JPH0882644A - Diagnostic device of deterioration of insulation of power cable - Google Patents

Diagnostic device of deterioration of insulation of power cable

Info

Publication number
JPH0882644A
JPH0882644A JP24471594A JP24471594A JPH0882644A JP H0882644 A JPH0882644 A JP H0882644A JP 24471594 A JP24471594 A JP 24471594A JP 24471594 A JP24471594 A JP 24471594A JP H0882644 A JPH0882644 A JP H0882644A
Authority
JP
Japan
Prior art keywords
voltage
cable
detector
amplitude
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24471594A
Other languages
Japanese (ja)
Inventor
Katsuhiro Hosoe
勝広 細江
Kenichi Hirotsu
研一 弘津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP24471594A priority Critical patent/JPH0882644A/en
Publication of JPH0882644A publication Critical patent/JPH0882644A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE: To take out a commercial frequency AC power supply by using a divided-voltage detector of a semi-split type for taking out simply and safely a commercial frequency AC supply voltage to which a CV cable to be diagnosed is connected and which is necessary for taking out only a loss current passing through an insulator by using a Schering circuit. CONSTITUTION: A voltage detector is formed of an insulator 3 made long in the length direction of an insulated wire and is constructed of half-split bodies 2 and 2' being splittable in the length direction and half-split hollow holes 4 for holding the insulated wire are formed in the central part of the insulator, while a voltage-dividing electrode 5 and a shielding electrode 6 are buried in the insulator 3 concentrically with the hollow holes 4. By the detector constructed in this way, a commercial frequency supply voltage is taken out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は架橋ポリエチレン絶縁電
力ケーブル(CVケーブル)の活線状態下での絶縁劣化
診断装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for diagnosing insulation deterioration of a crosslinked polyethylene insulated power cable (CV cable) under a live condition.

【0002】[0002]

【従来の技術】CVケーブルの活線状態での絶縁劣化を
診断する装置、方法等について特開平1-127968号公報、
同平 5-80113号公報、同平5-256894号、同平5-264642号
公報等に開示され、また電気学会論文誌A、 109巻11号
(平成元年)第 467〜473 頁には、一般的に誘電材料の
導電特性を調べることに関し、「誘電材料における新し
い交流損失電流測定法の開発」と題する論文が発表され
ている。これらの開示において、その多くは、絶縁電力
ケーブルの導体と遮蔽層との間に電源電圧を印加し、絶
縁体を流れる真の損失電流を求めることを基調とし、こ
の場合前記導体と遮蔽層とは絶縁体を間にして静電容量
を生じ、交流電圧印加により90°の進み電流が流れ、こ
の電流はさきの損失電流と一体に流れるので、この進み
電流を消去する手段をとっている。図4は特開平1-1279
68号公報に示されたケーブルの活線状態での劣化診断装
置の回路を示している。被測定ケーブルの導体と遮蔽層
との間を絶縁抵抗及び絶縁容量の等価回路CBで表わ
し、抵抗成分rx 及び容量成分Cx の並列接続として表
わすことができる。本診断装置は、非接地端子40と接地
端子41を具える交流電源Eに前記等価回路CBと既知の
抵抗器Rが直列に接続され、また標準コンデンサCO
可変抵抗器R1 が直列に接続され、電圧検出器が形成さ
れ、コンデンサCO の容量は等価回路CBで表わしたケ
ーブルの容量CX と同程度の容量、例えば 500−1000p
F以上の容量が好ましい。そして電圧計Vが並列にある
O とR1 、CBとRとのそれぞれの接続点43と42の間
に接続され、ブリッジ回路として形成される。
2. Description of the Related Art A device and method for diagnosing insulation deterioration of a CV cable in a live state is disclosed in Japanese Patent Laid-Open No. 1-127968.
It is disclosed in the publications such as Dohei 5-80113, Dohei 5-256894, Dohei 5-264642, etc., and in the Institute of Electrical Engineers of Japan, Volume 109, No. 11 (1989), pages 467-473. In general, a paper entitled "Development of a New Method for Measuring AC Loss Current in Dielectric Materials" has been published regarding the study of conductive properties of dielectric materials. Many of these disclosures are based on applying a power supply voltage between a conductor of an insulated power cable and a shield layer to obtain a true loss current flowing through the insulator, in which case the conductor and the shield layer are Since a capacitance is generated with an insulator between them, a 90 ° advance current flows due to the application of an alternating voltage, and this current flows together with the loss current, so the means for eliminating this advance current is taken. FIG. 4 shows JP-A 1-1279.
The circuit of the deterioration diagnostic device in the live state of the cable shown in Japanese Patent No. 68 is shown. The equivalent circuit CB of the insulation resistance and the insulation capacitance between the conductor of the cable to be measured and the shielding layer can be represented as a parallel connection of the resistance component r x and the capacitance component C x . In this diagnostic device, the equivalent circuit CB and a known resistor R are connected in series to an AC power source E having a non-ground terminal 40 and a ground terminal 41, and a standard capacitor C O and a variable resistor R 1 are connected in series. Are connected to form a voltage detector, and the capacitance of the capacitor C O is about the same as the capacitance C X of the cable represented by the equivalent circuit CB, for example, 500-1000 p
A capacity of F or more is preferable. Then, a voltmeter V is connected in parallel between the connection points 43 and 42 of C O and R 1 and CB and R, respectively, and is formed as a bridge circuit.

【0003】最初に、ケーブルに運転電圧を印加してい
る状態で、標準コンデンサCO 、可変抵抗器R1 、電圧
計V、及び抵抗器Rを図のように接続すると、抵抗成分
xを通る電源電圧と同相の電流i1 と容量成分CX
通る電源電圧から90°進んだ位相の電流i2 とが抵抗器
Rに流れる。このとき接続点42には、i1 とi2 のベク
トル的大きさに応じた電流による電圧が発生する。ま
た、進相電流i2 と同相電流i3 が標準コンデンサCO
に発生し、同時に可変抵抗器R1 を流れ、接続点43に電
流i3 の大きさに比例した電圧が発生する。次に、可変
抵抗器R1 を調節して、電圧計Vの指示が最小となるよ
うにする。つまり、接続点42と43との間の電位差が最小
になったとき、これはi2 =i3 を意味し、これによっ
て電圧計Vは同相電流i1 による電圧のみを検出するこ
とができ、その最小電位差は次式のようになる。 Vmm≒E.R/rX この式において、EとRが既知であるため、抵抗成分r
X の抵抗値を知ることができ、このrX の抵抗の大きさ
及びその変化の度合によってケーブルの劣化の程度を診
断することができる。
First, when the standard capacitor C O , the variable resistor R 1 , the voltmeter V, and the resistor R are connected as shown in the figure while the operating voltage is applied to the cable, the resistance component r x is obtained. A current i 1 having the same phase as the power supply voltage passing through and a current i 2 having a phase advanced by 90 ° from the power supply voltage passing through the capacitive component C X flow through the resistor R. At this time, a voltage is generated at the connection point 42 by a current according to the vectorial magnitude of i 1 and i 2 . Further, the phase-advancing current i 2 and the in-phase current i 3 are the standard capacitor C O.
At the same time, the current flows through the variable resistor R 1 , and a voltage proportional to the magnitude of the current i 3 is generated at the connection point 43. Next, the variable resistor R 1 is adjusted so that the indication of the voltmeter V is minimized. That is, when the potential difference between the connection points 42 and 43 is minimized, this means i 2 = i 3 , which allows the voltmeter V to detect only the voltage due to the in-phase current i 1 , The minimum potential difference is as follows. Vmm≈E. R / r X In this equation, since E and R are known, the resistance component r
The resistance value of X can be known, and the degree of deterioration of the cable can be diagnosed by the magnitude of the resistance of r X and the degree of change thereof.

【0004】更に、前記文献の中には、絶縁劣化が進行
したCVケーブルでは、損失電流のひずみが大きくな
り、3次以上の高調波が大きくなるため、これを検出す
ることにより、CVケーブルの劣化診断を行うという方
法も提案されているが、活線状態での診断を行うために
は系統電圧に高調波が数%含まれていることが多く、こ
れも除去しなければならない。この場合もシェーリング
ブリッジを構成すれば、系統電圧に含まれる高調波は完
全に除去することができ、CVケーブルより生じる3次
以上の高調波を分離して損失電流中にとどめることがで
きるから、これと同等の操作を別の装置構成で行えばよ
い。
Further, in the above-mentioned document, in a CV cable in which insulation deterioration has progressed, the distortion of loss current becomes large and the third and higher harmonics become large. Although a method of performing deterioration diagnosis has been proposed, in order to perform diagnosis in a live state, the system voltage often contains several% of harmonics, and this must also be removed. Also in this case, if the Schering bridge is configured, the harmonics contained in the system voltage can be completely removed, and the third or higher harmonics generated by the CV cable can be separated and retained in the loss current. The same operation as this may be performed with another device configuration.

【0005】[0005]

【発明が解決しようとする課題】すでに示したいずれの
提案も実験レベル下の測定では有効であるが、これをそ
のまま活線へ適用する場合、次の問題が生じてくる。 分圧器または標準コンデンサを高圧部に接続する必
要がある。これは活線にて充電部(ケーブル端末の端子
など)を一旦露出させる必要があり、危険かつ、手間の
かかる作業である。そして測定後、一旦露出させた充電
部を修復する必要があり、測定準備から充電部修復まで
かなり作業時間を要する。 高圧部に接続する分圧器または標準コンデンサは一
般に大型で、かつ、重量も大きく、機材の運搬、セッテ
ィングが大変である。また、測定機材を置くスペースも
かなり必要となる。 以上のことより、これまでの技術を活線でのCVケーブ
ルの劣化診断に適用しようとするならば、作業性がよく
ない、測定器を置くスペースも十分にとれないことなど
の問題がある。
Although any of the above-mentioned proposals is effective for measurement under the experimental level, the following problem arises when this is directly applied to a live wire. A voltage divider or standard capacitor should be connected to the high voltage section. This is a dangerous and time-consuming operation because it is necessary to expose the charging part (such as the terminal of the cable terminal) once on a live line. After the measurement, it is necessary to repair the exposed charging part, which requires a considerable working time from the preparation for measurement to the repairing of the charging part. The voltage divider or standard capacitor connected to the high-voltage section is generally large and heavy, and it is difficult to transport and set the equipment. Moreover, a considerable space is required for the measuring equipment. From the above, if the conventional techniques are applied to the deterioration diagnosis of the CV cable on the live line, there are problems such as poor workability and insufficient space for placing the measuring instrument.

【0006】[0006]

【問題を解決するための手段】本発明は電圧検出部とし
て図1に示すような簡単に絶縁電線に対して着脱できる
静電容量分圧型のコンデンサを用い、絶縁電線の絶縁体
表面から電圧を検出し、この電圧を振幅、位相調整回路
を経て差動増幅器に入力し、他方、CVケーブルの導体
と遮蔽層の間を流れる電流を増幅器を介して差動増幅器
に入力し、後述するように電子回路を用いて、基本波の
系統の高調波成分の除去を行い、CVケーブルの絶縁体
を流れる損失電流を求めるように構成したものである。
The present invention uses, as a voltage detecting section, a capacitance voltage dividing type capacitor which can be easily attached to and detached from an insulated wire as shown in FIG. This voltage is detected and input to the differential amplifier via the amplitude and phase adjustment circuit, while the current flowing between the conductor of the CV cable and the shield layer is input to the differential amplifier via the amplifier, as will be described later. The electronic circuit is used to remove the harmonic component of the system of the fundamental wave, and the loss current flowing through the insulator of the CV cable is obtained.

【0007】[0007]

【作用】電圧検出器は、絶縁電線の絶縁体と電圧検出器
の静電容量の比により、電圧を分圧して検出するもので
ある。ここで検出された電圧の商用周波数の成分は、図
2の振幅・位相調整回路で調整され、遮蔽層と接地間を
流れる電流信号を同じく調整してその差信号が最小とな
るように調整されて差動増幅器に入力する。差動増幅器
は、上記の操作を経たのち、電圧信号と電流信号との差
をとることにより、系統電圧に含まれる高調波電圧によ
る接地線電流を除去する働きをすることになる。差動増
幅器出力は、「ケーブルの劣化信号」であるので、これ
をもとに判定回路により劣化を判定することができる。
The voltage detector detects the voltage by dividing the voltage according to the ratio of the insulator of the insulated wire and the capacitance of the voltage detector. The commercial frequency component of the voltage detected here is adjusted by the amplitude / phase adjusting circuit of FIG. 2, and the current signal flowing between the shielding layer and the ground is also adjusted so that the difference signal is minimized. Input to the differential amplifier. After performing the above operation, the differential amplifier acts to remove the ground line current due to the harmonic voltage contained in the system voltage by taking the difference between the voltage signal and the current signal. Since the output of the differential amplifier is a "cable deterioration signal", the judgment circuit can judge the deterioration based on this.

【0008】[0008]

【実施例】図1は本発明において用いられる電圧検出器
の一例を示す。図1aは絶縁電線保持部を開口した電圧
検出器の側面図を示し、同bは側面側よりみた開口の断
面図を示し、cは斜視図を示す。また同dは回路として
の構成を示す。a,b図に示すように、電圧検出器は絶
縁電線1の長さ方向に分割できる半割体2,2'よりなっ
ており、これら半割体2,2'は絶縁物3よりなり、半割
体2,2'を接合したとき、中心部に絶縁電線1を保持す
る半割の空孔4ができるように形成され、半割体2'の絶
縁物3の内側には、前記空孔4の部分と同心状に円弧を
なす金属製の分圧電極5が埋め込まれ、半割体2,2'を
接合したとき、その一体となった外周部と前記半割体2'
に設けた分圧電極5の間で、前記空孔4と同心的に半割
の導電層(遮蔽電極)6が埋込まれる。半割体2,2'の
導電層6は半割体2,2'の開閉にかかわらず、同電位を
保つように電気接続されている。埋込まれている分圧電
極5および遮蔽電極6より導線gが引出される。a図に
示すように半割体2'には絶縁物よりなる中空の把手7が
一体に形成され、前記半割体2,2'は明確に図示してい
ないが、一体に接合する際、双方の外側端縁となる部分
に両半割体2,2'の端縁にまたがって、ちょうつがいの
ような回転軸部品8を取り付け、又前記回転軸部品8の
回転軸にはコイルばねを装着して、両半割体2,2'にば
ねの弾力を作用させて、常時はb図に示すように両者を
閉じた状態とし、半割体2の表面に設けた係合部9に繰
作線lの一端を固定し、把手7の中を通して、把手の端
部でこれを引き、回転軸部品8を回転中心として半割体
2を開の状態とする構成とすると、操作上好都合であ
る。d図は本電圧検出器を、回路で表わしたもので、高
圧配電線の電圧を絶縁電線導体〜分圧電極までの容量C
1 と分圧電極〜遮蔽電極6までのC2 によって形成され
た分圧回路を示している。上記電圧検出器は上記半割分
圧器として光式電圧センサを装着したものを用いること
も可能である。電流検出器22は、適当なインピーダンス
回路を用いても、また高感度の分割型変流器を用いても
よい。
1 shows an example of a voltage detector used in the present invention. FIG. 1a shows a side view of a voltage detector having an insulated wire holding portion opened, FIG. 1b shows a sectional view of the opening seen from the side, and c shows a perspective view. Further, d indicates the configuration as a circuit. As shown in FIGS. a and b, the voltage detector is composed of half-divided bodies 2 and 2 ′ that can be divided in the lengthwise direction of the insulated wire 1, and these half-divided bodies 2 and 2 ′ are made of an insulator 3. When the half-split bodies 2 and 2'are joined together, a half-split hole 4 for holding the insulated wire 1 is formed in the central portion, and the half-split bodies 2'are formed inside the insulator 3 with the above-mentioned space. When the voltage dividing electrode 5 made of a metal and having a circular arc concentric with the hole 4 is embedded and the half-divided bodies 2 and 2'are joined together, the integrated outer peripheral portion and the half-divided body 2 '.
A conductive layer (shielding electrode) 6 which is halved concentrically with the holes 4 is embedded between the voltage dividing electrodes 5 provided in the. The conductive layers 6 of the halves 2, 2'are electrically connected so as to maintain the same potential regardless of whether the halves 2, 2'are opened or closed. The conducting wire g is drawn out from the voltage dividing electrode 5 and the shielding electrode 6 which are embedded. As shown in FIG. a, a hollow handle 7 made of an insulating material is integrally formed on the half-split body 2 ', and although the half-split bodies 2 and 2'are not clearly shown, when they are integrally joined, A rotary shaft component 8 such as a hinge is attached to the outer edges of both half halves 2, 2 ', and a coil spring is attached to the rotary shaft of the rotary shaft component 8. After mounting, the elastic force of the spring is applied to both half-divided bodies 2 and 2 ′ so that both are normally closed as shown in FIG. B, and the engaging portion 9 provided on the surface of the half-divided body 2 is engaged. It is convenient for operation if the one end of the repetitive wire 1 is fixed, the inside of the handle 7 is passed through and the end of the handle is pulled to open the half body 2 with the rotary shaft part 8 as the center of rotation. Is. Figure d shows the circuit of this voltage detector. The voltage of the high voltage distribution line is measured by the capacitance C from the insulated wire conductor to the voltage dividing electrode.
1 shows a voltage dividing circuit formed by 1 and C 2 from the voltage dividing electrode to the shield electrode 6. As the voltage detector, it is also possible to use an optical voltage sensor as the half voltage divider. The current detector 22 may be a suitable impedance circuit or a sensitive split current transformer.

【0009】図2は本発明実施の全体的構成を示す。三
相架空絶縁電線線路10に、立上り端子13を介して接続さ
れるCVケーブル11の絶縁劣化を診断するものとし、そ
の一線を診断対象とし、このCVケーブル11が接続され
ている対応の前記絶縁電線線路10に前記説明の電圧検出
器20を結合する。電圧検出器20の出力信号は振幅・位相
調整回路21に入力する。一方、前記被診断CVケーブル
11の金属遮蔽層12に導線を接続し、遮蔽層12を流れる電
流を電流検出器22に入力する。この場合、このケーブル
の金属遮蔽層12の直接接地は行わず、電流検出器22の出
口側を接地する。電流検出器22よりの出力信号は増幅器
23に入力し、増幅器23および振幅・位相調整回路21の出
力は差動増幅器24に入力し、その出力は判別回路25に入
力し、判別結果は表示部26にて表示される。
FIG. 2 shows the overall construction of the present invention. It is assumed that the insulation deterioration of the CV cable 11 connected to the three-phase overhead insulated wire line 10 via the rising terminal 13 is diagnosed, and that one line is the diagnosis target, and the insulation corresponding to the CV cable 11 is connected. The voltage detector 20 described above is coupled to the electric wire line 10. The output signal of the voltage detector 20 is input to the amplitude / phase adjustment circuit 21. On the other hand, the diagnostic CV cable
A conductor is connected to the metal shield layer 12 of 11 and the current flowing through the shield layer 12 is input to the current detector 22. In this case, the metal shield layer 12 of this cable is not directly grounded, but the outlet side of the current detector 22 is grounded. The output signal from the current detector 22 is an amplifier
23, the outputs of the amplifier 23 and the amplitude / phase adjusting circuit 21 are input to the differential amplifier 24, the outputs thereof are input to the discrimination circuit 25, and the discrimination result is displayed on the display unit 26.

【0010】図3は図2の増幅器23、振幅・位相調整回
路21、これら23,21の出力が入力する差動増幅器24の周
辺を含む信号処理回路の構成を示す。図2の電流検出器
22よりの電流信号v1 はゲイン可変増幅器32を介して差
動増幅器24の+端子に入力し、電圧検出器20よりの電圧
信号v2 は、位相調整回路35、ゲイン可変増幅器37を介
して差動増幅器24の−端子に入力する。ゲイン可変増幅
部32の出力と電圧検出器20の出力を入力とする振幅判別
部30、この出力を受けるゲイン制御部31、このゲイン制
御部31よりのゲイン信号を受ける前記ゲイン可変増幅部
32により形成されるゲイン調整系を形成する。一方、差
動増幅器24の出力を入力とする振幅判定器33とこの振幅
判定器33の出力を入力とする位相制御部34とこの出力を
入力とする前記位相調整回路35によって位相調整系を形
成し、さらに前記振幅判定部33、この出力を入力とする
ゲイン制御部36、この出力を入力とする前記ゲイン可変
増幅部37によりゲイン調整系を形成する。
FIG. 3 shows the configuration of a signal processing circuit including the amplifier 23, the amplitude / phase adjusting circuit 21, and the periphery of the differential amplifier 24 to which the outputs of these amplifiers 23 and 21 are input, as shown in FIG. 2 current detector
The current signal v 1 from 22 is input to the + terminal of the differential amplifier 24 via the variable gain amplifier 32, and the voltage signal v 2 from the voltage detector 20 is passed via the phase adjusting circuit 35 and the variable gain amplifier 37. Input to the-terminal of the differential amplifier 24. An amplitude discriminating unit 30 that receives the output of the gain variable amplification unit 32 and the output of the voltage detector 20, a gain control unit 31 that receives this output, and the gain variable amplification unit that receives a gain signal from this gain control unit 31.
A gain adjustment system formed by 32 is formed. On the other hand, a phase adjustment system is formed by the amplitude determiner 33 that receives the output of the differential amplifier 24, the phase controller 34 that receives the output of the amplitude determiner 33, and the phase adjustment circuit 35 that receives this output. Further, the amplitude determination section 33, the gain control section 36 having this output as an input, and the gain variable amplification section 37 having this output as an input form a gain adjustment system.

【0011】電流検出器20よりの信号v1 は電圧検出器
20よりの信号v2 に比べると位相が約90°進み、v2
数ボルト程度に設定してOPアンプ使用の範囲とする。
これに対してv1 は数mV〜数百mVと振幅が小さく、
差動増幅器にて両信号の差を求めるためには、v1 ,v
2 からの信号が商用周波数で同位相で同一振幅となるよ
うに調整する必要があり、次のようにゲイン調整系、位
相調整系を調整する。電流検出器からの電流信号v1
電圧検出器からのv2 の振幅を差動増幅器24の入力点A
で同等の大きさとするため、振幅判定部30、ゲイン制御
部31、ゲイン可変増幅部32より形成されるゲイン調整系
にて差動増幅器24の+入力端子のa点の電圧を調整す
る。これによりa点と電圧検出器よりの出力電圧がb点
において同じくらいになるようにする。次に、差動増幅
器24の出力端c点の電圧値が最小になるように、振幅判
定部33、位相制御部34、位相調整回路35より形成される
位相調整系にて電圧信号v2 の位相を90°ほど進める。
さらに前記c点の電圧が最小となるように振幅判定部3
3、ゲイン制御部36、ゲイン可変増幅部37よりなるゲイ
ン調整系にて調整を行う。
The signal v 1 from the current detector 20 is a voltage detector
The phase advances about 90 ° compared to the signal v 2 from 20, and v 2 is set to about several volts to make it a range for using the OP amplifier.
On the other hand, v 1 has a small amplitude of several mV to several hundred mV,
In order to obtain the difference between the two signals with the differential amplifier, v 1 , v
It is necessary to adjust the signal from 2 so that it has the same phase and the same amplitude at the commercial frequency. Adjust the gain adjustment system and phase adjustment system as follows. The amplitudes of the current signal v 1 from the current detector and v 2 from the voltage detector are set to the input point A of the differential amplifier 24.
In order to obtain the same size, the voltage at the point a of the + input terminal of the differential amplifier 24 is adjusted by the gain adjustment system formed by the amplitude determination unit 30, the gain control unit 31, and the gain variable amplification unit 32. As a result, the output voltage from point a and the voltage detector are made to be approximately the same at point b. Next, the phase adjustment system formed by the amplitude determination section 33, the phase control section 34, and the phase adjustment circuit 35 adjusts the voltage signal v 2 so that the voltage value at the output point c of the differential amplifier 24 becomes the minimum. Advance the phase by about 90 °.
Further, the amplitude determination unit 3 is set so that the voltage at the point c is minimized.
Adjustment is performed by a gain adjustment system including a gain control unit 36 and a variable gain amplification unit 37.

【0012】[0012]

【劣化の判定】劣化の判定は、差動増幅器出力より、 1)3次高調波分をとり出し、その大きさで判定する。 2)3,5,7次高調波をとり出し、その大きさの比で
判定する。 3)差動増幅器出力電圧の変動により判定する。 4)3次高調波をとり出し、基準波形との位相差により
判定する。 上記いずれの判定法を用いてもよい。
[Determination of Deterioration] Deterioration is determined by 1) extracting the 3rd harmonic component from the output of the differential amplifier and determining the magnitude. 2) Extract the 3rd, 5th and 7th harmonics and judge by the ratio of their magnitudes. 3) Judgment is made by the fluctuation of the output voltage of the differential amplifier. 4) Extract the third harmonic and judge by the phase difference from the reference waveform. Any of the above determination methods may be used.

【0013】本発明の絶縁劣化診断装置は、高圧用のコ
ンデンサ型分圧器等を用いているため、小型、軽量であ
り、このため運搬が容易であり、測定時に占有するスペ
ースは非常に小さくて済む。本発明で用いる電圧検出器
は絶縁体の外側から電圧を検出できるため、充電部に触
れる必要がなく、安全で、半割で絶縁電線に結合できる
ように構成されているので、その設置も極めて簡単であ
る。
Since the insulation deterioration diagnosing device of the present invention uses a capacitor type voltage divider for high voltage and the like, it is small and lightweight, and therefore it is easy to carry and the space occupied during measurement is very small. I'm done. Since the voltage detector used in the present invention can detect the voltage from the outside of the insulator, there is no need to touch the live part, it is safe, and it can be connected to the insulated wire in half, so its installation is also extremely It's easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で用いられる電圧検出器を示し、aは絶
縁電線保持部を開口した側面を、bは同保持部を閉じた
側面を断面図で示し、cは同斜視図、dは回路的構成を
示す。
FIG. 1 shows a voltage detector used in the present invention, in which a is a side view of an insulated wire holding part opened, b is a side view of the closed holding part, and c is a perspective view and d is a cross-sectional view. A circuit configuration is shown.

【図2】本発明装置の実施例を示す。FIG. 2 shows an embodiment of the device of the present invention.

【図3】本発明装置の信号処理回路を示す。FIG. 3 shows a signal processing circuit of the device of the present invention.

【図4】従来の活線ケーブル劣化診断装置の回路の一例
を示す。
FIG. 4 shows an example of a circuit of a conventional live cable deterioration diagnosis device.

【符号の説明】[Explanation of symbols]

1 絶縁電線 2,2' 半割体 3 絶縁物 4 空孔
5 分圧電極 6 遮蔽電極 7 把手 8 回転軸部品 9 係合部
10 絶縁電線線路 11 CVケーブル 12 ケーブル遮蔽層 13 端子 20
電圧検出器 21 振幅・位相調整回路 22 電流検出器 23 増幅
24 差動増幅器 25 判定回路 26 表示部
1 Insulated wire 2, 2'Half-divided body 3 Insulator 4 Hole 5 Dividing electrode 6 Shielding electrode 7 Handle 8 Rotating shaft part 9 Engagement part
10 Insulated wire line 11 CV cable 12 Cable shielding layer 13 Terminal 20
Voltage detector 21 Amplitude / phase adjustment circuit 22 Current detector 23 Amplification
24 Differential amplifier 25 Judgment circuit 26 Display

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電力ケーブルに商用周波交流が印加され
た状態で、そのケーブルの遮蔽層に流れる第3次以上の
高調波分を測定することによりケーブルの絶縁劣化診断
を行う装置にあって、高圧配電線の架空電線部分の表面
から電圧を検出する半割型の電圧検出器、電圧検出器か
らの電圧信号の振幅・位相を調整する振幅・位相調整回
路、診断対象の前記架空電線部分に接続されたCVケー
ブルの接地線の電流を検出する電流検出器、電流検出器
の出力信号を適当な大きさの電圧に変換する増幅部、前
記振幅・位相調整回路の出力と前記増幅器の出力との差
をとる差動増幅器、前記差動増幅器出力により劣化状態
を判定する判定回路より構成され、振幅・位相調整回路
は差動増幅出力のうち、商用周波数成分が最小となるよ
うに調整できる機能を備えることを特徴とする電力ケー
ブルの絶縁劣化診断装置。
1. A device for diagnosing insulation deterioration of a cable by measuring harmonic components of a third order or higher flowing in a shielding layer of the cable in a state where a commercial frequency AC is applied to the power cable, A half-division type voltage detector that detects the voltage from the surface of the overhead wire of the high-voltage distribution line, an amplitude / phase adjustment circuit that adjusts the amplitude and phase of the voltage signal from the voltage detector, and the above-mentioned overhead wire part to be diagnosed. A current detector for detecting the current of the ground wire of the connected CV cable, an amplifying unit for converting the output signal of the current detector into a voltage of an appropriate magnitude, the output of the amplitude / phase adjusting circuit and the output of the amplifier. Of the differential amplifier and a determination circuit that determines the deterioration state based on the output of the differential amplifier, and the amplitude / phase adjustment circuit can adjust the commercial frequency component to the minimum in the differential amplification output. An insulation deterioration diagnosis device for a power cable, comprising:
【請求項2】 絶縁電線の長さ方向に分割できる半割体
よりなり、前記半割体は絶縁物よりなり、前記絶縁電線
を保持する半割の空孔が中央部に形成され、前記空孔を
中心にこれと同心的に一方の半割体には分圧電極が埋込
まれ、前記空孔を中心として同心的に前記分圧電極の外
側となる位置において同心的に両半割体に遮蔽電極が埋
込まれ、前記分圧電極および遮蔽電極より導線を引出し
たことを特徴とする電圧検出器。
2. A half-divided body that can be divided in the lengthwise direction of the insulated wire, wherein the half-divided body is made of an insulating material, and a half-divided hole for holding the insulated wire is formed in the central portion. A voltage dividing electrode is embedded in one of the half halves concentrically with respect to the hole, and both halves are concentrically arranged at a position concentrically outside the voltage dividing electrode around the hole. A voltage detector characterized in that a shield electrode is embedded in the electrode, and lead wires are drawn from the voltage dividing electrode and the shield electrode.
JP24471594A 1994-09-12 1994-09-12 Diagnostic device of deterioration of insulation of power cable Pending JPH0882644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24471594A JPH0882644A (en) 1994-09-12 1994-09-12 Diagnostic device of deterioration of insulation of power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24471594A JPH0882644A (en) 1994-09-12 1994-09-12 Diagnostic device of deterioration of insulation of power cable

Publications (1)

Publication Number Publication Date
JPH0882644A true JPH0882644A (en) 1996-03-26

Family

ID=17122837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24471594A Pending JPH0882644A (en) 1994-09-12 1994-09-12 Diagnostic device of deterioration of insulation of power cable

Country Status (1)

Country Link
JP (1) JPH0882644A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101040732B1 (en) * 2010-11-29 2011-06-10 주식회사 이피이 Apparatus for monitoring power line
CN110554215A (en) * 2018-05-31 2019-12-10 广东电网有限责任公司 bus tube clamp
CN113281552A (en) * 2021-04-13 2021-08-20 上海电机学院 Zero-contact cable voltage measurement method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101040732B1 (en) * 2010-11-29 2011-06-10 주식회사 이피이 Apparatus for monitoring power line
CN110554215A (en) * 2018-05-31 2019-12-10 广东电网有限责任公司 bus tube clamp
CN113281552A (en) * 2021-04-13 2021-08-20 上海电机学院 Zero-contact cable voltage measurement method
CN113281552B (en) * 2021-04-13 2023-02-10 上海电机学院 Zero-contact cable voltage measurement method

Similar Documents

Publication Publication Date Title
JP2006242855A (en) Noncontact-type voltage detection method and noncontact-type voltage detection device
WO2006019164A1 (en) Device and method for detecting partial discharge of rotary electric machine
JP3158063B2 (en) Non-contact voltage measurement method and device
JP4267713B2 (en) Degradation diagnosis method for power cables
JP2020528153A (en) Non-contact voltage converter
CN114236212A (en) Voltage measurement method, voltage measurement circuit and equipment
JPH0882644A (en) Diagnostic device of deterioration of insulation of power cable
JP3344682B2 (en) Method for specifying electromagnetic interference wave entry route and electromagnetic interference wave search device
Simons et al. Non-destructive electrical test methods for evaluating high-voltage stator insulation
JP2876322B2 (en) Diagnosis method for insulation deterioration of CV cable
JP4216920B2 (en) Partial discharge occurrence position detection device for conductive device
JPH07294588A (en) Method for locating insulation failure section of live cable
Tokoro et al. Detection of high field AC conduction loss current in polymeric insulating materials
JP4089129B2 (en) Insulation diagnostic bridge circuit
JPH0875689A (en) Deterioration detector
JP2000009788A (en) Deterioration diagnosis method of cables
JP2001183412A (en) Insulation degradation diagnosing method for power cable
JP2022021382A (en) Partial discharge measuring instrument
JPH01100470A (en) Test of partial discharge for cable
JPH0690245B2 (en) Insulation deterioration related quantity measuring device
JPH1078472A (en) Method for diagnosing deterioration of cv cable
JP2628738B2 (en) Power cable test equipment
JPH0580113A (en) Diagnostic method for deterioration of power cable insulation
JP2019203830A (en) Voltage measuring device and voltage measuring method
JPH01110267A (en) Insulation deterioration diagnostic apparatus