JPH0882491A - Heat exchanger for gas turbine - Google Patents

Heat exchanger for gas turbine

Info

Publication number
JPH0882491A
JPH0882491A JP21988994A JP21988994A JPH0882491A JP H0882491 A JPH0882491 A JP H0882491A JP 21988994 A JP21988994 A JP 21988994A JP 21988994 A JP21988994 A JP 21988994A JP H0882491 A JPH0882491 A JP H0882491A
Authority
JP
Japan
Prior art keywords
flow path
heat exchanger
temperature side
turbine
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21988994A
Other languages
Japanese (ja)
Inventor
Mayumi Nakamura
眞由美 中村
Keijiro Kinoshita
啓次郎 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Corp filed Critical Calsonic Corp
Priority to JP21988994A priority Critical patent/JPH0882491A/en
Publication of JPH0882491A publication Critical patent/JPH0882491A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE: To obtain a low-cost structure in which heat transfer performance and heat resistant performance are excellent and which is light weight and has small leakage. CONSTITUTION: Second channels 12 in which high pressure air flows are provided inside flat tubelike channel elements 13. Inner fins 14 are disposed inside the elements 13, and outer fins 15 are disposed between the adjacent elements 13. The waveform directions of the fins 14 and 15 are different. The members 13-15 are formed of stainless steel thin plates, and connected by diffusion bonding.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明に係るガスタービン用熱
交換器は、ガスタービンエンジンに組み込んで、高温の
燃焼ガスにより空気を加温する為に利用する。
BACKGROUND OF THE INVENTION The heat exchanger for a gas turbine according to the present invention is incorporated in a gas turbine engine and is used for heating air by high temperature combustion gas.

【0002】[0002]

【従来の技術】内燃機関の一種であり、燃料を連続燃焼
させるガスタービンエンジンは、シリンダ内で燃料を間
欠燃焼させる内燃機関に比べて排気中の有害物質を少な
く抑えられる事から、各種機械装置の駆動源として利用
する事が研究されている。図1は、この様なガスタービ
ンエンジンの基本構成を示している。燃料噴射弁1から
燃焼器2内に噴射され、後述する熱交換器3を通じて供
給される予熱空気と混合された、ガソリン、軽油、ケロ
シン等の液体燃料は、この燃焼器2内で燃焼して高温、
高圧の燃焼ガスを発生する。尚、起動時には、図示しな
い点火プラグにより、上記燃焼器2内の混合気に点火す
る。
2. Description of the Related Art A gas turbine engine, which is a kind of internal combustion engine and burns fuel continuously, can reduce harmful substances in exhaust gas less than an internal combustion engine which burns fuel intermittently in a cylinder. It is being researched to use it as a driving source of. FIG. 1 shows the basic configuration of such a gas turbine engine. Liquid fuel such as gasoline, light oil, kerosene, which is injected from the fuel injection valve 1 into the combustor 2 and mixed with preheated air supplied through a heat exchanger 3 described later, is burned in the combustor 2. high temperature,
Generates high-pressure combustion gas. In addition, at the time of start-up, an air-fuel mixture in the combustor 2 is ignited by an ignition plug (not shown).

【0003】この燃焼ガスは、遠心式の空気圧縮機4に
導かれ、タービン5を高速回転させる。更にこのタービ
ン5を回転させた後の燃焼ガスは、上記熱交換器3を通
過してから排気される。上記タービン5をその一端(図
1の右端)に固定した回転軸6の中間部には、インペラ
7を固定し、このインペラ7によって、周囲から取り入
れた空気を圧縮し、上記熱交換器3に向け吐出自在とし
ている。更に上記回転軸6の他端(図1の左方)は、発
電機、コンプレッサ等、ガスタービンエンジンにより駆
動すべき機械装置(図示せず)の入力軸に結合してい
る。
This combustion gas is guided to the centrifugal air compressor 4 and rotates the turbine 5 at a high speed. Further, the combustion gas after rotating the turbine 5 passes through the heat exchanger 3 and is then exhausted. An impeller 7 is fixed to an intermediate portion of a rotary shaft 6 having the turbine 5 fixed to one end (the right end in FIG. 1) of the turbine 5. The impeller 7 compresses the air taken in from the surroundings to the heat exchanger 3. The discharge is free. Further, the other end (left side in FIG. 1) of the rotary shaft 6 is connected to an input shaft of a mechanical device (not shown) to be driven by a gas turbine engine, such as a generator or a compressor.

【0004】上記熱交換器3としては、図2に示す様
な、コンパクト熱交換器と呼ばれる構造のものが、小型
化、並びに高性能化が容易である事から、広く使用され
ている。この熱交換器3は、それぞれが金属薄板により
造られた複数枚ずつの第一の波板8、8と平板9、9と
第二の波板10、10とを、それぞれの厚さ方向に亙っ
て交互に重ね合わせて成る。第一の波板8、8の波形の
連続方向と、第二の波板10、10の波形の連続方向と
は、互いに直角方向に異なっている。従って、隣り合う
2枚の平板9、9同士の間で上記第一の波板8、8設置
部分には第一の流路11、11が、隣り合う平板9、9
同士の間で上記第二の波板10、10設置部分には、上
記第一の流路11、11と直角方向に亙る第二の流路1
2、12が、それぞれ形成される。これら第一の流路1
1、11と第二の流路12、12とは、上記各平板9、
9を介して互いに隣接するが、上記第一の波板8、8及
び上記第二の波板10、10と上記平板9、9とのそれ
ぞれの接触部の接合が完全であれば互いに交差する事は
なく、これら各流路11、12を流れる流体同士が混ざ
り合う事はない。
As the heat exchanger 3, a heat exchanger having a structure called a compact heat exchanger as shown in FIG. 2 is widely used because it is easy to reduce the size and improve the performance. This heat exchanger 3 includes a plurality of first corrugated plates 8, 8 each made of a thin metal plate, flat plates 9, 9 and second corrugated plates 10, 10 in respective thickness directions. It is formed by alternately stacking over. The continuous direction of the corrugations of the first corrugated plates 8 and 8 and the continuous direction of the corrugations of the second corrugated plates 10 and 10 are different from each other in the direction perpendicular to each other. Therefore, between the two adjacent flat plates 9 and 9, the first flow paths 11 and 11 are provided in the first corrugated plates 8 and 8 installation portions, and the adjacent flat plates 9 and 9 are provided.
Between the two, the second corrugated plates 10 and 10 are installed in the second channel 1 extending in a direction perpendicular to the first channels 11 and 11.
2, 12 are formed respectively. These first flow paths 1
1, 11 and the second flow paths 12, 12 are the flat plates 9,
9 are adjacent to each other through 9 but intersect each other if the contact portions of the first corrugated plates 8 and 8 and the second corrugated plates 10 and 10 and the flat plates 9 and 9 are completely joined. This is not the case, and the fluids flowing through the flow paths 11 and 12 are not mixed with each other.

【0005】上述の様に構成される熱交換器3を前述の
様に構成されるガスタービンに組み込んだ状態では、例
えば前記燃焼ガスが上記各第一の流路11、11を流
れ、前記空気圧縮機4から吐出された空気が上記各第二
の流路12、12を流れる。即ち、上記各第一の流路1
1、11が高温側流路として機能し、上記各第二の流路
12、12が低温側流路として機能する。そして、上記
燃焼ガスの熱を空気に伝達し、この空気の温度を上昇さ
せ(空気を予熱し)てから、この空気を上記燃焼器2に
送り込む。従って、この燃焼器2内では、温度上昇した
空気と液体燃料とが効率良く燃焼して高温、高圧の燃焼
ガスを発生し、この燃焼ガスが前記空気圧縮機4のター
ビン5部分に送られる。
In the state where the heat exchanger 3 having the above-described structure is incorporated in the gas turbine having the above-described structure, for example, the combustion gas flows through the first flow passages 11, 11 and the air flows. The air discharged from the compressor 4 flows through the respective second flow paths 12, 12. That is, each of the first flow paths 1 described above
1 and 11 function as a high temperature side flow path, and each of the second flow paths 12 and 12 functions as a low temperature side flow path. Then, the heat of the combustion gas is transferred to the air to raise the temperature of the air (preheat the air), and then the air is sent to the combustor 2. Therefore, in the combustor 2, the air whose temperature has risen and the liquid fuel efficiently burn to generate high-temperature and high-pressure combustion gas, which is sent to the turbine 5 portion of the air compressor 4.

【0006】尚、この様な熱交換器3の基本構造に就い
ては、落合安太郎著、日刊工業新聞社発行の『熱交換
器』、実開昭59−175937号公報、実開平2−5
8627号公報、同4−73750号公報等、各種文献
に記載されて周知である。又、ガスタービンの基本構造
に就いても周知である。
Regarding the basic structure of the heat exchanger 3 as described above, Yasutaro Ochiai, "Heat Exchanger", published by Nikkan Kogyo Shimbun, JP-A-59-175937, JP-II-5-5.
It is well-known and described in various documents such as 8627, and 4-73750. Also, the basic structure of a gas turbine is well known.

【0007】[0007]

【発明が解決しようとする課題】ガスタービンの性能向
上を図る為には、次の〜の条件を満たす熱交換器を
実現する必要がある。 熱交換器3部分での熱交換効率を向上させる。即
ち、高温気体である燃焼ガスから低温気体である空気へ
の熱伝達が効率良く行われる様にする。 熱交換器3内部での漏れを低減させる。即ち、低温
気体である空気が熱交換器3内部から第一の流路11、
11にリークする量を低減する。 燃焼温度を上昇させる。この為に、熱交換器3の耐
熱性を向上させる。
In order to improve the performance of the gas turbine, it is necessary to realize a heat exchanger satisfying the following conditions (1) to (3). The heat exchange efficiency in the heat exchanger 3 part is improved. That is, heat is efficiently transferred from the combustion gas, which is a high-temperature gas, to the air, which is a low-temperature gas. Leakage inside the heat exchanger 3 is reduced. That is, air, which is a low-temperature gas, flows from the inside of the heat exchanger 3 to the first flow path 11,
The amount of leak to 11 is reduced. Increase the combustion temperature. Therefore, the heat resistance of the heat exchanger 3 is improved.

【0008】上記の条件を満たす為には、高温の燃焼
ガスが流れる第一の流路11、11と低温の空気が流れ
る第二の流路12、12とを仕切る平板9、9を通じて
の熱交換が良好に行われる様にする必要がある。この為
に、各平板9、9の厚さ寸法を小さくする事で上記熱交
換が良好に行われる様にしている。上記の条件は、こ
の様な構成により対処できるが、上記、の条件を満
たすのは困難であった。尚、上記平板9、9の板厚を小
さく抑える事は、熱交換器3の効率向上だけでなく、材
料費の低減による熱交換器3の製作費低減、並びに熱交
換器3を組み込んだガスタービンの軽量化に寄与でき
る。
In order to satisfy the above conditions, heat generated through the flat plates 9 and 9 separating the first flow paths 11 and 11 through which the high temperature combustion gas flows and the second flow paths 12 and 12 through which low temperature air flows. It is necessary to ensure good exchange. Therefore, the heat exchange is favorably performed by reducing the thickness of each flat plate 9, 9. Although the above condition can be dealt with by such a configuration, it is difficult to satisfy the above condition. It should be noted that suppressing the plate thickness of the flat plates 9 and 9 not only improves the efficiency of the heat exchanger 3, but also reduces the manufacturing cost of the heat exchanger 3 by reducing the material cost, and the gas in which the heat exchanger 3 is incorporated. It can contribute to weight reduction of the turbine.

【0009】[0009]

【課題を解決するための手段】本発明のガスタービン用
熱交換器は、前述した従来のガスタービン用熱交換器と
同様、タービンを回転させた後の高温の燃焼ガスを流通
させる複数の高温側流路と、この高温側流路に対して直
角方向に配置され、上記タービンと同軸に設けられてこ
のタービンと共に回転するインペラによって圧縮された
高圧の空気を流通させる低温側流路とを、各流路の厚さ
方向に亙って交互に設けて成る。
The heat exchanger for a gas turbine of the present invention, like the heat exchanger for a conventional gas turbine described above, has a plurality of high temperatures for circulating the high temperature combustion gas after rotating the turbine. A side flow path and a low temperature side flow path, which is arranged in a direction orthogonal to the high temperature side flow path and which is provided coaxially with the turbine and circulates high pressure air compressed by an impeller rotating together with the turbine, The flow paths are provided alternately in the thickness direction.

【0010】特に、本発明のガスタービン用熱交換器に
於いては、上記低温側流路は、ステンレス鋼製の薄板を
幅方向中間部で折り返し幅方向両端部同士を結合する事
で扁平管状に形成された複数の流路素子の内側に設けら
れている。そして、各流路素子の内側には、ステンレス
鋼製の薄板を断面波形に形成して成るコルゲート型のイ
ンナーフィンが、それぞれの波形の繰り返し方向を上記
各流路素子の幅方向に一致させた状態で設けられてい
る。又、上記各高温側流路は、隣り合う流路素子の側面
同士の間に設けられており、これら隣り合う流路素子同
士の間には、ステンレス鋼製の薄板を断面波形に形成し
て成るコルゲート型のアウターフィンが、それぞれの波
形の繰り返し方向を上記各流路素子の長さ方向に一致さ
せた状態で設けられている。更に、上記各流路素子を構
成するステンレス鋼製の薄板の幅方向両端部同士の結合
部、上記各流路素子の内面と上記各インナーフィンとの
接触部、上記各流路素子の外面と上記各アウターフィン
との接触部を、それぞれ拡散接合により接合している。
In particular, in the heat exchanger for a gas turbine of the present invention, the low temperature side flow path is formed by folding a thin plate made of stainless steel at an intermediate portion in the width direction and connecting both end portions in the width direction to each other in a flat tubular shape. It is provided inside the plurality of flow path elements formed in. Then, inside each flow path element, a corrugated inner fin formed by forming a thin plate made of stainless steel into a corrugated cross-section is arranged so that the repeating direction of each corrugation coincides with the width direction of each flow path element. It is provided in the state. Further, each of the high temperature side flow paths is provided between the side surfaces of the adjacent flow path elements, and a thin plate made of stainless steel is formed in a corrugated cross section between the adjacent flow path elements. The corrugated outer fins are provided in a state where the repeating directions of the respective corrugations are aligned with the length direction of the flow path elements. Furthermore, the joint between the widthwise both ends of the thin plate made of stainless steel constituting each of the flow path elements, the contact portion between the inner surface of each flow path element and each inner fin, the outer surface of each flow path element. The contact portions with the respective outer fins are joined by diffusion joining.

【0011】[0011]

【作用】上述の様に構成される本発明のガスタービン用
熱交換器の場合、低温側流路を、結合部を有する扁平管
状としている為、低温側流路から高温側流路への流体の
リーク量を低減する事ができる。これと共に、上記結合
部、流体素子の内面とインナーフィンとの接触部、流体
素子の外面とアウターフィンとの接触部を、ろう材を使
用しない拡散接合により接合している為、ガスタービン
用熱交換器の耐熱性の向上を図れる。
In the heat exchanger for a gas turbine of the present invention configured as described above, since the low temperature side flow path is a flat tube having a connecting portion, the fluid from the low temperature side flow path to the high temperature side flow path is formed. It is possible to reduce the amount of leakage. At the same time, since the above-mentioned joint portion, the contact portion between the inner surface of the fluid element and the inner fin, and the contact portion between the outer surface of the fluid element and the outer fin are joined by diffusion joining without using a brazing material, heat for gas turbine The heat resistance of the exchanger can be improved.

【0012】[0012]

【実施例】本発明のガスタービン用熱交換器は、例えば
前記図1に示す様なガスタービンに組み込まれる。そし
て、それぞれが複数ずつの、高温側流路である第一の流
路11、11と、この第一の流路11、11に対して直
角方向に配置された、低温側流路である第二の流路1
2、12とを備え、各流路11、12をその厚さ方向に
亙って交互に設けて成る。このうちの第一の流路11、
11には、タービン5を回転させた後の高温の燃焼ガス
を流通させ、第二の流路12、12には、上記タービン
5と同軸に設けられてこのタービン5と共に回転するイ
ンペラ7によって圧縮された高圧の空気を流通させる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The heat exchanger for a gas turbine of the present invention is incorporated in a gas turbine as shown in FIG. 1, for example. And, each is a plurality of first flow paths 11 and 11 which are high temperature side flow paths and a low temperature side flow path which is arranged in a direction perpendicular to the first flow paths 11 and 11. Second channel 1
2 and 12, and the flow paths 11 and 12 are alternately provided in the thickness direction. Of these, the first channel 11,
A high-temperature combustion gas after rotating the turbine 5 is circulated in 11 and is compressed by an impeller 7 that is provided in the second flow paths 12 and 12 coaxially with the turbine 5 and rotates together with the turbine 5. The generated high pressure air is circulated.

【0013】特に、本発明のガスタービン用熱交換器に
於いては、図3に示す様に、上記低温側流路である第二
の流路12、12は、それぞれ流路素子13、13の内
側に設けられている。この流路素子13、13は、ステ
ンレス鋼製の薄板を幅方向中間部で折り返し幅方向両端
部同士を結合する事で、全体を扁平管状に形成されてい
る。上記薄板の幅方向両端部同士の結合は、例えば図4
(D)に示す様に、両端部同士を重ね合わせて2度折り
返し、更にかしめ付ける事により行う。即ち、図4
(A)に示す様に上記両端部同士を重ね合わせ、同図
(B)に示す様に中間部で折り返す。更に、同図(C)
に示す様にもう1度折り返し、最後に同図(D)に示す
様に、この折り返し部分をかしめる。尚、用途によって
は、図4(B)に示す状態のままとする事もできる。更
に、従来から知られた他の結合方法を採用する事もでき
る。
Particularly, in the heat exchanger for a gas turbine of the present invention, as shown in FIG. 3, the second flow paths 12, 12 which are the low temperature side flow paths are respectively flow path elements 13, 13. It is provided inside. The flow path elements 13 and 13 are formed in a flat tubular shape as a whole by folding a widthwise intermediate portion of a thin plate made of stainless steel and connecting both widthwise end portions. The connection between the both ends of the thin plate in the width direction is performed by, for example, FIG.
As shown in (D), both ends are overlapped, folded back twice, and further caulked. That is, FIG.
As shown in (A), the both ends are overlapped with each other and folded back at the intermediate part as shown in (B). Furthermore, the same figure (C)
As shown in FIG. 5, the folded part is folded again, and finally, as shown in FIG. Depending on the application, the state shown in FIG. 4 (B) can be left as it is. Further, other conventionally known coupling methods can be adopted.

【0014】この様な各流路素子13、13の内側に
は、ステンレス鋼製の薄板を断面波形に形成して成るコ
ルゲート型のインナーフィン14、14が、それぞれの
波形の繰り返し方向を上記各流路素子13、13の幅方
向(図1の左右方向)に一致させた状態で設けられてい
る。従って上記各流路素子13、13内に送り込まれた
空気は、上記各インナーフィン14、14のうねりの間
部分に沿って、各インナーフィン14、14の長さ方向
に流通する。
Corrugated inner fins 14, 14 formed by forming a stainless steel thin plate in a corrugated cross section are provided inside each of the flow path elements 13, 13 as described above. The flow path elements 13 and 13 are provided in a state of being aligned with the width direction (left-right direction in FIG. 1). Therefore, the air sent into the flow path elements 13 and 13 flows along the lengthwise direction of the inner fins 14 and 14 along the portion between the undulations of the inner fins 14 and 14.

【0015】又、上記各高温側流路である第一の流路1
1、11は、隣り合う流路素子13、13の側面同士の
間に設けられている。そして、これら隣り合う流路素子
13、13同士の間には、ステンレス鋼製の薄板を断面
波形に形成して成るコルゲート型のアウターフィン1
5、15が設けられている。これら各アウターフィン1
5、15の波形の繰り返し方向は、上記各流路素子1
3、13の長さ方向(図1の上下方向)に一致させてい
る。
The first flow path 1 which is the high temperature side flow path described above.
1 and 11 are provided between the side surfaces of the adjacent flow path elements 13 and 13. A corrugated outer fin 1 is formed by forming a thin plate made of stainless steel in a corrugated cross section between the adjacent flow path elements 13, 13.
5, 15 are provided. Each of these outer fins 1
The repeating directions of the waveforms 5 and 15 are the same as those of the flow path elements 1 described above.
3 and 13 are aligned in the longitudinal direction (vertical direction in FIG. 1).

【0016】上述の様な各部材13〜15を積層する様
に組み合わせて成る本発明のガスタービン用熱交換器
は、上記各部材13〜15を拡散接合により接合してい
る。即ち、上記各流路素子13、13を構成するステン
レス鋼製の薄板の幅方向両端部同士の結合部、上記各流
路素子13、13の内面と上記各インナーフィン14、
14との接触部、上記各流路素子13、13の外面と上
記各アウターフィン15、15との接触部を、それぞれ
拡散接合により接合している。
In the heat exchanger for a gas turbine of the present invention, which is formed by combining the above-mentioned members 13 to 15 so as to be laminated, the members 13 to 15 are joined by diffusion bonding. That is, the joint between the widthwise both ends of the thin plate made of stainless steel, which constitutes each of the flow path elements 13, 13, the inner surface of each of the flow path elements 13, 13 and each of the inner fins 14,
The contact portion with 14 and the contact portion with the outer surfaces of the flow path elements 13 and 13 and the outer fins 15 and 15 are joined by diffusion bonding.

【0017】即ち、上記各部材13〜15を図5に示す
様に積層した状態で、積層方向(図5の上下方向)に亙
って、例えば20kg程度の押圧力により加圧した状態の
まま、例えば図6に示す様な温度条件により加熱して、
これら各部材13〜15を接合する。各部材13〜15
を構成するステンレス鋼製の薄板の厚さ寸法としては、
0.05mm程度が、伝熱性と強度とを両立させる面から
適当であるが、使用条件によっては0.03〜0.1mm
程度が、ガスタービン用熱交換器として実用可能であ
る。尚、板厚を変えた場合には、押圧力及び加熱条件
は、板厚に合わせて調節する。
That is, in a state where the above-mentioned members 13 to 15 are laminated as shown in FIG. 5, the members are kept pressed by a pressing force of, for example, about 20 kg in the stacking direction (vertical direction in FIG. 5). , For example, by heating under the temperature conditions shown in FIG.
These respective members 13 to 15 are joined. Each member 13-15
As the thickness dimension of the thin plate made of stainless steel that constitutes
About 0.05 mm is suitable from the viewpoint of achieving both heat conductivity and strength, but 0.03 to 0.1 mm depending on usage conditions.
To some extent, it is practically applicable as a heat exchanger for gas turbines. When the plate thickness is changed, the pressing force and heating conditions are adjusted according to the plate thickness.

【0018】上述の様に構成される本発明のガスタービ
ン用熱交換器の場合には、例えば2〜3kg/cm2 程度
と、比較的高圧の空気を流す低温側流路である第二の流
路12、12を、扁平管状の流路素子13、13の内側
に設ける為、低温側流路である第二の流路12、12か
ら高温側流路である第一の流路11、11への高圧空気
のリーク量を低減する事ができる。しかも、これら各流
路素子13、13を構成するステンレス鋼製の薄板の厚
さ寸法を小さくしても、十分な耐圧性を確保できる。従
って、リーク量の低減、耐圧性の確保と、伝熱性の向
上、軽量化、並びに材料費の低減とを同時に図れる。し
かも、上記結合部及び各接触部を拡散接合により接合し
ている為、ニッケルろう付け等、他の接合方法により行
う場合に比べて、接合部分の耐熱性が向上すると共に接
合に要する費用も安く済む。
In the case of the heat exchanger for a gas turbine of the present invention constructed as described above, for example, a second low temperature side flow path for flowing air of relatively high pressure of about 2 to 3 kg / cm 2 is used. Since the flow paths 12 and 12 are provided inside the flat tubular flow path elements 13 and 13, the second flow paths 12 and 12 which are the low temperature side flow paths to the first flow path 11 which is the high temperature side flow path, It is possible to reduce the amount of high-pressure air leaking into the valve 11. Moreover, sufficient pressure resistance can be ensured even if the thickness dimension of the stainless steel thin plates forming each of the flow path elements 13, 13 is reduced. Therefore, it is possible to simultaneously reduce the amount of leak and ensure the pressure resistance, improve the heat transfer property, reduce the weight, and reduce the material cost. Moreover, since the above-mentioned joining portion and each contact portion are joined by diffusion joining, the heat resistance of the joining portion is improved and the cost required for joining is cheaper than the case where other joining methods such as nickel brazing are performed. I'm done.

【0019】[0019]

【発明の効果】本発明のガスタービン用熱交換器は、以
上に述べた通り構成され作用するので、伝熱性能が良好
でしかも軽量な構造を安価に得る事ができる。
Since the heat exchanger for a gas turbine of the present invention is constructed and operates as described above, it is possible to inexpensively obtain a lightweight structure having good heat transfer performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の対象となる熱交換器を組み込んだガス
タービンの略断面図。
FIG. 1 is a schematic cross-sectional view of a gas turbine incorporating a heat exchanger that is the subject of the present invention.

【図2】従来から知られた熱交換器の1例を示す斜視
図。
FIG. 2 is a perspective view showing an example of a conventionally known heat exchanger.

【図3】本発明の熱交換器の部分斜視図。FIG. 3 is a partial perspective view of the heat exchanger of the present invention.

【図4】流路素子の両端部同士を結合する状態を順に示
す、それぞれ部分断面図。
FIG. 4 is a partial cross-sectional view sequentially showing a state in which both ends of the flow path element are coupled to each other.

【図5】本発明の熱交換器の構成部品同士を拡散接合に
より接合すべく、重ね合わせた状態を示す正面図。
FIG. 5 is a front view showing a state in which component parts of the heat exchanger of the present invention are overlapped with each other so as to be bonded by diffusion bonding.

【図6】拡散接合により接合する場合の温度変化を示す
線図。
FIG. 6 is a diagram showing a temperature change in the case of joining by diffusion joining.

【符号の説明】[Explanation of symbols]

1 燃料噴射弁 2 燃焼器 3 熱交換器 4 空気圧縮機 5 タービン 6 回転軸 7 インペラ 8 第一の波板 9 平板 10 第二の波板 11 第一の流路 12 第二の流路 13 流路素子 14 インナーフィン 15 アウターフィン 1 Fuel Injection Valve 2 Combustor 3 Heat Exchanger 4 Air Compressor 5 Turbine 6 Rotating Shaft 7 Impeller 8 First Corrugated Plate 9 Flat Plate 10 Second Corrugated Plate 11 First Flow Path 12 Second Flow Path 13 Flow Road element 14 Inner fin 15 Outer fin

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 タービンを回転させた後の高温の燃焼ガ
スを流通させる複数の高温側流路と、この高温側流路に
対して直角方向に配置され、上記タービンと同軸に設け
られてこのタービンと共に回転するインペラによって圧
縮された高圧の空気を流通させる低温側流路とを、各流
路の厚さ方向に亙って交互に設けて成るガスタービン用
熱交換器に於いて、上記低温側流路は、ステンレス鋼製
の薄板を幅方向中間部で折り返し幅方向両端部同士を結
合する事で扁平管状に形成された複数の流路素子の内側
に設けられており、各流路素子の内側には、ステンレス
鋼製の薄板を断面波形に形成して成るコルゲート型のイ
ンナーフィンが、それぞれの波形の繰り返し方向を上記
各流路素子の幅方向に一致させた状態で設けられてお
り、上記各高温側流路は、隣り合う流路素子の側面同士
の間に設けられており、これら隣り合う流路素子同士の
間には、ステンレス鋼製の薄板を断面波形に形成して成
るコルゲート型のアウターフィンが、それぞれの波形の
繰り返し方向を上記各流路素子の長さ方向に一致させた
状態で設けられており、上記各流路素子を構成するステ
ンレス鋼製の薄板の幅方向両端部同士の結合部、上記各
流路素子の内面と上記各インナーフィンとの接触部、上
記各流路素子の外面と上記各アウターフィンとの接触部
を、それぞれ拡散接合により接合した事を特徴とするガ
スタービン用熱交換器。
1. A plurality of high temperature side passages for circulating a high temperature combustion gas after rotating a turbine, and a plurality of high temperature side passages arranged at right angles to the high temperature side passages and provided coaxially with the turbine. In the heat exchanger for a gas turbine, the low-temperature side flow path for circulating the high-pressure air compressed by the impeller rotating together with the turbine, and the gas turbine heat exchanger formed alternately in the thickness direction of each flow path, The side flow passage is provided inside a plurality of flow passage elements formed in a flat tubular shape by folding back a width direction middle portion of a stainless steel thin plate and connecting both width direction end portions to each other. Inside, the corrugated inner fins formed by forming a thin plate of stainless steel into a corrugated cross section are provided in a state in which the repeating direction of each corrugation is aligned with the width direction of each flow path element. , Above each high temperature side flow path Is provided between the side surfaces of the adjacent flow path elements, and between these adjacent flow path elements, a corrugated outer fin formed by forming a stainless steel thin plate in a corrugated cross section, It is provided in a state in which the repeating direction of each waveform is matched with the length direction of each of the flow path elements, the joint portion between the width direction both ends of the stainless steel thin plate constituting each of the flow path elements, Gas turbine heat, characterized in that the inner surface of each of the flow path elements and the inner fins are in contact with each other, and the outer surface of each of the flow path elements and the outer fins are in contact with each other by diffusion bonding. Exchanger.
JP21988994A 1994-09-14 1994-09-14 Heat exchanger for gas turbine Pending JPH0882491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21988994A JPH0882491A (en) 1994-09-14 1994-09-14 Heat exchanger for gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21988994A JPH0882491A (en) 1994-09-14 1994-09-14 Heat exchanger for gas turbine

Publications (1)

Publication Number Publication Date
JPH0882491A true JPH0882491A (en) 1996-03-26

Family

ID=16742640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21988994A Pending JPH0882491A (en) 1994-09-14 1994-09-14 Heat exchanger for gas turbine

Country Status (1)

Country Link
JP (1) JPH0882491A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11287578A (en) * 1998-03-31 1999-10-19 Fujikura Ltd Manufacture of flat plate type heat pipe
KR101024879B1 (en) * 2008-09-26 2011-03-31 진금수 Heat pump system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11287578A (en) * 1998-03-31 1999-10-19 Fujikura Ltd Manufacture of flat plate type heat pipe
KR101024879B1 (en) * 2008-09-26 2011-03-31 진금수 Heat pump system

Similar Documents

Publication Publication Date Title
US3507115A (en) Recuperative heat exchanger for gas turbines
JP6464343B2 (en) Heat exchanger
US9459052B2 (en) Coaxial gas-liquid heat exchanger with thermal expansion connector
EP0995028B1 (en) Heat engine combustor
US7988447B2 (en) Formed sheet heat exchanger
EP3558766B1 (en) Integrated energy conversion, transfer and storage system
US10066512B2 (en) System for using the waste heat of an internal combustion engine
CA2478108A1 (en) Stirling engine having platelet heat exchanging elements
CN1429316A (en) Recuperator for use with turbine/turbo-alternator
JP2012527599A (en) Compact radial counter-flow recuperator
GB2479262A (en) Heat exchanger having upper and lower corrugated fins intersecting with one another
EP0530188A1 (en) Circular heat exchanger having uniform cross-sectional area throughout the passages therein.
US6966173B2 (en) Heat transfer apparatus
WO2008133834A1 (en) Bi-material corrosive resistant heat exchanger
US3741293A (en) Plate type heat exchanger
JP3685890B2 (en) Heat exchanger
JPH0882491A (en) Heat exchanger for gas turbine
US20040103660A1 (en) Heat exchanger applicable to fuel-reforming system and turbo-generator system
KR102173398B1 (en) Exhaust gas cooling device
EP0717831B1 (en) Primary surface heat exchanger for use with a high pressure ratio gas turbine engine
CN113310215A (en) Heat exchanger and water heating device comprising same
US10544992B2 (en) Multichamber heat exchanger
EP4372234A1 (en) Integrated energy conversion, transfer and storage system
JP4523149B2 (en) Heat exchanger
JPH0259396B2 (en)