JPH0881742A - Production of fe-cr-al alloy foil material excellent in high temperature oxidation resistance - Google Patents

Production of fe-cr-al alloy foil material excellent in high temperature oxidation resistance

Info

Publication number
JPH0881742A
JPH0881742A JP24480894A JP24480894A JPH0881742A JP H0881742 A JPH0881742 A JP H0881742A JP 24480894 A JP24480894 A JP 24480894A JP 24480894 A JP24480894 A JP 24480894A JP H0881742 A JPH0881742 A JP H0881742A
Authority
JP
Japan
Prior art keywords
theoretical density
foil material
oxidation resistance
alloy foil
density ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP24480894A
Other languages
Japanese (ja)
Inventor
Koji Hoshino
孝二 星野
Toru Kono
通 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP24480894A priority Critical patent/JPH0881742A/en
Publication of JPH0881742A publication Critical patent/JPH0881742A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE: To produce an Fe-Cr-Al alloy foil material excellent in high temp. oxidation resistance by subjecting a porous sheet sintered material, containing specific amounts of Cr, Al, and Fe and having specific theoretical density ratio and specific thickness, to rolling and forming to specific theoretical density. CONSTITUTION: An Fe-base alloy, containing, by weight, 15-35% Cr and 7-20% Al, is used. A porous sheet sintered material, having 50-85% theoretical density ratio and 30-500μm thickness, is rolled and formed into an Fe-Cr-Al alloy foil material having >=90% theoretical density ratio. Cr has a function of improving high temp. oxidation resistance, but toughness is deteriorated if Cr is contained in excess. Although Al has a function of improving high temp. oxidation resistance to a greater extent by the coexistence with Cr, a sinterability is lowered if Al is contained in excess. When theoretical density ratio is lower than 50%, strength becomes insufficient, and cracking is brought about at rolling when it exceeds 85%. Sufficient rolling cannot be done when thickness is small, and the cracking is brought about when it is large. When the theoretical density ratio is less than 90%, strength becomes insufficient.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、すぐれた高温耐酸化
性を有するFe−Cr−Al系合金箔材を製造する方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a Fe-Cr-Al alloy foil material having excellent high temperature oxidation resistance.

【0002】[0002]

【従来の技術】従来、一般に高温耐酸化性が要求され
る、例えばガソリンエンジンの排ガス浄化装置の構造部
材としての触媒担体などの製造に、特開平4−1283
46号公報に例示されるように、重量%で(以下、%は
重量%を示す)、Cr:13〜25%、Al:4.5〜
6.5%を含有するFe基合金などで構成された箔材が
用いられており、このFe−Cr−Al系合金箔材が、
合金溶湯をインゴットに鋳造し、このインゴットから熱
間圧延と冷間圧延にて箔材を成形することにより製造さ
れることも知られている。
2. Description of the Related Art Conventionally, for example, for manufacturing a catalyst carrier as a structural member of an exhaust gas purifying apparatus of a gasoline engine, which is generally required to have high-temperature oxidation resistance, Japanese Patent Application Laid-Open No. 4-1283.
As illustrated in Japanese Patent Publication No. 46, in% by weight (hereinafter,% indicates% by weight), Cr: 13 to 25%, Al: 4.5 to
A foil material composed of an Fe-based alloy containing 6.5% is used, and this Fe-Cr-Al alloy foil material is
It is also known that a molten alloy is cast into an ingot, and a foil material is formed from the ingot by hot rolling and cold rolling.

【0003】[0003]

【発明が解決しようとする課題】一方、近年のガソリン
エンジンはじめ、その他各種の内燃機関などの高出力化
および高性能化はめざましく、これに伴ない、内燃機関
自体は勿論のこと、これの付属装置の構造部材である、
例えば上記触媒担体などもより一段の高温加熱化の傾向
にあるが、これを構成する上記の従来Fe−Cr−Al
系合金箔材は、これに十分に対応し得る高温耐酸化性を
具備しないのが現状である。また、上記の従来Fe−C
r−Al系合金箔材のAl含有量を7%以上に高くして
高温耐酸化性を向上させる試みもなされたが、このよう
にAl含有量を7%以上に高くすると、圧延時に割れが
発生し易くなり、したがって上記の従来法である溶製材
の圧延加工によっては、Al:7%以上含有のFe−C
r−Al系合金箔材を製造することができない。
On the other hand, in recent years, gasoline engines and other various internal combustion engines have been remarkably improved in output and performance, so that the internal combustion engine itself and its accessories are accompanied. A structural member of the device,
For example, the above catalyst carrier also tends to be heated to a higher temperature, but the above-mentioned conventional Fe-Cr-Al constituting the same is used.
At present, the system alloy foil material does not have high-temperature oxidation resistance that can sufficiently cope with this. Further, the above conventional Fe-C
Attempts have also been made to improve the high temperature oxidation resistance by increasing the Al content of the r-Al alloy foil material to 7% or more. However, if the Al content is increased to 7% or more in this way, cracking occurs during rolling. Fe-C containing 7% or more of Al: depending on the conventional rolling process of the ingot.
The r-Al alloy foil material cannot be manufactured.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、上記の従来Fe−Cr−Al系
合金箔材に着目し、これのAl含有量を7%以上に高く
して高温耐酸化性の一段の向上をはかったFe−Cr−
Al系合金箔材を製造すべく研究を行なった結果、従来
法におけるような溶製材の圧延加工によらずに、粉末冶
金法によって成形された多孔質薄板焼結材に圧延加工を
施す方法によると、Al含有量を7%以上に高くしても
圧延加工時に割れなどの発生なく、健全なFe−Cr−
Al系合金箔材を製造することができるようになるとい
う研究結果を得たのである。
Therefore, the present inventors have
From the above viewpoints, the Fe-Cr-Al alloy foil material of the related art is focused on, and the Al content is increased to 7% or more to further improve the high temperature oxidation resistance. −
As a result of conducting research to manufacture an Al-based alloy foil material, a method of rolling a porous thin plate sintered material formed by the powder metallurgy method instead of the rolling processing of ingot material as in the conventional method And, even if the Al content is increased to 7% or more, cracks do not occur during rolling, and sound Fe-Cr-
They obtained the research result that it became possible to manufacture an Al-based alloy foil material.

【0005】この発明は、上記の研究結果にもとづいて
なされたものであって、Cr:15〜35%、Al:7
〜20%を含有するFe基合金、望ましくは、Cr:1
5〜35%、Al:7〜20%を含有し、さらに必要に
応じてYを含む希土類元素:0.01〜1%を含有し、
残りがFeと不可避不純物からなる組成を有するFe基
合金、さらに望ましくは、Cr:17〜30%、Al:
9〜16%を含有し、さらに必要に応じてYを含む希土
類元素:0.02〜0.2%を含有し、残りがFeと不
可避不純物からなる組成を有するFe基合金で構成さ
れ、かつ理論密度比:50〜85%、望ましくは60〜
75%、厚さ:30〜500μm、望ましくは60〜1
00μmを有する多孔質薄板焼結材に、圧延加工を施し
て90%以上、望ましくは95%以上の理論密度比を有
するFe−Cr−Al系合金箔材を製造する方法に特徴
を有するものである。
The present invention has been made based on the above-mentioned research results. Cr: 15 to 35%, Al: 7
Fe-based alloy containing ~ 20%, preferably Cr: 1
5 to 35%, Al: 7 to 20%, and optionally a rare earth element containing Y: 0.01 to 1%,
A Fe-based alloy having a composition in which the balance is Fe and inevitable impurities, more preferably Cr: 17 to 30%, Al:
A rare earth element containing 9 to 16% and optionally Y: 0.02 to 0.2%, and the balance being an Fe-based alloy having a composition of Fe and inevitable impurities, and Theoretical density ratio: 50-85%, desirably 60-
75%, thickness: 30 to 500 μm, preferably 60 to 1
A porous thin plate sintered material having a diameter of 00 μm is subjected to rolling to produce a Fe—Cr—Al alloy foil material having a theoretical density ratio of 90% or more, preferably 95% or more. is there.

【0006】つぎに、この発明の方法において、製造条
件を上記の通りに限定した理由を説明する。 (a) Fe基合金のCr含有量 Cr成分には高温耐酸化性を向上させる作用があるが、
その含有量が15%未満では所望の高温耐酸化性を確保
することができず、一方その含有量が35%を越えると
靭性が低下するようになることから、その含有量を15
〜35%、望ましくは17〜30%と定めた。
Next, the reason why the manufacturing conditions are limited as described above in the method of the present invention will be explained. (A) Cr content of Fe-based alloy The Cr component has a function of improving high temperature oxidation resistance,
If the content is less than 15%, the desired high temperature oxidation resistance cannot be ensured. On the other hand, if the content exceeds 35%, the toughness decreases, so the content is set to 15%.
.About.35%, preferably 17 to 30%.

【0007】(b) Fe基合金のAl含有量 Al成分には、Crとの共存において高温耐酸化性を一
段と向上させる作用があり、したがって所定のすぐれた
高温耐酸化性を確保するには7%以上の含有が必要であ
り、一方その含有量が20%を越えると多孔質薄板焼結
材の焼結性が急激に低下し、所定の強度を確保すること
ができなくなることから、その含有量を7〜20%、望
ましくは9〜16%と定めた。
(B) Al content of Fe-based alloy The Al component has a function of further improving the high temperature oxidation resistance in the coexistence with Cr, and therefore, it is necessary to secure a predetermined excellent high temperature oxidation resistance. %, It is necessary to contain more than 20%, and if the content exceeds 20%, the sinterability of the porous thin plate sintered material sharply decreases and it becomes impossible to secure a predetermined strength. The amount was set to 7 to 20%, preferably 9 to 16%.

【0008】(c) Fe基合金の希土類元素含有量 上記Fe−Cr−Al系合金箔材の表面には高温酸化雰
囲気に対してすぐれた安定性を示す酸化皮膜が形成され
るが、Yを含む希土類元素には上記酸化皮膜の素地に対
する密着性を向上させる作用があるので必要に応じて含
有されるものであり、しかしその含有量が0.01%未
満では前記作用に所望の向上効果が得られず、一方その
含有量が1%を越えると高温耐酸化性が低下するように
なることから、その含有量を0.01〜1%、望ましく
は0.02〜0.2%と定めた。
(C) Rare earth element content of Fe-based alloy An oxide film showing excellent stability in a high temperature oxidizing atmosphere is formed on the surface of the above Fe-Cr-Al alloy foil material. The rare earth element contained has an action of improving the adhesion of the above oxide film to the substrate, and therefore is contained as necessary. However, if the content thereof is less than 0.01%, the desired improving effect on the action is obtained. However, if the content exceeds 1%, the high temperature oxidation resistance decreases, so the content is set to 0.01 to 1%, preferably 0.02 to 0.2%. It was

【0009】(d) 焼結材の理論密度比 多孔質薄板焼結材は、ドクターブレード法や押出し法な
どにより形成された成形体を焼結することにより形成さ
れるが、その理論密度比が50%未満では強度が不十分
で、取扱いに支障をきたし、一方その理論密度比が85
%を越えると圧延加工で割れが発生し易くなることか
ら、その理論密度比を50〜85%、望ましくは60〜
75%と定めた。
(D) Theoretical Density Ratio of Sintered Material The porous thin plate sintered material is formed by sintering a molded body formed by a doctor blade method, an extrusion method or the like. If it is less than 50%, the strength is insufficient and handling is hindered, while the theoretical density ratio is 85.
%, The cracking tends to occur in the rolling process, so the theoretical density ratio is 50 to 85%, preferably 60 to 85%.
It was set at 75%.

【0010】(e) 焼結材の厚さ その厚さが30μm未満では、箔材の厚さを薄くしても
圧延加工が不十分となり、箔材の理論密度比も90%未
満となってしまい、箔材に所望の強度を確保することが
できず、一方その厚さが500μmを越えると、焼結材
の理論密度比との関係で100μm以下の箔材を製造す
ることができ、さらに圧延加工を施して100μm以下
の厚さにしようとすると、割れが発生するようになるこ
とから、その厚さを30〜500μm、望ましくは60
〜100μmと定めた。
(E) Thickness of sintered material If the thickness is less than 30 μm, the rolling process becomes insufficient even if the thickness of the foil material is thin, and the theoretical density ratio of the foil material is less than 90%. However, the desired strength cannot be ensured in the foil material, and when the thickness exceeds 500 μm, a foil material having a thickness of 100 μm or less can be manufactured in relation to the theoretical density ratio of the sintered material. If a rolling process is applied to obtain a thickness of 100 μm or less, cracks will occur. Therefore, the thickness is 30 to 500 μm, preferably 60.
˜100 μm.

【0011】(f) 箔材の理論密度比 その理論密度比が90%未満では、箔材に所定の強度が
得られず、実用に際して支障をきたすようになることか
ら、その理論密度比を90%以上、望ましくは95%以
上と定めた。なお、この発明の方法において、圧延加工
は必要に応じて中間焼鈍を加えながら冷間圧延にて行な
うのがよく、また前記中間焼鈍は水素、または水素含有
ガス気流中、温度:1200〜1300℃に所定時間保
持の条件で行なうのがよい。
(F) Theoretical Density Ratio of Foil Material If the theoretical density ratio is less than 90%, the foil material cannot obtain a predetermined strength, which causes troubles in practical use. Therefore, the theoretical density ratio is 90%. % Or more, preferably 95% or more. In the method of the present invention, the rolling process is preferably performed by cold rolling while adding an intermediate anneal, if necessary, and the intermediate anneal is carried out in a hydrogen or hydrogen-containing gas stream at a temperature of 1200 to 1300 ° C. It is preferable to perform the operation under the condition of holding for a predetermined time.

【0012】[0012]

【実施例】つぎに、この発明の方法を実施例により具体
的に説明する。原料粉末として、それぞれ表1,2に示
される平均粒径および組成をもった水アトマイズFe基
合金粉末を用意し、これら原料粉末のそれぞれに所定割
合で、ポリビニルブチラル樹脂、フタル酸ジNブチル、
およびトルエン−エタノール混合溶液を配合し、ボール
ミルにて混合し、脱泡した後、通常のドクターブレード
法にて所定の厚さの薄板成形体を形成し、この成形体
を、水素雰囲気中、1200〜1300℃の範囲内の所
定の温度に1時間保持の条件で焼結して同じく表1,2
に示される理論密度比および厚さを有する多孔質薄板焼
結材a〜pを形成し、この多孔質薄板焼結材a〜pのそ
れぞれに少なくとも1回の冷間圧延と水素雰囲気中、1
230〜1270℃の範囲内の所定温度に1時間保持の
中間焼鈍を施すことにより本発明法1〜14および比較
法1〜2を実施し、それぞれ表3に示される理論密度比
および厚さをもったFe−Cr−Al系合金箔材を製造
した。なお、比較法1〜2は、製造されるFe−Cr−
Al系合金箔材を構成するFe基合金のCrおよびAl
の含有量がこの発明の範囲から低い方に外れたものであ
る。
Next, the method of the present invention will be specifically described with reference to examples. As raw material powders, water atomized Fe-based alloy powders having the average particle diameters and compositions shown in Tables 1 and 2, respectively, were prepared, and polyvinyl butyral resin and di-N-butyl phthalate were added to each of these raw material powders at a predetermined ratio. ,
And a toluene-ethanol mixed solution were mixed, mixed in a ball mill and defoamed, and then a thin plate molded body having a predetermined thickness was formed by an ordinary doctor blade method. Sintered under a condition of holding at a predetermined temperature within a range of up to 1300 ° C for 1 hour, and
1. The porous thin plate sintered materials a to p having the theoretical density ratio and the thickness shown in are formed, and each of the porous thin plate sintered materials a to p is cold-rolled at least once and in a hydrogen atmosphere.
Inventive methods 1 to 14 and comparative methods 1 to 2 were carried out by performing intermediate annealing of holding for 1 hour at a predetermined temperature within the range of 230 to 1270 ° C., and the theoretical density ratio and thickness shown in Table 3 were obtained. An Fe-Cr-Al alloy foil material having the above was manufactured. In addition, Comparative methods 1 and 2 are manufactured Fe-Cr-
Cr and Al of Fe-based alloys constituting the Al-based alloy foil material
Is outside the range of the present invention.

【0013】ついで、この結果得られた各種のFe−C
r−Al系合金箔材について、ガソリンエンジンの排ガ
ス気流中、1140℃の温度に500時間保持の条件で
高温酸化試験を行ない、酸化増量を測定した。これらの
測定結果を表3に示した。また、上記Fe−Cr−Al
系合金箔材の表面性状を観察したが、いずれの箔材にも
割れなどの表面欠陥は全く見られず、表面性状のきわめ
て良好なものであった。
Then, the various Fe--C obtained as a result
The r-Al alloy foil material was subjected to a high-temperature oxidation test under the condition of holding at a temperature of 1140 ° C for 500 hours in the exhaust gas flow of a gasoline engine, and the oxidation weight gain was measured. The results of these measurements are shown in Table 3. In addition, the above Fe-Cr-Al
The surface properties of the system alloy foil materials were observed. No surface defects such as cracks were found in any of the foil materials, and the surface properties were very good.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】[0016]

【表3】 [Table 3]

【0017】[0017]

【発明の効果】表3に示される結果から、本発明法1〜
14によれば、従来法である溶製材の圧延加工では製造
が不可能であったAl:7%以上含有のFe−Cr−A
l系合金箔材を製造することができ、これが比較法1〜
2で製造された相対的にCrまたはAl含有量の低いF
e−Cr−Al系合金箔材に比して一段とすぐれた高温
耐酸化性をもつことが明らかである。上述のように、こ
の発明の方法によれば、従来Fe−Cr−Al系合金箔
材に比してすぐれた高温耐酸化性を有するFe−Cr−
Al系合金箔材を製造することができるのである。
From the results shown in Table 3, the present invention methods 1 to
According to No. 14, Fe: Cr-A containing Al: 7% or more, which could not be manufactured by the conventional rolling process of ingot.
It is possible to produce an l-based alloy foil material, which is a comparative method 1 to
F produced in 2 with relatively low Cr or Al content
It is clear that the high-temperature oxidation resistance is far superior to that of the e-Cr-Al alloy foil material. As described above, according to the method of the present invention, Fe—Cr— having excellent high temperature oxidation resistance as compared with the conventional Fe—Cr—Al alloy foil material.
The Al-based alloy foil material can be manufactured.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、Cr:15〜35%、Al:
7〜20%を含有するFe基合金で構成され、かつ理論
密度比:50〜85%、厚さ:30〜500μmを有す
る多孔質薄板焼結材から、圧延加工にて90%以上の理
論密度比を有するFe−Cr−Al系合金箔材を成形す
ることを特徴とする高温耐酸化性のすぐれたFe−Cr
−Al系合金箔材の製造方法。
1. By weight%, Cr: 15-35%, Al:
90% or more theoretical density by rolling from a porous thin plate sintered material composed of an Fe-based alloy containing 7 to 20% and having a theoretical density ratio of 50 to 85% and a thickness of 30 to 500 μm Fe-Cr-Al alloy foil material having a high ratio is formed, and Fe-Cr having excellent high temperature oxidation resistance is characterized.
-The manufacturing method of Al type alloy foil material.
JP24480894A 1994-09-13 1994-09-13 Production of fe-cr-al alloy foil material excellent in high temperature oxidation resistance Withdrawn JPH0881742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24480894A JPH0881742A (en) 1994-09-13 1994-09-13 Production of fe-cr-al alloy foil material excellent in high temperature oxidation resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24480894A JPH0881742A (en) 1994-09-13 1994-09-13 Production of fe-cr-al alloy foil material excellent in high temperature oxidation resistance

Publications (1)

Publication Number Publication Date
JPH0881742A true JPH0881742A (en) 1996-03-26

Family

ID=17124258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24480894A Withdrawn JPH0881742A (en) 1994-09-13 1994-09-13 Production of fe-cr-al alloy foil material excellent in high temperature oxidation resistance

Country Status (1)

Country Link
JP (1) JPH0881742A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011044321A (en) * 2009-08-20 2011-03-03 Mitsubishi Materials Corp Manufacturing method of separator with gas diffusion layer for fuel cell
JP2011042828A (en) * 2009-08-20 2011-03-03 Mitsubishi Materials Corp Method for producing titanium thin sheet
CN103952631A (en) * 2014-05-22 2014-07-30 哈尔滨工业大学 Large-sized ferrite ODS alloy sheet material with high aluminum content and preparation method thereof
CN103966512A (en) * 2014-05-22 2014-08-06 哈尔滨工业大学 Large-size gradient-aluminum-content iron-chromium-aluminum ODS (oxide dispersion strengthened) alloy sheet material, and preparation method and application thereof
CN103966513A (en) * 2014-05-22 2014-08-06 哈尔滨工业大学 Large-size high-aluminum-content iron-chromium-aluminum alloy sheet material and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011044321A (en) * 2009-08-20 2011-03-03 Mitsubishi Materials Corp Manufacturing method of separator with gas diffusion layer for fuel cell
JP2011042828A (en) * 2009-08-20 2011-03-03 Mitsubishi Materials Corp Method for producing titanium thin sheet
CN103952631A (en) * 2014-05-22 2014-07-30 哈尔滨工业大学 Large-sized ferrite ODS alloy sheet material with high aluminum content and preparation method thereof
CN103966512A (en) * 2014-05-22 2014-08-06 哈尔滨工业大学 Large-size gradient-aluminum-content iron-chromium-aluminum ODS (oxide dispersion strengthened) alloy sheet material, and preparation method and application thereof
CN103966513A (en) * 2014-05-22 2014-08-06 哈尔滨工业大学 Large-size high-aluminum-content iron-chromium-aluminum alloy sheet material and preparation method thereof
CN103952631B (en) * 2014-05-22 2016-04-06 哈尔滨工业大学 Large size high aluminium content ferrite ODS latten material and preparation method thereof

Similar Documents

Publication Publication Date Title
EP0293122B1 (en) Porous metal bodies
US5427601A (en) Sintered metal bodies and manufacturing method therefor
WO2015014190A1 (en) Sintered fe-al based porous alloy material with high-temperature oxidization resistance and filtering elements
US6468468B1 (en) Method for preparation of sintered parts from an aluminum sinter mixture
KR20080027770A (en) Method for the alloying of aluminium to form components
JP3400027B2 (en) Method for producing iron-based soft magnetic sintered body and iron-based soft magnetic sintered body obtained by the method
JPH0881742A (en) Production of fe-cr-al alloy foil material excellent in high temperature oxidation resistance
JPS5891074A (en) Manufacture of silicon nitride sintered body
JPS62280348A (en) Fe-cr-al alloy sintered body
JPH06279124A (en) Production of silicon nitride sintered compact
JPS62188735A (en) Manufacture of tini alloy wire or plate
JP4276426B2 (en) Tungsten alloy material having oxidation resistance and manufacturing method thereof
JP2922248B2 (en) Manufacturing method of sintered alloy with excellent corrosion resistance
JPH05263181A (en) Manufacture of fe base sintered alloy member having high strength and high toughness
JPH0513913B2 (en)
JP2002275601A (en) Low core loss silicon steel sheet and production method therefor
JPH04308065A (en) Material having high electric resistance and production thereof
JP2000144248A (en) Production of rolled silicon steel sheet
JPS6358897B2 (en)
JP2735132B2 (en) Manufacturing method of high density Elinvar type Fe-based sintered alloy
JPS61179825A (en) Production of sintered co-base alloy having excellent corrosion resistance
JPS5823462B2 (en) Fe-Cr-Co spinodal decomposition type sintered magnetic material with high density
JPH02290901A (en) Metal fine powder for compacting and manufacture of sintered body thereof
KR930006442B1 (en) Sintered fe-co type magnetic materials
JP3175589B2 (en) Coating material for iron-based casting, iron-based casting provided with coating layer using the same, and method of forming coating layer therefor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011120