JPH0879893A - Gradient function material and its manufacture - Google Patents

Gradient function material and its manufacture

Info

Publication number
JPH0879893A
JPH0879893A JP6207016A JP20701694A JPH0879893A JP H0879893 A JPH0879893 A JP H0879893A JP 6207016 A JP6207016 A JP 6207016A JP 20701694 A JP20701694 A JP 20701694A JP H0879893 A JPH0879893 A JP H0879893A
Authority
JP
Japan
Prior art keywords
powder
particle size
raw material
backing material
ultrasonic sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6207016A
Other languages
Japanese (ja)
Inventor
Yoshihisa Noro
良久 野呂
Yasuyuki Nakamura
恭之 中村
Satoshi Watabe
聰 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANAGAWA PREF GOV
SHIMIZU SHOKUHIN KK
Shimizu Shokuhin Kaisha Ltd
Hitachi Metals Ltd
Kanagawa Prefecture
Original Assignee
KANAGAWA PREF GOV
SHIMIZU SHOKUHIN KK
Shimizu Shokuhin Kaisha Ltd
Kanagawa Prefecture
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANAGAWA PREF GOV, SHIMIZU SHOKUHIN KK, Shimizu Shokuhin Kaisha Ltd, Kanagawa Prefecture, Sumitomo Special Metals Co Ltd filed Critical KANAGAWA PREF GOV
Priority to JP6207016A priority Critical patent/JPH0879893A/en
Publication of JPH0879893A publication Critical patent/JPH0879893A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Powder Metallurgy (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

PURPOSE: To provide the gradient function material in which powdered raw material is laminated in the order of particle diameters and solidified, especially the one useful for a rear material of an ultrasonic sensor probe and its manufacture. CONSTITUTION: The gradient function material featured by arranging metallic powder having particle diameters of a prescribed range depending on the particle diameter is formed by applying perptization uniformly to metallic powder having the particle diameter of a prescribed range with a sintering aid material and a peptization agent, putting the metallic powder subject to peptization into an agar sol solution in which the metallic powder is classified depending on the particle diameter, applying gel processing to the agar solution, pressing and dehydrating the solution to form a metallic powder classified compression material and sintering the metallic powder classified compression material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原料粉末を粒径の大き
さ順に積層し固化させた傾斜機能材に関し、特に超音波
センサ探触子用背面材として有用な傾斜機能材及びその
製造方法に関する。より詳細には、超音波センサ探触子
の分解能を高めるための背面材及びその製造方法に関す
る。傾斜機能材は近年注目を集めている素材の一種であ
り、従来の素材では得られなかった複数の機能を同一素
材にて同時に満足させ得る素材のことを言う。例えば、
鉄系合金金属単体では耐熱温度が1,200〜1,30
0度C前後であり、しかも比重が大きいため重くなる反
面、延性や剛性に優れ、柔軟性がありまた衝撃に対して
も強い。一方、セラミックは耐熱温度が1,500〜
1,600度C前後であり、比重が小さいため軽いが、
大変脆く、衝撃に対しても弱い。しかるに、耐熱性が高
く衝撃にも強い素材を望む場合には、合金金属とセラミ
ックとの組合体の出現が当然考えられる。しかし、合金
金属とセラミックとを複合化させる方法として接合法や
溶射法が開発されているが、強度的に必ずしも満足出来
るものではない。そこで一端の表層は合金金属100
%、他端の表層はセラミック100%、中間部は段階的
に合金金属とセラミックとの比率を連続的に変化させて
行くと強度的に満足出来、しかも耐熱性及び耐衝撃性に
富む素材が出来るのである。即ち、2成分系の比率を傾
斜的に連続して変化させることにより、新しい機能を持
つ素材が得られるのである。これが傾斜機能材である。
なお、連続的に傾斜させる素材は2成分系に限定される
ものではなく1成分系の持つ物性値、例えば粒径を連続
的に傾斜させることにより、従来の同一成分系の素材で
は考えられなかった機能を発現することも期待出来る。
このような素材もまた傾斜機能材である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a functionally graded material in which raw material powders are layered in the order of particle size and solidified, and in particular, a functionally graded material useful as a backing material for an ultrasonic sensor probe and a method for producing the same. Regarding More specifically, the present invention relates to a backing material for increasing the resolution of an ultrasonic sensor probe and a method for manufacturing the backing material. A functionally graded material is a type of material that has been drawing attention in recent years, and is a material that can simultaneously satisfy multiple functions that were not possible with conventional materials with the same material. For example,
Heat resistance temperature of iron-based alloy metal alone is 1,200-1,30
Although it is around 0 ° C and is heavy due to its large specific gravity, it is excellent in ductility and rigidity, has flexibility, and is strong against impact. On the other hand, ceramics have a heat resistant temperature of 1,500-
It is around 1,600 degrees C, so it is light because of its small specific gravity,
Very brittle and vulnerable to shock. However, when a material having high heat resistance and high impact resistance is desired, it is naturally conceivable that a combination of alloy metal and ceramic appears. However, although a joining method and a thermal spraying method have been developed as a method for compounding an alloy metal and a ceramic, the strength is not always satisfactory. Therefore, the surface layer at one end is made of alloy metal 100
%, The surface layer at the other end is 100% ceramic, and the middle part is made of a material with satisfactory heat resistance and impact resistance when the ratio of alloy metal and ceramic is continuously changed stepwise. You can do it. That is, a material having a new function can be obtained by continuously changing the ratio of the two-component system in an inclined manner. This is a functionally graded material.
It should be noted that the material that is continuously graded is not limited to a two-component system, and the physical property value of a one-component system, for example, the grain size, is continuously graded so that it is not possible to consider it with a conventional material of the same component system. It can also be expected to exhibit the desired function.
Such materials are also functionally graded materials.

【0002】[0002]

【従来の技術】超音波センサにおいては検出感度と距離
分解能とが重視される。検出感度は振動子材料により決
定され、一方、距離分解能は振動子の自由振動の抑圧の
程度により左右されると言われている。背面材は振動子
の自由振動の抑圧の目的で使用されるが、振動子から発
せられた超音波は探傷対象物の方向に進行するだけでな
く、背面材の方向にも進行する。背面材に進行した超音
波は背面材の底面から反射波となり、分解能を低下させ
る原因となる。従って、背面材は超音波の減衰特性が大
きいことが理想とされている。
2. Description of the Related Art In ultrasonic sensors, importance is attached to detection sensitivity and distance resolution. The detection sensitivity is determined by the oscillator material, while the distance resolution is said to depend on the degree of suppression of free oscillation of the oscillator. The back surface material is used for the purpose of suppressing free vibration of the vibrator, but the ultrasonic waves emitted from the vibrator not only travel toward the flaw detection target but also toward the back material. The ultrasonic waves that have propagated to the backing material become reflected waves from the bottom surface of the backing material, which causes a reduction in resolution. Therefore, it is ideal that the backing material has a large ultrasonic attenuation characteristic.

【0003】しかしてこれまでは背面材としてエポキシ
樹脂にタングステンの微粉末を混合して固めたものが使
用されていた。
Up to now, however, epoxy resin mixed with fine powder of tungsten has been used as a backing material.

【0004】[0004]

【発明が解決しようとする課題】しかしながらこのよう
なエポキシ樹脂にタングステンの微粉末を混合して固め
た背面材においては、その減衰特性値が0.21〜0.
37dB/mm程度である。更に、エポキシ樹脂で固め
ているため、振動子との接合は接着剤で行われ、しか
も、接着剤やエポキシ樹脂の軟化温度以上の高温域では
使用不能となってしまう。
However, in a backing material obtained by mixing fine particles of tungsten with such an epoxy resin and hardening it, the damping characteristic value is 0.21 to 0.
It is about 37 dB / mm. Furthermore, since it is hardened with an epoxy resin, it is bonded to the vibrator by an adhesive, and it cannot be used in a high temperature range above the softening temperature of the adhesive or the epoxy resin.

【0005】超音波センサの測定精度を高めるため、検
出感度の優れた振動子の開発と共に分解能を高める減衰
特性の高い背面材料が求められている。また、高温域で
の使用目的のためには耐熱性の高い振動子及び背面材の
開発が必要である。更に、振動子と背面材料との、より
強力な接合が可能な背面材、例えば、ロウ着、拡散接合
や加圧接合法に適した背面材が必要である。
In order to improve the measurement accuracy of the ultrasonic sensor, there has been a demand for a backing material having a high attenuation characteristic which enhances the resolution as well as the development of a vibrator having excellent detection sensitivity. In addition, it is necessary to develop vibrators and backing materials with high heat resistance for the purpose of use in the high temperature range. Further, there is a need for a backing material capable of stronger bonding between the vibrator and the backing material, for example, a backing material suitable for brazing, diffusion bonding or pressure bonding.

【0006】[0006]

【課題を解決するための手段】本発明は上述のような種
々の課題を解決するために、耐熱性に富んだセラミック
スや金属粉末の焼結品である傾斜機能材を背面材として
利用しようとするものである。これらの焼結品である傾
斜機能材からなる背面材と振動子との接合はロウ着、拡
散接合や加圧接合等の公知の手段で可能である。しか
し、従来からある粉末冶金法やセラミックスの焼結方法
では、背面材全体が均一で緻密な焼結品が出来上がり、
減衰特性の低いものとなってしまう。そこで、減衰特性
の大きな、しかも接合性に優れた背面材の開発手段とし
て、広い粒度分布を持つ、例えば、0.2〜300ミク
ロンのセラミックスや金属粉末を液体媒体中で沈降させ
ることにより、粉末は粒径の大きなものから小さいもの
へと順次積層される。この積層された粉末成型品を焼結
することにより、目的とする背面材として有用な傾斜機
能材が得られる。
In order to solve the above-mentioned various problems, the present invention intends to utilize a functionally graded material, which is a sintered product of ceramics or metal powder having high heat resistance, as a backing material. To do. The back material made of the functionally graded material, which is a sintered product, and the vibrator can be joined by a known means such as brazing, diffusion joining or pressure joining. However, in the conventional powder metallurgy method and ceramics sintering method, the entire backing material is uniform and a dense sintered product is completed.
The attenuation characteristic will be low. Therefore, as a means for developing a backing material having a large damping property and excellent bonding property, a ceramic or metal powder having a wide particle size distribution, for example, 0.2 to 300 microns is precipitated in a liquid medium to form a powder. Are sequentially stacked from the one having a large particle size to the one having a small particle size. By sintering this laminated powder molded product, a functionally gradient material useful as a target backing material can be obtained.

【0007】[0007]

【作用】広い粒度分布を有する粉末を液体媒体、例え
ば、アルコール、水、プロピレングリコール等の入った
容器の上端から静かに沈降させると、粒径の大きな粉末
粒子から粒径の小さな粉末粒子へと順次沈降して連続的
に分級され、粒径による連続傾斜体が得られる。連続傾
斜体の分級精度及び速度は液体媒体の粘性によって左右
される。即ち、粘性の高い媒体中では沈降速度は遅くな
り、分級精度は向上する。
When powder having a wide particle size distribution is gently settled from the upper end of a container containing a liquid medium such as alcohol, water or propylene glycol, powder particles having a large particle size are converted into powder particles having a small particle size. Sequential sedimentation and continuous classification are performed to obtain a continuous gradient according to particle size. The classification accuracy and speed of the continuous slant depend on the viscosity of the liquid medium. That is, in a highly viscous medium, the sedimentation speed becomes slow and the classification accuracy improves.

【0008】上述の液体媒体中で得られた連続傾斜体を
そのままの状態で取り出すことは極めて困難であるが、
媒体として、ゾル・ゲル可逆反応を示す固化材、例え
ば、天然多糖類である寒天の性質を利用すれば容易に取
り出すことが出来る。即ち、寒天は熱水に溶解してゾル
状態の液体となり、ゲル化点以上の温度で保温しておけ
ば、ゾル状態を維持している。また、溶解する濃度や保
持する温度によりゾルの粘性を自由に変えることが出来
る。このゾル状態の液体媒体中に広い粒度分布を有する
粉末材料を拡散させると、粒径の大きな粉末粒子から粒
径の小さな粉末粒子へと順次沈降して連続傾斜体とな
る。次に、ゾル状態の液体をゲル化点以下の温度まで冷
却すると、ゲル化して固化するため、容易に粒径による
連続傾斜体を取り出すことが出来る。
It is extremely difficult to take out the continuous inclined body obtained in the above liquid medium as it is,
It can be easily taken out by using a solidifying material showing a sol-gel reversible reaction, for example, agar which is a natural polysaccharide as a medium. That is, agar is dissolved in hot water to become a sol-state liquid, and if kept at a temperature above the gel point, the sol-state is maintained. Further, the viscosity of the sol can be freely changed depending on the concentration to be dissolved and the temperature to be held. When a powder material having a wide particle size distribution is diffused in the liquid medium in the sol state, the powder particles having a large particle size are sequentially settled into the powder particles having a small particle size to form a continuous inclined body. Next, when the liquid in the sol state is cooled to a temperature not higher than the gelation point, the liquid is gelled and solidified, so that the continuous gradient according to the particle size can be easily taken out.

【0009】寒天ゲルは圧力を加えることにより、保持
している水分を容易に分離し、圧縮体が得られる。上述
の連続傾斜体に単位平方センチメートル当たり30〜5
0kgの圧力を加えることにより圧縮された連続傾斜体
となり、圧力の保持時間により連続傾斜体の充填密度を
任意に変えることが出来る。
By applying pressure to the agar gel, the retained water can be easily separated to obtain a compressed body. 30 to 5 per square centimeter on the above-mentioned continuous inclined body
By applying a pressure of 0 kg, the continuous gradient body is compressed, and the packing density of the continuous gradient body can be arbitrarily changed depending on the pressure holding time.

【0010】この圧縮した連続傾斜体を公知の方法で焼
結すれば、粒径による連続傾斜した焼結体が得られる。
粉末粒子の焼結強度はその粒子の粒径と粒子同士の接触
状況によることは良く知られている。即ち、図1に示す
ような連続傾斜体を焼結した場合、小さな粒子の集合体
である一端は粒子間隙が小さく、粒子の比表面積は極め
て大きいため表面活性が高く、粒子同士の結合強度が高
くなり緻密となる。その一方、大きな粒子の集合体であ
る他端は粒子間隙が大きく、粒子の比表面積が小さいた
め、表面活性が低く、粒子同士の結合強度は低くなり、
いわゆるポーラスな状態となる。
If this compressed continuous inclined body is sintered by a known method, a continuously inclined sintered body depending on the grain size can be obtained.
It is well known that the sintering strength of powder particles depends on the particle size of the particles and the contact state between the particles. That is, when a continuous inclined body as shown in FIG. 1 is sintered, one end, which is an aggregate of small particles, has a small particle gap and has a very large specific surface area, so that the surface activity is high and the bonding strength between particles is high. Higher and more precise. On the other hand, the other end, which is an aggregate of large particles, has a large particle gap and a small specific surface area of the particles, so that the surface activity is low and the bonding strength between the particles is low,
It becomes a so-called porous state.

【0011】この連続傾斜結合体からなる背面体の緻密
な一端を振動子である圧電素子と接合することは容易に
行える。特に原料粉末が金属の背面材の場合、圧電素子
とのロウ着は容易である。一方、原料粉末がセラミック
スの背面材の場合、緻密な一端に無電解メッキ処理を施
してロウ着したり、拡散接合や圧接より背面材と圧電素
子との接合を行う。
It is easy to join the dense one end of the back body made of the continuous inclined coupling body to the piezoelectric element which is the vibrator. Particularly when the raw material powder is a metal backing material, brazing with the piezoelectric element is easy. On the other hand, when the raw material powder is a ceramic backing material, electroless plating is applied to one dense end of the backing material and brazing is performed, or the backing material and the piezoelectric element are bonded by diffusion bonding or pressure welding.

【0012】圧電素子から発せられた超音波パルスは接
合材や背面材の緻密な一端から入力され、超音波パルス
に由来するエネルギーで粒子が振動させられる。しか
し、圧電素子と背面材との接合面や緻密で微細な背面材
の一端にある粒子は強固に結合しているため、その振幅
はほとんど無視出来、超音波パルスは減衰しない。更に
進んだパルスは順次大きくなる粒子の結合強度の低下に
従い、粒子を振動させることにより、エネルギーを消耗
させながら伝搬して行く。背面材の解放された他端に到
達したパルスはそこで反射パルスとなるが、そのエネル
ギーは小さく減衰している。
The ultrasonic pulse emitted from the piezoelectric element is input from the dense one end of the bonding material or the back material, and the particles are vibrated by the energy derived from the ultrasonic pulse. However, since the bonding surface between the piezoelectric element and the backing material and the particles at one end of the dense and fine backing material are firmly bonded, their amplitude can be almost ignored and the ultrasonic pulse is not attenuated. The further advanced pulse propagates while consuming energy by vibrating the particles as the bond strength of the particles gradually increases and vibrates. The pulse arriving at the other open end of the backing material becomes a reflected pulse there, but its energy is attenuated to a small extent.

【0013】目的とする超音波センサの検出感度や分解
能に合わせて圧電素子の電気的容量、電気機械結合係
数、圧電素子の固有音響インピーダンス及び背面材の固
有インピーダンスが選択されるが、それと共に、背面材
の減衰特性も大きく影響する。それぞれの条件に合わせ
て、背面材を製造するための原料、粒径の範囲、粒径分
布、充填密度、焼結温度等の製造条件及び背面材の形状
を選択すれば良い。
The electrical capacitance of the piezoelectric element, the electromechanical coupling coefficient, the specific acoustic impedance of the piezoelectric element, and the specific impedance of the backing material are selected according to the detection sensitivity and resolution of the desired ultrasonic sensor. The damping characteristics of the backing material also have a large effect. The raw material for producing the backing material, the range of particle size, the particle size distribution, the packing density, the sintering temperature, and other manufacturing conditions and the shape of the backing material may be selected according to the respective conditions.

【0014】[0014]

【実施例】以下に示す(1)から(10)の手順に従っ
て背面材を作成する。
EXAMPLE A backing material is prepared according to the following procedures (1) to (10).

【0015】(1)0.2〜300ミクロンの粒径を持
ち、8mol%のY23を焼結助材として含む部分安定
化ジルコニア粉末240gに2.5gの解膠・分解剤と
100mlの水を加えてボールミルで十分に解膠・分散
しておく。
(1) 240 g of partially stabilized zirconia powder having a particle size of 0.2 to 300 μm and containing 8 mol% Y 2 O 3 as a sintering aid, 2.5 g of peptizing / decomposing agent and 100 ml. Add water and deflocculate and disperse with a ball mill.

【0016】(2)図2に示すような、上部に解膠槽1
2を、下部に分級媒体槽14を有し、双方の槽12、1
4をシャッタ16で仕切った傾斜機能材製造装置10の
分級媒体槽14に2wt%濃度の寒天ゾル溶液を満た
す。次いで、該分級媒体槽14の周囲に配置されている
保温・冷却ジャケット18に温水を通し、該分級媒体槽
14を60〜80°Cの温度に保温し、分級槽14と解
膠槽12との間のシャッタ16を閉じる。
(2) As shown in FIG.
2 has a classification medium tank 14 at the bottom, and both tanks 12, 1
The classification medium tank 14 of the functionally graded material manufacturing apparatus 10 in which 4 is partitioned by the shutter 16 is filled with an agar sol solution having a concentration of 2 wt%. Then, hot water is passed through the heat retention / cooling jacket 18 arranged around the classification medium tank 14 to keep the classification medium tank 14 at a temperature of 60 to 80 ° C., and the classification tank 14 and the peptization tank 12 are separated. The shutter 16 between them is closed.

【0017】(3)解膠槽12に前述のジルコニア粉末
の解膠・分散液を投入して大きな粒子のジルコニア粉末
が沈降しないよう十分に撹拌する。
(3) The deflocculating / dispersing liquid of the zirconia powder described above is put into the deflocculating tank 12 and sufficiently stirred so that large particles of zirconia powder do not settle.

【0018】(4)解膠槽12の撹拌装置を停止し、シ
ャッタ16を矢印20方向に引いて両槽間を完全に開い
て解膠槽12内のジルコニア粉末の解膠・分散液を分級
媒体槽14の寒天ゾル溶液と接触させ静置する。
(4) Stop the stirring device of the deflocculating tank 12 and pull the shutter 16 in the direction of the arrow 20 to completely open the space between both tanks to classify the deflocculating / dispersing liquid of the zirconia powder in the deflocculating tank 12. The medium tank 14 is brought into contact with the agar sol solution and left to stand.

【0019】(5)分級槽14に移ったジルコニア粉末
の解膠・分散液中の粒径の大きいものから順に下方に沈
降して分級媒体槽14の底面へ積層する。この間、沈降
が終了するまで分級媒体槽の温度は60〜80度Cに保
持する。
(5) Peptization of the zirconia powder transferred to the classifying tank 14: The zirconia powder having the largest particle size in the liquid is settled downward and laminated on the bottom of the classifying medium tank 14. Meanwhile, the temperature of the classification medium tank is maintained at 60 to 80 ° C. until the sedimentation is completed.

【0020】(6)沈降が終了した後、分級媒体槽14
の保温・冷却ジャケット18に冷却水を流して寒天溶液
をゲル化させる。
(6) After the sedimentation is completed, the classification medium tank 14
Cooling water is caused to flow through the heat retaining / cooling jacket 18 to gelate the agar solution.

【0021】(7)解膠槽12と分級媒体槽14の間の
シャッタ16を再び閉じ、該分級媒体槽14の床面を構
成している加圧シリンダ22を押し上げ、徐々にその加
圧力を単位平方センチメートル当たり30〜50kgま
で増大しながら加圧脱水を行って圧縮体を作る。該分級
媒体槽14内にて脱水された水は当該分級媒体槽14と
シャッタ16又は加圧シリンダ22との間から流出す
る。
(7) The shutter 16 between the deflocculating tank 12 and the classifying medium tank 14 is closed again, and the pressure cylinder 22 constituting the floor surface of the classifying medium tank 14 is pushed up to gradually increase the applied pressure. Pressurized dehydration is performed while increasing the pressure to 30 to 50 kg per square centimeter to make a compressed body. The water dewatered in the classification medium tank 14 flows out from between the classification medium tank 14 and the shutter 16 or the pressurizing cylinder 22.

【0022】(8)解膠槽12とシャッタ16を取り除
いた後、加圧シリンダ22を押し上げ所定の圧縮体を分
級媒体槽14から取り出し、所定の形状に打ち抜いて成
型品を取り出す。
(8) After removing the deflocculating tank 12 and the shutter 16, the pressure cylinder 22 is pushed up to take out a predetermined compressed body from the classification medium tank 14 and punch it into a predetermined shape to take out a molded product.

【0023】(9)成型品を自然乾燥し、1,200〜
1,600度Cで1〜2時間保持して図1に示すような
焼結体とする。
(9) 1,200-
A sintered body as shown in FIG. 1 is obtained by holding at 1,600 ° C. for 1 to 2 hours.

【0024】(10)焼結体1の緻密な面を公知のダイ
ヤモンド砥石で研削仕上げを行って、所定の背面材とす
る。
(10) The dense surface of the sintered body 1 is ground and finished with a known diamond grindstone to obtain a predetermined backing material.

【0025】以上の方法で作成した背面材と、従来使用
されているタングステン粉末のエポキシ樹脂による固化
法で作成した背面材の減衰特性の比較を示すと以下の通
りである。
The following is a comparison of the damping characteristics of the backing material made by the above method and the backing material made by the conventional method of solidifying tungsten powder with an epoxy resin.

【0026】 [0026]

【0027】[0027]

【発明の効果】本発明によれば、分解能を高めるための
減衰特性の高い背面材料に適切な傾斜機能材料を提供す
ることが出来る。これにより超音波センサの測定精度を
格段に高めることが可能となった。また本発明によれ
ば、広い粒度分布を有する粉末を液体媒体の入った容器
の上端から寒天媒体中へ静かに沈降させることにより粒
径の大きな粉末粒子から粒径の小さな粉末粒子へと順次
沈降して連続的に分級出来、極めて容易に粒径による連
続傾斜体が得られる。また寒天の温度を調節することに
より沈降速度を調節し、これにより分級精度を高めるこ
とが出来る。
According to the present invention, it is possible to provide a functionally graded material suitable for a back surface material having a high attenuation characteristic for improving resolution. This makes it possible to significantly improve the measurement accuracy of the ultrasonic sensor. Further, according to the present invention, powder having a wide particle size distribution is gently settled from the upper end of the container containing the liquid medium into the agar medium, whereby the powder particles having a large particle size are sequentially settled to the powder particles having a small particle size. Then, continuous classification can be carried out, and a continuous inclined body depending on the particle size can be obtained very easily. In addition, by controlling the temperature of the agar, the sedimentation rate can be adjusted, which can improve the classification accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】 図1は本件発明により形成される粒径により
分級された連続粒径傾斜材料の模式図である。
FIG. 1 is a schematic diagram of a continuous grain size graded material classified according to grain size formed according to the present invention.

【図2】 図2は本件発明の粒径により分級された連続
粒径傾斜材料を形成するための装置の断面図である。
FIG. 2 is a cross-sectional view of an apparatus for forming a particle size classified continuous particle size graded material of the present invention.

【符号の説明】[Explanation of symbols]

1:傾斜機能材 10:傾斜機能材製
造装置 12:解膠槽 14:分級媒体槽 16:シャッタ 18:保温冷却ジャ
ケット 22:加圧シリンダ
1: Functionally Gradient Material 10: Functionally Gradient Material Manufacturing Equipment 12: Peptization Tank 14: Classification Medium Tank 16: Shutter 18: Insulation Cooling Jacket 22: Pressurizing Cylinder

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G01N 29/24 G10K 11/162 (72)発明者 中村 恭之 大阪府高槻市春日町1−16 (72)発明者 渡部 聰 神奈川県横浜市港北区太尾町1362の3番地─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location G01N 29/24 G10K 11/162 (72) Inventor Yasuyuki Nakamura 1-16 Kasugacho, Takatsuki City, Osaka 72) Inventor Satoshi Watanabe 3-3, 1362 Taio-cho, Kohoku-ku, Yokohama-shi, Kanagawa

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 所定寸法範囲の粒径をもつ金属粉末及び
セラミック粉末をその粒径に応じて傾斜配列したことを
特徴とする傾斜機能材。
1. A functionally gradient material, characterized in that metal powder and ceramic powder having a grain size within a predetermined size range are arranged in a gradient according to the grain size.
【請求項2】 所定寸法範囲の粒径をもつ金属粉末及び
セラミック粉末を焼結助材及び解膠分散剤とともに均一
に解膠分散すること、該解膠分散した金属粉末をゾル状
寒天溶液中へいれ金属粉末を粒径に応じて分級するこ
と、該寒天溶液をゲル化しこれを加圧脱水し金属粉末分
級圧縮体を形成すること、該金属粉末分級圧縮体を焼結
すること、によりなる傾斜機能材形成方法。
2. A metal powder and a ceramic powder having a particle size within a predetermined size range are uniformly deflocculated and dispersed together with a sintering aid and a deflocculating dispersant, and the deflocculated and dispersed metal powder in a sol-like agar solution. By classifying the metal powder classified according to the particle size, gelating the agar solution and dehydrating it under pressure to form a compressed metal powder compact, and sintering the compressed metal powder compact. Method of forming functionally graded material.
【請求項3】 超音波センサ探触子用背面材を構成する
材料が0.2〜300ミクロンの粒径を持つセラミック
ス及び金属粉末よりなり、更に、この原料粉末が背面材
の一端から他の一端へ粒径による傾斜機能を有した粒度
分布を示し、この傾斜機能を有する原料粉末を固化させ
た超音波センサ探触子用背面材。
3. A material constituting a backing material for an ultrasonic sensor probe is composed of ceramics and metal powder having a particle diameter of 0.2 to 300 μm, and further, this raw material powder is provided from one end of the backing material to another material. A backing material for an ultrasonic sensor probe, which shows a particle size distribution having a gradient function depending on the particle size at one end and solidifies a raw material powder having this gradient function.
【請求項4】 超音波センサ探触子用背面材の原料粉末
を、0.2〜300ミクロンの粒径の大きさ順に沈降さ
せるための適度な粘性及び原料粉末粒子同士を接着する
機能を有する媒体中に拡散して粒径の大きさ順に沈降さ
せ、その後、粒径の大きさ順に沈降させた原料粉末から
余剰の媒体を取り除き、固化させた超音波センサ探触子
用背面材の製造方法。
4. An appropriate viscosity for causing the raw material powder of the backing material for an ultrasonic sensor probe to settle in the order of the particle size of 0.2 to 300 microns, and a function of adhering the raw material powder particles to each other. A method for producing a backing material for an ultrasonic sensor probe, which is solidified by diffusing into a medium and settling in order of particle size, and then removing excess medium from the raw material powder settling in order of particle size .
【請求項5】 超音波センサ探触子用背面材の0.2〜
300ミクロンの原料粉末を一定の粒度範囲別に分級
し、分級された原料粉末を粉末粒子同士を接着する機能
を有するバインダーと混練し、その後、バインダーと混
練された原料粉末を粒径順に積層し、固化せしめた超音
波センサ探触子用背面材の製造方法。
5. A backing material for an ultrasonic sensor probe, which is 0.2 to
300 μm raw material powder is classified according to a certain particle size range, the classified raw material powder is kneaded with a binder having a function of adhering powder particles to each other, and then the raw material powder kneaded with the binder is laminated in the order of particle size, A method of manufacturing a solidified backing material for an ultrasonic sensor probe.
JP6207016A 1994-08-31 1994-08-31 Gradient function material and its manufacture Pending JPH0879893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6207016A JPH0879893A (en) 1994-08-31 1994-08-31 Gradient function material and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6207016A JPH0879893A (en) 1994-08-31 1994-08-31 Gradient function material and its manufacture

Publications (1)

Publication Number Publication Date
JPH0879893A true JPH0879893A (en) 1996-03-22

Family

ID=16532808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6207016A Pending JPH0879893A (en) 1994-08-31 1994-08-31 Gradient function material and its manufacture

Country Status (1)

Country Link
JP (1) JPH0879893A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014509265A (en) * 2010-10-18 2014-04-17 グリーンヒル・アンチバリスティクス・コーポレーション Gradient nanoparticle-carbon allotrope-polymer composite material
US10668710B2 (en) 2017-07-28 2020-06-02 General Electric Company Components including structures having decoupled structural stiffness and mass density

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014509265A (en) * 2010-10-18 2014-04-17 グリーンヒル・アンチバリスティクス・コーポレーション Gradient nanoparticle-carbon allotrope-polymer composite material
US10668710B2 (en) 2017-07-28 2020-06-02 General Electric Company Components including structures having decoupled structural stiffness and mass density

Similar Documents

Publication Publication Date Title
JP2021130879A (en) Layer of granular composite
Zhang et al. An integrated dual ultrasonic selective powder dispensing platform for three-dimensional printing of multiple material metal/glass objects in selective laser melting
Wang et al. High frequency properties of passive materials for ultrasonic transducers
EP3151238B1 (en) Ultrasonic transducer and producing process thereof
CN100491930C (en) Acoustic matching layer, ultrasonic transmitter/receiver and its manufacture method, and ultrasonic flowmeter
WO2017110827A1 (en) Material for shaping in order for use in powder additive manufacturing
WO2017110828A1 (en) Molding material for use in powder laminate molding
Sayers et al. Ultrasonic properties of transducer backings
JP2017113952A (en) Molding material to be used for powder laminate molding
Morse Acoustic propagation in granular media
WO2012144226A1 (en) Ultrasound probe and production method therefor
TWI337655B (en) Ultrasonic sensor and method for producing ultrasonic sensor and ultrasonic wave transmitting/receiving system
JPH0879893A (en) Gradient function material and its manufacture
US4482835A (en) Multiphase backing materials for piezoelectric broadband transducers
JPH10501949A (en) Acoustic composite for ultrasonic phased array and method of manufacture
Schilling et al. Ultrasonic and mechanical behavior of green and partially sintered alumina: effects of slurry consolidation chemistry
US6545947B1 (en) Acoustic matching material, method of manufacture thereof, and ultrasonic transmitter using acoustic matching material
US6124664A (en) Transducer backing material
JP2016216280A (en) Porous body, and method for producing the porous body
US20060151920A1 (en) Graded particulate compositions
Gür et al. Non-destructive microstructural characterization of aluminium matrix composites by ultrasonic techniques
Warner et al. Ultrasonic attenuation and pore microstructure in a liquid-He 4—filled ceramic
JP4439710B2 (en) Acoustic matching member and manufacturing method thereof
CN110400869A (en) A kind of medium and its acoustic impedance regulation method of controllable acoustic impedance
Cohen Measurement of the viscoelastic properties of water-saturated clay sediments.