JPH0879183A - Optical communication equipment between ground machine and space machine - Google Patents

Optical communication equipment between ground machine and space machine

Info

Publication number
JPH0879183A
JPH0879183A JP6234511A JP23451194A JPH0879183A JP H0879183 A JPH0879183 A JP H0879183A JP 6234511 A JP6234511 A JP 6234511A JP 23451194 A JP23451194 A JP 23451194A JP H0879183 A JPH0879183 A JP H0879183A
Authority
JP
Japan
Prior art keywords
optical
ground
spacecraft
optical communication
machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6234511A
Other languages
Japanese (ja)
Inventor
Tomohiro Araki
智宏 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Space Development Agency of Japan
Original Assignee
National Space Development Agency of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Space Development Agency of Japan filed Critical National Space Development Agency of Japan
Priority to JP6234511A priority Critical patent/JPH0879183A/en
Publication of JPH0879183A publication Critical patent/JPH0879183A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE: To perform stable optical communication between a ground machine and a space machine by mounting an optical transmission/reception part for optical communication with the space machine on a flying device fixedly staying in the stratosphere where there are no factors like cloud or mist to attenuate the light. CONSTITUTION: A stabilizing device consists of a small-sized balloon, a power source, and a stabilizer consisting of a propulsion device like a propeller. By the design of this stabilizer and a cable length adjustment device which is provided in a ground transmission/reception part 11 and consists of a cable take-up mechanism or the like, an optical fiber part 21 is so constituted that it is not much drifted by a strong wind like the preveiling westerlies. The signal from the ground transmission/reception part 11 on the ground is transmitted to an optical transmission part 5 on the balloon 1 through the optical fiber part 21 and reaches the space machine in the very stable state without being affected by cloud, mist, or the like at all. The laser signal light from the space machine is stably received by the optical transmission/reception part 5 of the balloon 1 in the same manner.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、人工衛星等の宇宙機
と地上間の連携通信に用いられるレーザ光による地上・
宇宙機間光通信装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ground-based laser light used for cooperative communication between a spacecraft such as an artificial satellite and the ground.
The present invention relates to an optical communication device between spacecraft.

【0002】[0002]

【従来の技術】人工衛星を始め、宇宙ステーション等の
各種宇宙機においては、相互に連携をとることが運用面
において重要であり、したがって通信面においてもそれ
らの宇宙機相互間の連携通信が要求されている。従来、
このような宇宙機相互間の連携通信は、電波を用いて行
われている。ところが地球観測衛星や宇宙ステーション
等の如く宇宙における活動が増加するに伴い、宇宙機相
互間で伝送すべき情報量も飛躍的に増大し、データ信号
速度が1〜10Gbps 程度必要とされている。しかし従来
の電波による通信方式では、混信を防止するための周波
数割当の問題や、アンテナ口径あるいは送信出力の限界
等から実用的には既に限界状態に達している。このため
レーザ光を用いた光通信方式が注目され、特に大気の影
響を受けない宇宙空間では宇宙機相互間の光通信方式は
有望視されている。
2. Description of the Related Art In various spacecraft such as artificial satellites and space stations, it is important to cooperate with each other in terms of operation. Therefore, in terms of communication as well, cooperative communication between these spacecraft is required. Has been done. Conventionally,
Such cooperative communication between spacecraft is performed using radio waves. However, as the activities in space such as earth observation satellites and space stations increase, the amount of information to be transmitted between spacecraft also increases dramatically, and the data signal rate is required to be about 1 to 10 Gbps. However, the conventional radio-wave communication system has already reached a practical limit due to the problem of frequency allocation for preventing interference, the antenna aperture, the transmission output limit, and the like. Therefore, an optical communication system using laser light has been attracting attention, and an optical communication system between spacecrafts is regarded as promising especially in outer space that is not affected by the atmosphere.

【0003】ところで、宇宙機相互間における連携通信
にレーザ光を用いた光通信方式を用いる場合、宇宙機と
地上間の連携通信にもレーザ光による光通信方式を用い
るのが好都合である。ところが、レーザ光を用いて宇宙
機−地上間の通信を行う場合、送受光部にどのような高
性能の望遠鏡などを装備した装置を用いたとしても、宇
宙機と地上間には、雲,霧などが存在する場合は、レー
ザ光は著しく吸収,散乱,あるいは反射され、したがっ
て光信号は大幅に減衰してしまい、また大気自体によっ
ても屈折,散乱され減衰してしまうため、両者間の光通
信は不可能となってしまう。
When an optical communication system using laser light is used for cooperative communication between spacecraft, it is convenient to use an optical communication system using laser light for cooperative communication between the spacecraft and the ground. However, when communication between the spacecraft and the ground is performed using laser light, no matter what kind of high-performance telescope or the like is installed in the transmitting / receiving unit, a cloud, In the presence of fog, the laser light is significantly absorbed, scattered, or reflected, so the optical signal is greatly attenuated, and the atmosphere itself also refracts, scatters, and attenuates the light between them. Communication becomes impossible.

【0004】そのため、レーザ光による衛星−地上間の
通信を行う場合は、地上局は砂漠などの極めて高い晴天
率を有する地方で、且つ大気の影響を可能な限り低減さ
せるため、高山の山頂などの高地に設置しなければなら
ない。
Therefore, when performing satellite-to-ground communication using laser light, the ground station is located in a region such as a desert where the sky ratio is extremely high, and in order to reduce the influence of the atmosphere as much as possible, the top of a high mountain or the like. Must be installed in the highlands of.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、日本は
極めて雨の多い国であり、上記の条件に合致する場所は
存在しない。海外では、この条件に適した場所は存在す
るが、海外に地上局を設置して衛星との通信を行う場
合、その海外地上局と日本国内の基地局との間の通信手
段を確保しなければならない。光通信は高伝送レート化
を目的として導入されるものなので、海外地上局と日本
国内基地局との間に大容量の通信ルートを確保すること
が必要となり、極めて大なる費用を要することになる。
したがって、何らかの手段で、日本国内の任意の場所に
地上局を設置できなければ、レーザ光を用いた光通信方
式は実用的な通信手段とはならない。
However, Japan is an extremely rainy country, and there is no place that meets the above conditions. There are places overseas that are suitable for this condition, but if you install a ground station overseas to communicate with the satellite, you must secure the communication means between the overseas ground station and the base station in Japan. I have to. Since optical communication is introduced for the purpose of increasing the transmission rate, it is necessary to secure a large-capacity communication route between the overseas ground station and the Japanese domestic base station, which will be extremely expensive. .
Therefore, if the ground station cannot be installed in any place in Japan by some means, the optical communication system using the laser beam cannot be a practical communication means.

【0006】本発明は、人工衛星等の宇宙機と地上間の
連携通信にレーザ光による光通信方式を適用する場合に
おける上記問題点を解決するためになされたもので、降
雨等の多い気象条件の光通信に適しない地域において
も、安定したレーザ光を用いた光通信が行なえるように
した地上・宇宙機間光通信装置を提供することを目的と
する。
The present invention has been made in order to solve the above-mentioned problems in the case of applying the optical communication system using laser light to the coordinated communication between a spacecraft such as an artificial satellite and the ground, and is subject to meteorological conditions such as rainfall. It is an object of the present invention to provide a terrestrial / spacecraft optical communication device capable of performing stable optical communication using laser light even in an area not suitable for optical communication.

【0007】[0007]

【課題を解決するための手段及び作用】上記問題点を解
決するため、本発明は、人工衛星などの宇宙機と地上間
の通信を行うためのレーザ光を用いた地上・宇宙機間光
通信装置において、宇宙機とレーザ光による光通信を行
う光送受信部を、成層圏に定留させた気球などの定留飛
行手段に搭載すると共に、該光送受信部と地上送受信部
とを光ファイバ部で接続してファイバ通信を行うように
構成するものである。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a ground-to-spacecraft optical communication using laser light for communication between a spacecraft such as an artificial satellite and the ground. In the device, an optical transceiver for performing optical communication with a spacecraft by a laser beam is mounted on a stationary flight means such as a balloon that has been detained in the stratosphere, and the optical transceiver and the ground transceiver are formed by an optical fiber unit. It is configured to connect and perform fiber communication.

【0008】このように、宇宙機と光通信を行う光送受
信部を搭載した気球等の定留飛行手段を定留する成層圏
は、天候が極めて安定し、且つ雲,霧などレーザ光を大
きく減衰させる要因が存在しないため、任意の場所にお
いて宇宙機と地上間に安定した光通信回線を実現するこ
とができ、これにより大容量の宇宙通信が可能となる。
As described above, in the stratosphere where the stationary flight means such as a balloon equipped with the optical transceiver for optical communication with the spacecraft is installed, the weather is extremely stable and the laser light such as clouds and fog is greatly attenuated. Since there is no factor that causes it, a stable optical communication line can be realized between the spacecraft and the ground at an arbitrary location, which enables large-capacity space communication.

【0009】[0009]

【実施例】次に実施例について説明する。図1は、本発
明に係る地上・宇宙機間光通信装置の実施例を示す概略
図である。図において、1は気球で、大気状態の安定し
た高度10000 m以上の成層圏に定留させられており、電
力供給のための太陽電池2、位置及び姿勢安定化のため
のスタビライザ3,4、並びにレーザ光により宇宙機と
の光通信を行うための光送受信部5を備えている。気球
1を、上記太陽電池2,スタビライザ3,4及び光送受
信部5を搭載して成層圏に定留させるためには、250 kg
程度の浮揚力(光送受信部一式が75kg、太陽電池,スタ
ビライザ等の構造系が175 kg)を必要とするが、この程
度の浮揚力は直径16m程度のサイズのHe気球で実現する
ことができる。
EXAMPLES Next, examples will be described. FIG. 1 is a schematic diagram showing an embodiment of an optical communication device between ground and spacecraft according to the present invention. In the figure, reference numeral 1 is a balloon, which is fixed in the stratosphere at a stable altitude of 10,000 m or higher in the atmospheric condition, and has a solar cell 2 for power supply, stabilizers 3 and 4 for stabilizing position and attitude, and The optical transceiver 5 is provided for performing optical communication with a spacecraft by laser light. In order to fix the balloon 1 in the stratosphere by mounting the solar cell 2, the stabilizers 3, 4 and the optical transmitter / receiver 5, 250 kg
It requires a levitation force (75 kg for a set of optical transceiver and 175 kg for a structural system such as a solar cell and a stabilizer), but this levitation force can be realized with a He balloon having a diameter of about 16 m. .

【0010】11は地上12に設置した地上送受信部で、該
地上送受信部11と前記気球1に搭載された光送受信部5
との間は光ファイバ部21で接続されており、光送受信部
5と地上送受信部11間の通信をファイバ通信で行うよう
になっている。そして光ファイバ部21には、多数の安定
装置22〜26が設けられており、各安定装置は、小型の気
球と電源とプロペラ等の推進機などからなるスタビライ
ザとで構成されており、このスタビライザの設計、並び
に地上送受信部11に設けられたケーブル巻取り機構など
によるケーブル長調整装置(図示せず)によって、偏西
風などの強風によっても光ファイバ部21が大きく流動さ
れないように構成することができる。なお、図におい
て、31は雲, 32は霧を示している。
Reference numeral 11 denotes a ground transmitter / receiver installed on the ground 12, and the ground transmitter / receiver 11 and the optical transmitter / receiver 5 mounted on the balloon 1.
The optical transmission / reception unit 5 and the terrestrial transmission / reception unit 11 are connected to each other by fiber communication. The optical fiber unit 21 is provided with a large number of stabilizers 22 to 26, and each stabilizer is composed of a small balloon and a stabilizer composed of a power source and a propelling machine such as a propeller. And a cable length adjusting device (not shown) such as a cable winding mechanism provided in the terrestrial transmitter / receiver 11 can prevent the optical fiber portion 21 from largely flowing even by strong wind such as westerly wind. . In the figure, 31 is a cloud and 32 is a fog.

【0011】このように構成された地上・宇宙機間光通
信装置においては、地上に設置された地上送受信部11か
らの信号は、光ファイバ部21を介して気球1に搭載され
た光送受信部5に伝送され、該光送受信部5からレーザ
信号光が改めて宇宙機に向けて送出され、雲,霧等の影
響を全く受けることなく、極めて安定した状態で宇宙機
に到達させることができる。また、宇宙機からのレーザ
信号光も、同様に気球1に搭載された光送受信部5で受
信し、光ファイバ部21を介して地上光送受信部11に伝送
され、安定した状態で受信することができる。
In the terrestrial-to-spacecraft optical communication device configured as described above, the signal from the terrestrial transceiver unit 11 installed on the ground is the optical transceiver unit mounted on the balloon 1 via the optical fiber unit 21. The laser signal light is transmitted to the spacecraft again from the optical transmission / reception unit 5, and can be made to reach the spacecraft in an extremely stable state without being affected by clouds, fog or the like. Similarly, the laser signal light from the spacecraft is also received by the optical transmitter / receiver 5 mounted on the balloon 1 and transmitted to the terrestrial optical transmitter / receiver 11 via the optical fiber portion 21 to be received in a stable state. You can

【0012】[0012]

【発明の効果】以上実施例に基づいて説明したように、
本発明によれば、雲,霧等の光を減衰させる要因の存在
しない成層圏に定留させた飛行手段に宇宙機と光通信を
行う光送受信部を搭載し、該光送受信部と地上送受信部
との間は光ファイバ部で通信を行うようにしたので、任
意の場所に地上−宇宙機間の安定したレーザ光による光
通信回線を実現することができ、大容量の宇宙通信を可
能にする等の効果が得られる。
As described above on the basis of the embodiments,
According to the present invention, an optical transceiver unit for performing optical communication with a spacecraft is mounted on a flight means that is fixed in the stratosphere where there is no factor for attenuating light such as clouds and fog, and the optical transceiver unit and the ground transceiver unit. Since the optical fiber section is used to communicate with the spacecraft, it is possible to realize an optical communication line with stable laser light between the ground and spacecraft at any place, enabling a large-capacity space communication. And so on.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る地上・宇宙機間光通信装置の実施
例を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an embodiment of an optical communication device between ground and spacecraft according to the present invention.

【符号の説明】[Explanation of symbols]

1 気球 2 太陽電池 3,4 スタビライザ 5 光送受信部 11 地上送受信部 12 地上 21 光ファイバ部 22〜26 安定装置 1 Balloon 2 Solar Cell 3, 4 Stabilizer 5 Optical Transmitter / Receiver 11 Terrestrial Transmitter / Receiver 12 Terrestrial 21 Optical Fiber 22 to 26 Stabilizer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 人工衛星などの宇宙機と地上間の通信を
行うためのレーザ光を用いた地上・宇宙機間光通信装置
において、宇宙機とレーザ光による光通信を行う光送受
信部を、成層圏に定留させた気球などの定留飛行手段に
搭載すると共に、該光送受信部と地上送受信部とを光フ
ァイバ部で接続してファイバ通信を行うように構成した
ことを特徴とする地上・宇宙機間光通信装置
1. A terrestrial-to-spacecraft optical communication device using laser light for performing communication between a spacecraft such as an artificial satellite and the ground, an optical transceiver unit for performing optical communication with the spacecraft by laser light, It is mounted on a stationary flight means such as a balloon that has been detained in the stratosphere, and the optical transmitter / receiver and the ground transmitter / receiver are connected by an optical fiber unit to perform fiber communication. Optical communication device between spacecraft
【請求項2】 前記定留飛行手段は、電力供給のための
太陽電池及び位置、姿勢の安定化のためのスタビライザ
を備えていることを特徴とする請求項1記載の地上・宇
宙機間光通信装置。
2. The terrestrial / spacecraft light according to claim 1, wherein the stationary flight means includes a solar cell for supplying electric power and a stabilizer for stabilizing the position and attitude. Communication device.
【請求項3】 前記光ファイバ部は、気球,電源,スタ
ビライザで構成される安定装置を備えていることを特徴
とする請求項1又は2記載の地上・宇宙機間光通信装
置。
3. The terrestrial / spacecraft optical communication device according to claim 1, wherein the optical fiber portion includes a stabilizer including a balloon, a power source, and a stabilizer.
JP6234511A 1994-09-05 1994-09-05 Optical communication equipment between ground machine and space machine Pending JPH0879183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6234511A JPH0879183A (en) 1994-09-05 1994-09-05 Optical communication equipment between ground machine and space machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6234511A JPH0879183A (en) 1994-09-05 1994-09-05 Optical communication equipment between ground machine and space machine

Publications (1)

Publication Number Publication Date
JPH0879183A true JPH0879183A (en) 1996-03-22

Family

ID=16972177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6234511A Pending JPH0879183A (en) 1994-09-05 1994-09-05 Optical communication equipment between ground machine and space machine

Country Status (1)

Country Link
JP (1) JPH0879183A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03157296A (en) * 1989-11-14 1991-07-05 Kawasaki Heavy Ind Ltd Moored balloon of high mobility

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03157296A (en) * 1989-11-14 1991-07-05 Kawasaki Heavy Ind Ltd Moored balloon of high mobility

Similar Documents

Publication Publication Date Title
CA3116223C (en) Systems and methods for high-altitude radio/optical hybrid platform
US7046934B2 (en) Optical communication system using a high altitude tethered balloon
KR100878644B1 (en) Communications system
EP1358723A1 (en) Communication system using an aerostat tethered above the earth surface and linked to a base station by an optical fibre
Giggenbach et al. Optical satellite downlinks to optical ground stations and high-altitude platforms
US7997532B2 (en) Airborne power station
Horwath et al. Broadband backhaul communication for stratospheric platforms: the stratospheric optical payload experiment (STROPEX)
US20220094431A1 (en) Secure global satellite network
Welle et al. A CubeSat-based optical communication network for low earth orbit
US20020181059A1 (en) Broadband communication for satellite-ground or air-ground links
WO1998035506A2 (en) A very high data rate communications gateway for ground-space-ground communications
Hemmati et al. Comparative study of optical and radio-frequency communication systems for a deep-space mission
US20150326304A1 (en) World-wide, wide-band, low-latency, mobile internet and system therefor
WO2001059961A9 (en) High altitude optical telecommunications system and method
JP2995296B1 (en) Energy transfer method between ground and stratospheric airship
JPH0879183A (en) Optical communication equipment between ground machine and space machine
Knapek et al. Optical high-capacity satellite downlinks via high-altitude platform relays
Schwarz et al. Optical Ground Station for Free-Space Optical Communication Research and Experimentation
Bloom et al. High-elevation terrestrial validation of Ballistic Missile Defense Organization (BMDO) lasercom system at 1.1 Gbit/s
Ilcev Introduction to stratospheric communication platforms (SCP)
Aguado-Agelet et al. Research Article AOCS Requirements and Practical Limitations for High-Speed Communications on Small Satellites
Vishwakarma et al. A Comparative Study of Satellite Orbits as Low Earth Orbit (LEO) and Geostationary Earth Orbit (GEO)
Phillips An overview of propagation factors influencing the design of mobile satellite communication systems
Giggenbach et al. Optical-SDMA for broadband aeronautical communication
Ilčev et al. Users Segment