged from the compressor (11) in FIG. Temperature difference during evaporation
(Hereinafter, T V ) is the difference in temperature of the working fluid before and after passing through the evaporator (14) in FIG. 13, and if this difference becomes large, the refrigeration system may be frosted. Temperature difference during condensation
(Hereinafter, T C ) is the difference in temperature of the working fluid before and after passing through the condenser (12) in FIG. The coefficient of performance, the refrigeration effect, the discharge pressure, the temperature difference at the time of evaporation, and the temperature difference at the time of condensation all serve as criteria for determining whether or not they are suitable as working fluids. The discharge temperature is the temperature at which the working fluid is discharged from the compressor (11).

【0014】図1乃至図12はすべて、縦軸にRC27
0、横軸にR143aを夫々重量%で示しており、重量
残部は、R134aが占めている。図3は、本発明の作
動流体の成績係数(以下COP)を示したものであり、R
22のCOP(4.81)を一点鎖線で示す。実施例に於て
は、COPの許容下限を4.8とし、これを満たしている
部分を図4の斜線部で示す。図5は、本発明の作動流体
の冷凍効果(Hi)を示したものであり、R22のHi(15
5.75kJ/kg)を一点鎖線で示す。実施例に於ては、Hi
許容下限を150kJ/kgとし、これを満たしている部分を図
6の斜線部で示す。
1 to 12 are all RC27 on the vertical axis.
0, R143a is shown on the horizontal axis in% by weight, and the remaining weight is occupied by R134a. FIG. 3 shows the coefficient of performance (COP) of the working fluid of the present invention, where R
The COP (4.81) of 22 is indicated by a dashed line. In the embodiment, the allowable lower limit of COP is set to 4.8, and the portion satisfying this is shown by the shaded area in FIG. Figure 5 is shows the refrigeration effect of the working fluid of the present invention (H i), R22 of H i (15
5.75 kJ / kg) is shown by a dashed line. In the embodiment, the lower limit of H i is set to 150 kJ / kg, and the portion satisfying this is shown by the shaded area in FIG.

【0015】図7は、本発明の作動流体の吐出圧力(P
COND)を示したものであり、R22のPCOND(15
37.54kPa)を一点鎖線で示す。実施例に於ては、PCO
NDの許容範囲を1300kPa〜1700kPaとし、これを満たし
ている部分を図8の斜線部に示す。図9は、本発明の作
動流体の蒸発時の温度差(TV)を示したものである。R
22は、単一組成の冷媒であるので、蒸発時の温度差は
0℃である。実施例に於ては、TVの許容上限を7℃と
し、これを満たしている部分を図10の斜線部に示す。
図11は、本発明の作動流体の凝縮時の温度差(TC)を
示したものである。R22は、単一組成の冷媒であるの
で、凝縮時の温度差は0℃である。実施例に於ては、T
Cの許容上限を7℃とし、これを満たしている部分を図
12の斜線部に示す。
FIG. 7 shows the discharge pressure (P of the working fluid of the present invention.
COND), and R22's PCOND (15
(37.54 kPa) is shown by a dashed line. In the embodiment, the PCO
The allowable range of ND is set to 1300 kPa to 1700 kPa, and the portion satisfying this is shown by the shaded area in FIG. FIG. 9 shows the temperature difference (T V ) during evaporation of the working fluid of the present invention. R
Since 22 is a single composition refrigerant, the temperature difference during evaporation is 0 ° C. In the embodiment, the allowable upper limit of T V is set to 7 ° C., and the portion satisfying this is shown by the shaded area in FIG.
FIG. 11 shows a temperature difference (T C ) when the working fluid of the present invention is condensed. Since R22 is a refrigerant having a single composition, the temperature difference during condensation is 0 ° C. In the embodiment, T
The allowable upper limit of C is set to 7 ° C., indicated by the shaded portion of FIG. 12 parts meets this.

【0016】上記実験結果に基づき、図1及び表2に示
す如く、評価値グラフを作成した。該評価値は、初期値
が夫々0であって、夫々の判断基準について、許容上限
及び/又は許容下限を満たしている場合のみ評価値を1
加えたものである。尚、TVとTCに関しては、同時に許
容上限を満たしている場合のみ評価値を1加える。5つ
の熱物性により0から4の評価値が決定され、該評価値
によりR134a、R143a及びRC270から構成
される作動流体が冷媒として適している成分比を選出し
た。以下選出結果を示す。
Based on the above experimental results, an evaluation value graph was prepared as shown in FIG. 1 and Table 2. The evaluation value has an initial value of 0, and the evaluation value is set to 1 only when the evaluation criteria satisfy the allowable upper limit and / or the allowable lower limit.
It was added. Regarding T V and T C , 1 is added to the evaluation value only when the allowable upper limits are satisfied at the same time. An evaluation value of 0 to 4 was determined based on the five thermophysical properties, and a component ratio in which the working fluid composed of R134a, R143a and RC270 was suitable as a refrigerant was selected based on the evaluation values. The selection results are shown below.

【0017】図1及び表2より作動流体の成分比として
適しているのは、R143aとRC270が、図2の点
線で示す点A1(0,65)、点B1(15,80)、点C1(20,80)、
点D1(65,35)、点E1(30,25)、点F1(0,25)で囲まれる
範囲、又はH1(0,20)、I1(15,20)、J1(30,10)、K1(2
0,0)、L1(15,0)、M1(0,10)で囲まれる範囲であって、
残部がR134aであり、R143a、RC270、R
134aのいずれかの成分比が0となる部分を除く重量
%の範囲内の少なくとも前記三種の成分から構成される
ものである。
From FIG. 1 and Table 2, what is suitable as the component ratio of the working fluid is that R143a and RC270 are point A 1 (0,65), point B 1 (15,80) shown by the dotted line in FIG. Point C 1 (20,80),
Point D 1 (65,35), the range surrounded by points E 1 (30,25), the point F 1 (0,25), or H 1 (0,20), I 1 (15,20), J 1 (30,10), K 1 (2
0,0), L 1 (15,0), M 1 (0,10)
The rest is R134a, R143a, RC270, R
It is composed of at least the above-mentioned three kinds of components within the range of weight% excluding the portion where the component ratio of any of 134a is 0.

【0018】又、図1及び表2より作動流体の成分比と
して望ましいのは、評価値が4の部分、即ち、R143
aとRC270が、図2の実線で示す点A(0,60)、点B
(20,80)、点C(30,60)、点D(50,50)、点E(60,40)、点
F(30,30)、点G(0,30)で囲まれる範囲、又はH(0,1
5)、I(15,15)、J(25,10)、K(25,5)、L(15,5)で囲ま
れる範囲であって、R143a、RC270、R134
aのいずれかの成分比が0となる部分を除く重量%の範
囲内の少なくとも前記三種の成分から構成されるもので
ある。
Further, from FIG. 1 and Table 2, it is desirable that the component ratio of the working fluid is a portion where the evaluation value is 4, that is, R143.
a and RC270 are points A (0,60) and B indicated by the solid lines in FIG.
Range surrounded by (20,80), point C (30,60), point D (50,50), point E (60,40), point F (30,30), point G (0,30), Or H (0,1
5), I (15,15), J (25,10), K (25,5), L (15,5), within a range surrounded by R143a, RC270, and R134.
It is composed of at least the above-mentioned three kinds of components within the range of% by weight excluding the portion where the component ratio of any of a is 0.

【0019】又、R143aとRC270の少なくとも
二種の成分から構成される作動流体として適している成
分比は、R143aが20〜65重量%、RC270が
35〜80重量%である場合であり、望ましいのは、R
143aが50〜55重量%、RC270が45〜50
重量%である場合である。
The component ratio suitable for a working fluid composed of at least two components of R143a and RC270 is when R143a is 20 to 65% by weight and RC270 is 35 to 80% by weight, which is desirable. Is R
143a is 50 to 55% by weight, RC270 is 45 to 50%
This is the case when the content is% by weight.

【0020】又、RC270とR134aの少なくとも
二種の成分から構成される作動流体として適している成
分比は、RC270が10〜65重量%、R134aが
35〜90重量%である場合であり、望ましいのは、R
C270が30〜60重量%、R134aが40〜70
重量%である場合である。
The component ratio suitable for a working fluid composed of at least two components of RC270 and R134a is 10 to 65% by weight of RC270 and 35 to 90% by weight of R134a, which is desirable. Is R
30 to 60% by weight of C270 and 40 to 70 of R134a
This is the case when the content is% by weight.

【0021】尚、R143a及びRC270は、可燃性
の冷媒であり、R134aは不燃の冷媒である。従っ
て、評価値がほぼ同等であれば、R134aの重量%が
高い作動流体の方が安全性は高い。
Note that R143a and RC270 are flammable refrigerants, and R134a is a non-flammable refrigerant. Therefore, if the evaluation values are almost the same, the working fluid having a higher weight percentage of R134a is higher in safety.

【0022】上記実施例の説明は、本発明を説明するた
めのものであって、特許請求の範囲に記載の発明を限定
し、或は範囲を減縮する様に解すべきではない。又、本
発明の各部構成は上記実施例に限らず、特許請求の範囲
に記載の技術的範囲内で種々の変形が可能であることは
勿論である。
The above description of the embodiments is for explaining the present invention, and should not be construed as limiting the invention described in the claims or limiting the scope. The configuration of each part of the present invention is not limited to the above-mentioned embodiment, and it goes without saying that various modifications can be made within the technical scope described in the claims.

【0023】又、作動流体として、R134a、R14
3a及びRC270の三種以外に潤滑油、腐食防止剤等
を混入させることも出来る。更に、上記冷凍システム
(1)は、実験装置として用いたものであって、本発明の
作動流体の用途を限定するものではない。
As the working fluid, R134a, R14
In addition to the three types of 3a and RC270, a lubricating oil, a corrosion inhibitor, etc. can be mixed. Furthermore, the above refrigeration system
(1) is used as an experimental device and does not limit the use of the working fluid of the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】作動流体の評価値を示した図である。FIG. 1 is a diagram showing an evaluation value of a working fluid.

【図2】作動流体の望ましい成分比の範囲を示した図で
ある。
FIG. 2 is a diagram showing a desirable component ratio range of a working fluid.

【図3】作動流体の成績係数(COP)を示した図であ
る。
FIG. 3 is a diagram showing a coefficient of performance (COP) of a working fluid.

【図4】作動流体の成績係数(COP)の許容下限を満た
している部分を示す図である。
FIG. 4 is a diagram showing a portion that satisfies an allowable lower limit of a coefficient of performance (COP) of a working fluid.

【図5】作動流体の冷凍効果(Hi)を示した図である。FIG. 5 is a diagram showing a refrigerating effect (H i ) of a working fluid.

【図6】作動流体の冷凍効果(Hi)の許容下限を満たし
ている部分を示す図である。
FIG. 6 is a diagram showing a portion satisfying an allowable lower limit of a refrigerating effect (H i ) of a working fluid.

【図7】作動流体の吐出圧力(PCOND)を示した図で
ある。
FIG. 7 is a diagram showing a discharge pressure (PCOND) of a working fluid.

【図8】作動流体の吐出圧力(PCOND)の許容上下限
を満たしている部分を示す図である。
FIG. 8 is a diagram showing a portion that satisfies an allowable upper and lower limit of discharge pressure (PCOND) of a working fluid.

【図9】作動流体の蒸発時の温度差(TV)を示した図で
ある。
FIG. 9 is a diagram showing a temperature difference (T V ) during evaporation of a working fluid.

【図10】作動流体の蒸発時の温度差(TV)の許容上限
を満たしている部分を示す図である。
FIG. 10 is a diagram showing a portion that satisfies an allowable upper limit of a temperature difference (T V ) during evaporation of a working fluid.

【図11】作動流体の凝縮時の温度差(TC)を示した図
である。
FIG. 11 is a diagram showing a temperature difference (T C ) when the working fluid is condensed.

【図12】作動流体の凝縮時の温度差(TC)の許容上限
を満たしている部分を示す図である。
FIG. 12 is a diagram showing a portion that satisfies an allowable upper limit of a temperature difference (T C ) when a working fluid is condensed.

【図13】冷凍サイクルの実験装置の図である。FIG. 13 is a diagram of an experimental device for a refrigeration cycle.

【図14】作動流体の冷凍サイクル内における圧力−エ
ンタルピ線図である。
FIG. 14 is a pressure-enthalpy diagram of the working fluid in the refrigeration cycle.

【符号の説明】[Explanation of symbols]

(1) 冷凍サイクル (11) 圧縮器 (12) 凝縮器 (14) 蒸発器 (1) Refrigeration cycle (11) Compressor (12) Condenser (14) Evaporator

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年9月19日[Submission date] September 19, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0004】[0004]

【表1】 [Table 1]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 トリフルオロエタン(R143a)20〜
65重量%、シクロプロパン(RC270)35〜80重
量%である少なくとも二種からなる作動流体。
1. Trifluoroethane (R143a) 20-
A working fluid comprising at least two of 65% by weight and 35 to 80% by weight of cyclopropane (RC270).
【請求項2】 シクロプロパン(RC270)10〜65
重量%、1,1,1,2−テトラフルオロエタン(R1
34a)35〜90重量%である少なくとも二種からな
る作動流体。
2. Cyclopropane (RC270) 10-65
% By weight, 1,1,1,2-tetrafluoroethane (R1
34a) A working fluid consisting of at least two 35 to 90% by weight.
【請求項3】 トリフルオロエタン(R143a)65重
量%以下、シクロプロパン(R270)25〜80重量
%、残部が1,1,1,2−テトラフルオロエタン(R
134a)であって、R143aとR270の成分比が
添付の図2の点線で示す点A1(0,65)、点B1(15,80)、
点C1(20,80)、点D1(65,35)、点E1(30,25)、点F1(0,
25)で囲まれる範囲であり、R143a、RC270、
R134aのいずれかの成分比が0となる部分を除く重
量%の範囲内で、少なくとも三種の成分から構成される
作動流体。
3. Trifluoroethane (R143a) 65% by weight or less, cyclopropane (R270) 25-80% by weight, and the balance 1,1,1,2-tetrafluoroethane (R)
134a), and the component ratio of R143a and R270 is point A 1 (0,65), point B 1 (15,80), shown by the dotted line in the attached FIG.
Point C 1 (20,80), Point D 1 (65,35), Point E 1 (30,25), Point F 1 (0,
25) is the range surrounded by R143a, RC270,
A working fluid composed of at least three components within a range of weight% excluding a portion where any one of the components of R134a is 0.
【請求項4】 トリフルオロエタン(R143a)30重
量%以下、シクロプロパン(RC270)20重量%以
下、残部が1,1,1,2−テトラフルオロエタン(R
134a)であって、R143aとRC270の成分比
が添付の図2の実線で示す点H1(0,20)、I1(15,20)、
1(30,10)、K1(20,0)、L1(15,0)、M1(0,10)で囲ま
れる範囲であり、R143a、RC270、R134a
のいずれかの成分比が0となる部分を除く重量%の範囲
内で、少なくとも三種の成分から構成される作動流体。
4. Trifluoroethane (R143a) 30% by weight or less, cyclopropane (RC270) 20% by weight or less, and the balance 1,1,1,2-tetrafluoroethane (R)
134a), and the component ratio of R143a and RC270 is indicated by a solid line in the attached FIG. 2 at points H 1 (0,20), I 1 (15,20),
J 1 (30,10), K 1 (20,0), L 1 (15,0), a range surrounded by M 1 (0,10), R143a, RC270, R134a
A working fluid composed of at least three kinds of components within the range of weight% excluding the portion where any one of the component ratios is 0.
JP6221759A 1994-09-16 1994-09-16 Working fluid Withdrawn JPH0885783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6221759A JPH0885783A (en) 1994-09-16 1994-09-16 Working fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6221759A JPH0885783A (en) 1994-09-16 1994-09-16 Working fluid

Publications (1)

Publication Number Publication Date
JPH0885783A true JPH0885783A (en) 1996-04-02

Family

ID=16771764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6221759A Withdrawn JPH0885783A (en) 1994-09-16 1994-09-16 Working fluid

Country Status (1)

Country Link
JP (1) JPH0885783A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5785883A (en) * 1994-03-11 1998-07-28 E. I. Du Pont De Nemours And Company Hydrofluorocarbon compositions with tetrafluoroethane and cyclopropane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5785883A (en) * 1994-03-11 1998-07-28 E. I. Du Pont De Nemours And Company Hydrofluorocarbon compositions with tetrafluoroethane and cyclopropane

Similar Documents

Publication Publication Date Title
EP0509673A1 (en) Refrigerant compositions
JPH08170074A (en) Working fluid
JPH0925480A (en) Hydraulic fluid
JPH08291283A (en) Pseudoazeotrope based on difluoromethane and pentafluoroethane and its use as refrigerant
KR100261459B1 (en) Composition of refrigerant mixtures for refrigerator/ air conditioner
JPH0867870A (en) Refrigerant composition
JPH08127767A (en) Working fluid
JPH0885783A (en) Working fluid
JPH0885784A (en) Working fluid
EP0620837A1 (en) Compositions useful as refrigerants
JPH08151569A (en) Working fluid
KR0184083B1 (en) Refrigerant mixtures
KR100616770B1 (en) Near azeotropic mixed refrigerant including r32
JPH08176537A (en) Hydraulic fluid
JPH09208941A (en) Hydraulic fluid
JPH09221664A (en) Working fluid
KR100616773B1 (en) Azeotropic and near azeotropic mixed refrigerant including r32
JPH08311437A (en) Working fluid
Bolaji et al. Thermodynamic analysis of performance of vapour compression refrigeration system working with R290 and R600a mixtures
JPH08199158A (en) Working fluid
JPH08151571A (en) Working fluid
JPH08120260A (en) Working fluid
KR100648412B1 (en) Low temperature alternative refrigerant composition
JPH08151570A (en) Working fluid
JPH08170075A (en) Working fluid

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011120