JPH088072B2 - Ion source - Google Patents

Ion source

Info

Publication number
JPH088072B2
JPH088072B2 JP61155201A JP15520186A JPH088072B2 JP H088072 B2 JPH088072 B2 JP H088072B2 JP 61155201 A JP61155201 A JP 61155201A JP 15520186 A JP15520186 A JP 15520186A JP H088072 B2 JPH088072 B2 JP H088072B2
Authority
JP
Japan
Prior art keywords
discharge chamber
main discharge
gas
ion
extraction port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61155201A
Other languages
Japanese (ja)
Other versions
JPS6313248A (en
Inventor
一男 高山
栄二 矢部
憲一 高木
了太 福井
理一 菊池
Original Assignee
日本真空技術株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本真空技術株式会社 filed Critical 日本真空技術株式会社
Priority to JP61155201A priority Critical patent/JPH088072B2/en
Publication of JPS6313248A publication Critical patent/JPS6313248A/en
Publication of JPH088072B2 publication Critical patent/JPH088072B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、イオン注入装置、イオンマイクロアナライ
ザその他イオンを利用する装置に適用されるイオン源に
関する。
TECHNICAL FIELD The present invention relates to an ion source applied to an ion implantation device, an ion microanalyzer, and other devices that utilize ions.

(従来の技術) 従来、代表的なイオン源としてタングステンフイラメ
ントを使用してプラズマを発生させるフリーマン型イオ
ン源が知られてる。このイオン源は、タングステンフイ
ラメントがイオンによりスパツタされ、或は化学的に活
性なガスを放電ガスとして使用するとフイラメントが化
学反応してその損耗が甚だしく、フイラメントの交換の
ためにイオン源の作動を停止しなければならない。これ
に伴ない該イオン源を使用する装置の停止も要求され、
装置の稼動効率が低下する不都合がある。
(Prior Art) Conventionally, a Freeman type ion source that uses a tungsten filament as a typical ion source to generate plasma is known. In this ion source, the tungsten filament is sputtered by the ions, or when chemically active gas is used as the discharge gas, the filament reacts chemically and the wear is serious, and the operation of the ion source is stopped to replace the filament. Must. Along with this, it is also required to stop the apparatus using the ion source,
There is a disadvantage that the operating efficiency of the device is reduced.

そこで出願人等は、先に、イオン源の放電室を、細孔
を備えた隔壁電極により主放電室と副放電室に区画し、
フイラメントを設けた副放電室には希ガスを導入し、ま
た主放電室には所望のイオンを発生する放電ガスを導入
し、副放電室の圧力を主放電室の圧力よりも高め、フイ
ラメントと隔壁電極と主放電室の陽極との間で複合放電
を行なうことによりイオンを発生させ、フイラメントの
寿命を長くするようにしたものを提案した(特開昭60−
189841)。
Therefore, the applicants previously divided the discharge chamber of the ion source into a main discharge chamber and a sub discharge chamber by partition wall electrodes having pores,
A rare gas is introduced into the auxiliary discharge chamber provided with a filament, and a discharge gas that generates desired ions is introduced into the main discharge chamber, the pressure in the auxiliary discharge chamber is raised above the pressure in the main discharge chamber, and We have proposed a structure in which ions are generated by performing a complex discharge between the barrier rib electrode and the anode of the main discharge chamber to prolong the life of the filament (JP-A-60-
189841).

(発明が解決しようとする問題点) 前記提案のものは化学的に活性な放電ガスを使用出
来、しかも比較的長時間の使用に耐える有利性がある
が、大きなイオン電流を得るにはまだ充分でない。
(Problems to be Solved by the Invention) The above-mentioned proposal has the advantage that a chemically active discharge gas can be used and can withstand use for a relatively long time, but it is still insufficient to obtain a large ion current. Not.

本発明の目的は、長寿命でしかも大きなイオン電流が
得られるイオン源を提供することにある。
An object of the present invention is to provide an ion source which has a long life and can obtain a large ion current.

(問題点を解決するための手段) 前記の問題点の解決のために、本発明では、放電室
を、隔壁によりイオン引出し口を備えた主放電室と、フ
イラメントその他のプラズマ発生装置を備えた副放電室
とに区画すると共にこれら両室を該隔壁に設けた細孔を
介して連通させ、該副放電室に希ガスを導入すると共に
主放電室に所望のイオンを発生させる放電ガスを導入
し、該副放電室の圧力を主放電室の圧力よりも高く保持
するようにしたものに於て、主放電室のイオン引出し口
と前記細孔及び副放電室を順次同一軸線上に存するよう
に配置し、該軸線に沿って該イオン引出し口に於て零に
近くなるようなカスプ磁場を形成する磁石を主放電室の
外側に設けるようにした。
(Means for Solving Problems) In order to solve the above problems, in the present invention, the discharge chamber is provided with a main discharge chamber having an ion outlet through a partition wall, and a filament or other plasma generator. It is divided into a sub-discharge chamber and these chambers are communicated with each other through pores provided in the partition wall, and a rare gas is introduced into the sub-discharge chamber and a discharge gas for generating desired ions is introduced into the main discharge chamber. Then, in the one in which the pressure of the sub-discharge chamber is kept higher than the pressure of the main discharge chamber, the ion extraction port of the main discharge chamber, the pores, and the sub-discharge chamber are arranged on the same axis line in order. And a magnet that forms a cusp magnetic field that is close to zero at the ion extraction port along the axis is provided outside the main discharge chamber.

(作用) 副放電室にArガス等の希ガスを導入すると共に主放電
室にO2ガス等の化学活性の高い放電ガスを導入し、該副
放電室の圧力を主放電室の圧力よりも高める。そして副
放電室のフイラメントとアノード電極への通電等により
プラズマ発生装置を作動させ、主放電室にアノード電圧
を印加すると、副放電室内で希ガスのプラズマが発生
し、そのプラズマは副放電室内の圧力が高いので隔壁に
形成した細孔から主放電室内へと噴き出す。この噴出プ
ラズマと主放電室との間で放電ガスが電離し、イオンが
発生する。発生したイオンは主放電室のイオン引出し口
からその外方に設けた引出し電極によりビーム状に引き
出される。
(Function) A rare gas such as Ar gas is introduced into the sub-discharge chamber, and a discharge gas with high chemical activity such as O 2 gas is introduced into the main discharge chamber, and the pressure of the sub-discharge chamber is higher than the pressure of the main discharge chamber. Increase. Then, when the plasma generator is activated by energizing the filament and the anode electrode of the sub-discharge chamber and applying the anode voltage to the main discharge chamber, a rare gas plasma is generated in the sub-discharge chamber, and the plasma is generated in the sub-discharge chamber. Since the pressure is high, it spouts from the pores formed in the partition wall into the main discharge chamber. The discharge gas is ionized between the jetted plasma and the main discharge chamber to generate ions. The generated ions are extracted in a beam form from the ion extraction port of the main discharge chamber by an extraction electrode provided outside thereof.

副放電室及び細孔は、主放電室のイオン引出し口と対
向する位置に設けられているので、細孔を介して副放電
室から主放電室へと噴出するプラズマはその噴出方向に
位置するイオン引出し口へと接近し、イオン引出し口の
近くでイオンを発生させることが出来、発生したイオン
の多くをイオン引出し口からビーム状に引き出せる。
Since the sub-discharge chamber and the pores are provided at positions facing the ion outlet of the main discharge chamber, the plasma ejected from the sub-discharge chamber to the main discharge chamber through the pores is located in the ejection direction. Ions can be generated near the ion extraction port and close to the ion extraction port, and most of the generated ions can be extracted in a beam shape from the ion extraction port.

また主放電室の外側に、該細孔とイオン引出し口を結
ぶ軸線方向の磁場であってイオン引出し口に於て磁場が
零に近くなるようなカスプ磁場を形成する磁石を設けて
おくことによって、細孔から主放電室に噴出するプラズ
マが、一旦、光軸状に絞られ、イオン引出し口では磁場
が弱められているので、イオンに対する軸線に垂直な方
向の力の作用が小さく、イオン引出し電極で引出される
イオンの方向性を乱さずに引出すことができる。即ち、
該主放電室内では、光軸状にプラズマが絞られること
で、プラズマ内で電子と放電ガス、或いは電子と電子が
衝突する頻度が高まり、高密度、高温度のプラズマが得
られるために大量のイオンを発生させることができ、大
電流の方向性の揃ったイオンビームをイオン引出し口か
ら引出せる。
Further, by providing a magnet on the outside of the main discharge chamber that forms a cusp magnetic field that is a magnetic field in the axial direction connecting the pore and the ion extraction port, and the magnetic field is close to zero at the ion extraction port. Since the plasma ejected from the pores into the main discharge chamber is once narrowed down along the optical axis and the magnetic field is weakened at the ion extraction port, the action of force on the ions in the direction perpendicular to the axis is small, and the ion extraction is reduced. Ions can be extracted without disturbing the directionality of the ions extracted by the electrodes. That is,
In the main discharge chamber, the plasma is narrowed down along the optical axis to increase the frequency of collision between electrons and discharge gas or electrons and electrons in the plasma, and a large amount of plasma can be obtained because high density and high temperature plasma can be obtained. Ions can be generated and an ion beam with a large current directionality can be extracted from the ion extraction port.

(実施例) 本発明の実施例を別紙図面につき説明すると、符号
(1)は横方向の中心軸線を有する円筒形の放電室、
(2)は該放電室(1)を右方の主放電室(3)と左方
の副放電室(4)とに区画する隔壁、(5)は主放電室
(3)の円形の端壁(6)に形成したスリツト状のイオ
ン引出し口で、該イオン引出し口(5)と対向する位置
に細孔(7)を形成し、さらに該細孔(7)の後方に副
放電室(4)を配置して順次に同一軸線上に存するよう
にした。(8)は主放電室(3)と副放電室(4)を連
通する細孔(7)の内周に設けたアノード電極、(9)
は副放電室(4)に設けたフイラメントで、該アノード
電極(8)とフイラメント(9)とでプラズマ発生装置
(10)を構成するようにした。
(Embodiment) An embodiment of the present invention will be described with reference to the attached drawings. Reference numeral (1) is a cylindrical discharge chamber having a central axis in the lateral direction,
(2) is a partition that divides the discharge chamber (1) into a right main discharge chamber (3) and a left sub discharge chamber (4), and (5) is a circular end of the main discharge chamber (3) The slit-shaped ion extraction port formed on the wall (6) forms a pore (7) at a position facing the ion extraction port (5), and further the sub-discharge chamber ( 4) are arranged so that they are sequentially present on the same axis. (8) is an anode electrode provided on the inner circumference of the pores (7) that connect the main discharge chamber (3) and the auxiliary discharge chamber (4), and (9)
Is a filament provided in the auxiliary discharge chamber (4), and the plasma generator (10) is constituted by the anode electrode (8) and filament (9).

(11)は副放電室(4)にArガス等の不活性ガスを導
入するガス導入孔、(12)は主放電室(3)にO2ガス、
AsF5ガス等の活性ガスやArガス等の不活性ガスの放電ガ
スを導入する放電ガス導入孔を示し、各ガス導入孔(1
1)(12)に導入する各ガスの流量と放電室(1)の外
部の真空度を調節することにより主放電室(3)の圧力
よりも副放電室(4)の圧力が高く保持される。
(11) is a gas introduction hole for introducing an inert gas such as Ar gas into the auxiliary discharge chamber (4), (12) is O 2 gas into the main discharge chamber (3),
The discharge gas introduction holes for introducing a discharge gas of an active gas such as AsF 5 gas or an inert gas such as Ar gas are shown.
1) The pressure of the auxiliary discharge chamber (4) is kept higher than that of the main discharge chamber (3) by adjusting the flow rate of each gas introduced into (12) and the vacuum degree outside the discharge chamber (1). It

(13)はイオン引出し口(5)と細孔(7)及び副放
電室(4)を結ぶ軸線にほぼ沿ってイオン引出し口
(5)に於て磁場の強さが零に近くなるようなカスプ磁
場を形成するための磁石である。(16)(17)は、イオ
ン引出し口(5)の前方に設けたイオンの引出し電極で
ある。また電気配線に於て、(18)はアノード電極
(8)に副放電室(4)内での副放電のための電位を与
える副放電用電源、(19)は主放電室(3)の管壁に主
放電室(3)内での主放電のための電位を与える主放電
用電源、(20)はフイラメント(9)の発熱用電源(2
1)はイオン引出し用の引出し電源を示す。
(13) is such that the magnetic field strength at the ion extraction port (5) becomes close to zero almost along the axis connecting the ion extraction port (5) to the pore (7) and the auxiliary discharge chamber (4). A magnet for forming a cusp magnetic field. (16) and (17) are ion extraction electrodes provided in front of the ion extraction port (5). Further, in the electric wiring, (18) is a sub-discharging power source that gives the anode electrode (8) a potential for sub-discharging in the sub-discharging chamber (4), and (19) is the main discharging chamber (3). A main discharge power source for applying a potential for main discharge in the main discharge chamber (3) to the tube wall, and (20) a heating power source (2) for the filament (9).
1) shows an extraction power source for extracting ions.

尚、細孔(7)は、イオン引出し口(5)のスリツト
状の形状に対応するように、スリツト状に形成すること
も可能である。
The pores (7) may be formed in a slit shape so as to correspond to the slit shape of the ion extraction port (5).

図示の実施例の作動に於て、まず副放電室(4)内の
真空度が1〜0.1Torrとなるようにガス導入孔(11)か
らArガスを導入し、主放電室(4)の真空度が10-2〜10
-3TorrとなるようにAsF5ガスを放電ガス導入孔(12)か
ら導入すると共に放電室(1)の外部の真空度が10-4
10-5Torrとなるように調整する。次で各電源(18)(1
9)(20)(21)を作動させると副放電室(4)内では
フイラメント(9)から熱電子の供給を受け、これとア
ノード電極(8)との間で放電し、発生したArガスのプ
ラズマは圧力の低い主放電室(4)へ細孔(7)を介し
て流れ込む。
In the operation of the illustrated embodiment, first, Ar gas is introduced from the gas introduction hole (11) so that the degree of vacuum in the auxiliary discharge chamber (4) is 1 to 0.1 Torr, and the main discharge chamber (4) is discharged. Vacuum degree is 10 -2 to 10
AsF 5 gas is introduced from the discharge gas introduction hole (12) so as to be −3 Torr, and the vacuum degree outside the discharge chamber (1) is 10 −4 〜.
Adjust to 10 -5 Torr. Next each power supply (18) (1
9) When the (20) and (21) are activated, thermoelectrons are supplied from the filament (9) in the auxiliary discharge chamber (4), and discharge occurs between this and the anode electrode (8), and the Ar gas generated Plasma flows into the low-pressure main discharge chamber (4) through the pores (7).

主放電室(4)内では、細孔(7)から流れ込むプラ
ズマとアノード電位の室壁との間で主放電が生じ、これ
により生じたイオンがイオン引出し口(5)から外部へ
ビーム状に引き出され、副放電室(4)のフイラメント
(9)が主放電室(3)のイオンと化学反応したりする
ことが妨げるので、イオン源を長時間運転出来る。
In the main discharge chamber (4), a main discharge is generated between the plasma flowing from the pores (7) and the chamber wall of the anode potential, and the ions generated by this are formed into a beam from the ion extraction port (5) to the outside. Since the filaments (9) of the auxiliary discharge chamber (4) that are pulled out are prevented from chemically reacting with the ions of the main discharge chamber (3), the ion source can be operated for a long time.

この場合、イオン引出し口(5)と細孔(7)及び副
放電室(4)は同一軸線(14)上に配置されており、該
軸線(14)にほぼ沿って該イオン引出し口(5)に於て
磁場の強さが零に近くなるカスプ磁場(15)が形成され
ているので、副放電室(4)から細孔(7)を介して主
放電室(3)内へ噴出するプラズマは、該カスプ磁場
(15)によりその拡散が抑制されて光軸状の高密度、高
温度のプラズマとなり、そのためプラズマ内で電子と放
電ガス、或いは電子と電子が衝突する頻度が高まって大
量のイオンを発生させることができる。また、イオン引
出し口(5)に於てカスプ磁場(15)が消滅状態になる
ので、イオンは軸線(14)に垂直な方向の力を該磁場
(15)から受けることがなく、イオン引出し電極(16)
(17)で引出されるイオンの方向性が乱れないので、大
電流の方向性の揃ったイオンビームをイオン引出し口か
ら引出せる。該副放電室(4)の内部では、カスプ磁場
(15)が弱められているので、フィラメト(9)からの
熱電子が比較的広く該放電室(4)内へ拡散し、プラズ
マの発生が良好になる。副放電室(4)内でプラズマを
発生させるプラズマ発生手段(10)はRF放電形電極等の
放電手段を使用することも可能である。
In this case, the ion extraction port (5), the pore (7), and the auxiliary discharge chamber (4) are arranged on the same axis (14), and the ion extraction port (5) is almost along the axis (14). ), A cusp magnetic field (15) having a magnetic field strength close to zero is formed, so that it is ejected from the auxiliary discharge chamber (4) through the pores (7) into the main discharge chamber (3). Diffusion of the plasma is suppressed by the cusp magnetic field (15) and becomes optical axis-shaped high-density and high-temperature plasma. Therefore, the frequency of collision between electrons and discharge gas or electrons and electrons in the plasma increases, and a large amount of plasma is generated. Can generate ions. Further, since the cusp magnetic field (15) is in the extinction state at the ion extraction port (5), the ions do not receive the force in the direction perpendicular to the axis (14) from the magnetic field (15), and the ion extraction electrode (16)
Since the directionality of the ions extracted in (17) is not disturbed, an ion beam with a large current directionality can be extracted from the ion extraction port. Since the cusp magnetic field (15) is weakened inside the auxiliary discharge chamber (4), thermoelectrons from the filament (9) diffuse relatively widely into the discharge chamber (4), and plasma is generated. Get better As the plasma generating means (10) for generating plasma in the auxiliary discharge chamber (4), it is possible to use a discharging means such as an RF discharge type electrode.

(発明の効果) 以上のように、本発明では、副放電室で発生させた希
ガスのプラズマを圧力の低い主放電室へ導き、そこで放
電ガスを電離して所望のイオンを得るようにしたイオン
源に於て、主放電室のイオン引出し口と細孔と副放電室
を軸線上に配置し、この軸線に沿って該イオン引出し口
で零に近くなるカスプ磁場を形成する磁石を主放電室の
外側に設けたので、細孔を介して主放電室に噴出するプ
ラズマが光軸状に絞られて高密度、高温度のプラズマと
なり、大量のイオンが得られ、イオン引出し口で磁場が
零に近いので引出し電極でその方向性の揃った大電流の
イオンビームを引出せる等の効果がある。
(Effects of the Invention) As described above, in the present invention, the plasma of the rare gas generated in the auxiliary discharge chamber is guided to the main discharge chamber having a low pressure, and the discharge gas is ionized there to obtain desired ions. In the ion source, the ion extraction port and the pores of the main discharge chamber and the sub discharge chamber are arranged on the axis, and the magnet that forms a cusp magnetic field close to zero at the ion extraction port along the axis is the main discharge. Since it is provided outside the chamber, the plasma ejected into the main discharge chamber through the pores is narrowed down along the optical axis to become high-density, high-temperature plasma, and a large amount of ions are obtained, and a magnetic field is generated at the ion extraction port. Since it is close to zero, there is an effect that the extraction electrode can extract a large-current ion beam whose directionality is uniform.

【図面の簡単な説明】[Brief description of drawings]

図面は本発明の実施例の截断側面図である。 (1)……放電室、(2)……隔壁 (3)……主放電室、(4)……副放電室 (5)……イオン引出し口、(7)……細孔 (13)……磁石、(14)……軸線 (15)……磁場 The drawing is a cutaway side view of an embodiment of the present invention. (1) …… Discharge chamber, (2) …… Partition (3) …… Main discharge chamber, (4) …… Sub discharge chamber (5) …… Ion extraction port, (7) …… Pore (13) …… Magnet, (14) …… Axis (15) …… Magnetic field

フロントページの続き (72)発明者 福井 了太 神奈川県秦野市北矢名119 第2塙荘1− 1 (72)発明者 菊池 理一 神奈川県茅ヶ崎市萩園2267−2 (56)参考文献 特開 昭60−189841(JP,A) 特開 昭57−40845(JP,A)Front page continuation (72) Inventor Ryota Fukui 119 Kitano, Kitano, Hadano, Kanagawa Prefecture 1-1 (1) (72) Inventor Riichi Kikuchi 2267-2, Hagien, Chigasaki, Kanagawa Reference (Reference) JP Sho 60 -189841 (JP, A) JP-A-57-40845 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】放電室を、隔壁によりイオン引出し口を備
えた主放電室と、フィラメントその他のプラズマ発生装
置を備えた副放電室とに区画すると共にこれら両室を該
隔壁に設けた細孔を介して連通させ、該副放電室に希ガ
スを導入すると共に主放電室に所望のイオンを発生させ
る放電ガスを導入し、該副放電室の圧力を主放電室の圧
力よりも高く保持するようにしたイオン源に於て、主放
電室のイオン引出し口と前記細孔及び副放電室を順次同
一軸線上に存するように配置し、該軸線に沿って該イオ
ン引出し口に於て零に近くなるようなカスプ磁場を形成
する磁石を主放電室の外側に設けたことを特徴とするイ
オン源。
1. A pore formed by partitioning the discharge chamber into a main discharge chamber provided with an ion outlet through a partition and a sub discharge chamber provided with a filament and other plasma generators, and providing both chambers in the partition. Through a gas, and a rare gas is introduced into the auxiliary discharge chamber, and a discharge gas that generates desired ions is introduced into the main discharge chamber, and the pressure of the auxiliary discharge chamber is maintained higher than the pressure of the main discharge chamber. In the ion source configured as described above, the ion extraction port of the main discharge chamber, the pores and the sub discharge chamber are sequentially arranged so as to be on the same axis line, and the ion extraction port is zero along the axis line. An ion source characterized in that a magnet that forms a cusp magnetic field that is close to the main discharge chamber is provided outside the main discharge chamber.
JP61155201A 1986-07-03 1986-07-03 Ion source Expired - Fee Related JPH088072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61155201A JPH088072B2 (en) 1986-07-03 1986-07-03 Ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61155201A JPH088072B2 (en) 1986-07-03 1986-07-03 Ion source

Publications (2)

Publication Number Publication Date
JPS6313248A JPS6313248A (en) 1988-01-20
JPH088072B2 true JPH088072B2 (en) 1996-01-29

Family

ID=15600707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61155201A Expired - Fee Related JPH088072B2 (en) 1986-07-03 1986-07-03 Ion source

Country Status (1)

Country Link
JP (1) JPH088072B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2523552B2 (en) * 1986-12-17 1996-08-14 富士通株式会社 Pressure gradient ion source
KR101562785B1 (en) * 2007-10-22 2015-10-23 액셀리스 테크놀러지스, 인크. Double plasma ion source
JP5520555B2 (en) * 2009-09-18 2014-06-11 株式会社アルバック Ion irradiation method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740845A (en) * 1980-08-26 1982-03-06 Citizen Watch Co Ltd Ion beam generator
JPS60189841A (en) * 1984-03-12 1985-09-27 Tokai Daigaku Ion source

Also Published As

Publication number Publication date
JPS6313248A (en) 1988-01-20

Similar Documents

Publication Publication Date Title
Schoenbach et al. Microhollow cathode discharges
US4335465A (en) Method of producing an accellerating electrons and ions under application of voltage and arrangements connected therewith
US4841197A (en) Double-chamber ion source
US4749912A (en) Ion-producing apparatus
US3913320A (en) Electron-bombardment ion sources
EP0282467B1 (en) Hollow cathode ion sources
JPH04264346A (en) Plasma source apparatus for injecting ions
US6417604B1 (en) Low pressure gas discharge switch
JPH088072B2 (en) Ion source
JPH0160889B2 (en)
JPH1192919A (en) Metallic ion plasma generating device
JP3510174B2 (en) Ion generator and film forming device
JPS62278736A (en) Electron beam excited ion source
JPS60130039A (en) Ion source
JPH0752635B2 (en) Ion source device
JPH0824031B2 (en) Ion source
JP2514653B2 (en) Hollow cathode type ion source
JPH0535533B2 (en)
JP2586836B2 (en) Ion source device
Belchenko et al. Multibeam honeycomb surface-plasma source with plasma injection from hollow cathodes
JPS62281234A (en) Ion source
JPS62281235A (en) Ion source
JPH04368754A (en) Ion source
JPS63221540A (en) Electron beam exciting ion source
KR960000144Y1 (en) Ion source generating apparatus of ion injector

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees