JPH0878710A - Solar battery and its manufacture - Google Patents

Solar battery and its manufacture

Info

Publication number
JPH0878710A
JPH0878710A JP6212425A JP21242594A JPH0878710A JP H0878710 A JPH0878710 A JP H0878710A JP 6212425 A JP6212425 A JP 6212425A JP 21242594 A JP21242594 A JP 21242594A JP H0878710 A JPH0878710 A JP H0878710A
Authority
JP
Japan
Prior art keywords
silicon semiconductor
semiconductor layer
hydrogen
type
containing hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6212425A
Other languages
Japanese (ja)
Other versions
JP3346907B2 (en
Inventor
Minoru Kaneiwa
実 兼岩
Satoshi Okamoto
諭 岡本
Ichiro Yamazaki
一郎 山嵜
Makoto Nishida
誠 西田
Yuji Komatsu
雄爾 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP21242594A priority Critical patent/JP3346907B2/en
Publication of JPH0878710A publication Critical patent/JPH0878710A/en
Application granted granted Critical
Publication of JP3346907B2 publication Critical patent/JP3346907B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table
    • H01L31/03685Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table including microcrystalline silicon, uc-Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1872Recrystallisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE: To provide a manufacturing method of a solar battery which can constitute a solar battery with high photoelectric conversion efficiency, can restrain change of PN characteristic and substrate characteristic and enables easy manufacturing in a short time. CONSTITUTION: The title solar battery is constituted of a first conductivity type silicon semiconductor substrate 11, a second conductivity type silicon semiconductor layer 12 formed at an optical incidence side of the silicon semiconductor substrate 11, an amorphous silicon semiconductor layer 16 with hydrogen formed on a rear of the silicon semiconductor substrate 11 and a fine crystalline silicon semiconductor layer 17 with hydrogen of a first conductivity type formed in contact with a rear of the silicon semiconductor substrate 11 and scattered in the amorphous silicon semiconductor layer 16 with hydrogen. The fine crystalline silicon semiconductor layer 17 with hydrogen of a first conductivity type is formed by such a method as to cast laser light on a part of the amorphous silicon semiconductor layer 16 with hydrogen in atmosphere of impurities of a first conductivity type.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は太陽電池に関し、特に、
高い光電変換効率を有する結晶系シリコン太陽電池とそ
の製造方法に関する。
FIELD OF THE INVENTION This invention relates to solar cells, and in particular
The present invention relates to a crystalline silicon solar cell having high photoelectric conversion efficiency and a method for manufacturing the same.

【0002】[0002]

【従来の技術】結晶系シリコン太陽電池の光電変換効率
を高めるために、シリコン半導体基板の光入射側(以
下、受光面と記す)の反対側の裏面に、基板と同一導電
型で、より高濃度の不純物を含んだ水素を有する微結晶
シリコン半導体層を設けた構造の太陽電池が知られてい
る(例えば、特開平4−192569号公報)。
2. Description of the Related Art In order to increase the photoelectric conversion efficiency of a crystalline silicon solar cell, a silicon semiconductor substrate with the same conductivity type as that of the substrate is provided on the back surface on the side opposite to the light incident side (hereinafter referred to as the light receiving surface). There is known a solar cell having a structure in which a microcrystalline silicon semiconductor layer containing hydrogen containing a concentration of impurities is provided (for example, Japanese Patent Laid-Open No. 4-192569).

【0003】この太陽電池の断面図を図9に示す。第1
導電型のシリコン半導体基板31の受光面には第2導電
型のシリコン半導体層32が形成されており、裏面は熱
酸化膜層40によって覆われている。熱酸化膜層40に
は複数のドット状の開孔が設けられており、熱酸化膜層
40の底面を覆うように形成された第1導電型の水素を
有する微結晶シリコン半導体層37はそれらの開孔を介
してシリコン半導体基板31に接触している。図10の
エネルギバンド図に示すように、水素を有する微結晶シ
リコン半導体層37はバンドギャップがシリコン半導体
基板31より大きく、また、高濃度に不純物が添加され
ているため、シリコン半導体基板31内の水素を有する
微結晶シリコン半導体層37の近傍に内部電界が形成さ
れる。この内部電界により、シリコン半導体基板31裏
面近傍で発生した多数キャリアは効率的に裏面電極38
へ取り出され、少数キャリアはシリコン半導体基板31
内へ押し戻されて、シリコン半導体基板31裏面近傍で
のキャリアの再結合が低減される。
A cross-sectional view of this solar cell is shown in FIG. First
A second conductivity type silicon semiconductor layer 32 is formed on the light receiving surface of the conductivity type silicon semiconductor substrate 31, and the back surface is covered with a thermal oxide film layer 40. The thermal oxide film layer 40 is provided with a plurality of dot-shaped openings, and the microcrystalline silicon semiconductor layer 37 having hydrogen of the first conductivity type formed so as to cover the bottom surface of the thermal oxide film layer 40 includes Is in contact with the silicon semiconductor substrate 31 through the opening. As shown in the energy band diagram of FIG. 10, since the band gap of the microcrystalline silicon semiconductor layer 37 containing hydrogen is larger than that of the silicon semiconductor substrate 31, and impurities are added at a high concentration, An internal electric field is formed in the vicinity of the microcrystalline silicon semiconductor layer 37 containing hydrogen. Due to this internal electric field, the majority carriers generated in the vicinity of the back surface of the silicon semiconductor substrate 31 are efficiently back surface electrodes 38.
And the minority carriers are taken out to the silicon semiconductor substrate 31.
By being pushed back in, the recombination of carriers near the back surface of the silicon semiconductor substrate 31 is reduced.

【0004】そして、シリコン半導体基板31の裏面に
接して、上記水素を有する微結晶半導体層を形成した開
孔部以外には、熱酸化膜層40が存在するようにしてい
るので、この層40中の酸素原子により、シリコン半導
体基板31の裏面における多数キャリアを取り出さない
部分の欠陥を不活性化(パッシベート)させ、光電変換に
より形成されたキャリアが上記欠陥を介して再結合する
ことを抑制することができる(以下、裏面パッシベーシ
ョン効果と記す)。
Since the thermal oxide film layer 40 is provided in contact with the back surface of the silicon semiconductor substrate 31 except for the opening where the microcrystalline semiconductor layer containing hydrogen is formed, this layer 40 is formed. Oxygen atoms in the layer inactivate defects (passivation) in a portion of the back surface of the silicon semiconductor substrate 31 from which majority carriers are not taken out, and suppress recombination of carriers formed by photoelectric conversion through the defects. (Hereinafter referred to as back surface passivation effect).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、裏面パ
ッシベーション効果を引き出すための層(以下、裏面パ
ッシベーション層と記す)として熱酸化膜層40を用い
ると、作製に際して800℃以上の高温での処理が必要
となる。結晶系シリコン太陽電池の作製において、この
ような高温での処理は以下に示すような問題を引き起こ
すため、できる限り避ける必要がある。
However, when the thermal oxide film layer 40 is used as a layer for deriving the back surface passivation effect (hereinafter referred to as the back surface passivation layer), a high temperature treatment of 800 ° C. or higher is required for fabrication. Becomes In the production of a crystalline silicon solar cell, such a treatment at a high temperature causes the following problems and should be avoided as much as possible.

【0006】第2導電型のシリコン半導体層32のド
ーパントプロファイルが変化して、PN接合の特性が変
わってしまうため、太陽電池の作製工程において、この
変化を考慮した条件設定を行う必要が生じ、作製条件の
管理が複雑となる。
Since the dopant profile of the second conductivity type silicon semiconductor layer 32 changes and the characteristics of the PN junction change, it is necessary to set the conditions in consideration of this change in the manufacturing process of the solar cell. The management of manufacturing conditions becomes complicated.

【0007】シリコン半導体基板31の特性の低下
(特に、基板でのキャリア寿命の低下)を引き起こす。
Degradation of characteristics of silicon semiconductor substrate 31
(In particular, the carrier life of the substrate is shortened).

【0008】また、熱酸化膜層40は、シリコン半導体
基板31の裏面近傍で発生したキャリアを通さないた
め、裏面でのキャリアの取り出し効率が低下するという
問題があった。
Further, since the thermal oxide film layer 40 does not pass carriers generated in the vicinity of the back surface of the silicon semiconductor substrate 31, there is a problem that the carrier extraction efficiency on the back surface is reduced.

【0009】更に、シリコン半導体基板31の裏面に熱
酸化膜層40及び水素を有する微結晶シリコン半導体層
37を作製する工程には、堆積速度が非常に遅い(0.
1nm/s以下)プラズマCVD法による水素を有する
微結晶シリコン半導体層37の堆積工程や、フォトエッ
チング等の工程が含まれており、裏面での処理工程は複
雑で長時間(通常数十分)かかるものであった。
Further, in the step of forming the thermal oxide film layer 40 and the microcrystalline silicon semiconductor layer 37 containing hydrogen on the back surface of the silicon semiconductor substrate 31, the deposition rate is very slow (0.
(1 nm / s or less) A step of depositing the microcrystalline silicon semiconductor layer 37 having hydrogen by a plasma CVD method, a step of photoetching, and the like are included, and a treatment step on the back surface is complicated and takes a long time (usually several tens of minutes). It was such a thing.

【0010】本発明は以上の問題点を解決するもので、
PN特性や基板特性の変化が抑制された高光電変換効率
を有する太陽電池の構成、及び、作製を簡略かつ短時間
に行える太陽電池の製造方法を提供することを目的とす
る。
The present invention solves the above problems.
It is an object of the present invention to provide a structure of a solar cell having high photoelectric conversion efficiency in which changes in PN characteristics and substrate characteristics are suppressed, and a method for manufacturing a solar cell that can be manufactured simply and in a short time.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に請求項1に記載の太陽電池は、第1導電型のシリコン
半導体基板と、このシリコン半導体基板の受光面に形成
した第2導電型のシリコン半導体層と、シリコン半導体
基板の裏面上に形成した水素を有する非晶質シリコン半
導体層と、シリコン半導体基板裏面上にあって、前記水
素を有する非晶質シリコン半導体層部に分散させて形成
された第1導電型の水素を有する微結晶シリコン半導体
層と、を有する構成としたものである。
In order to achieve the above object, a solar cell according to claim 1 is a first conductivity type silicon semiconductor substrate, and a second conductivity type formed on a light receiving surface of the silicon semiconductor substrate. And a hydrogen-containing amorphous silicon semiconductor layer formed on the back surface of the silicon semiconductor substrate, and dispersed on the hydrogen-containing amorphous silicon semiconductor layer portion on the back surface of the silicon semiconductor substrate. And a formed microcrystalline silicon semiconductor layer containing first conductivity type hydrogen.

【0012】また、請求項2に記載の太陽電池は、上記
水素を有する非晶質シリコン半導体層の導電型を基板と
同一の導電型としたものである。
Further, in the solar cell according to the second aspect, the conductivity type of the amorphous silicon semiconductor layer containing hydrogen is the same as that of the substrate.

【0013】請求項3に記載の太陽電池の製造方法は、
少なくとも第1導電型のシリコン半導体基板の受光面に
第2導電型のシリコン半導体を形成する工程と、シリコ
ン半導体基板の裏面上の全面に水素を有する非晶質シリ
コン半導体層を形成する工程と、この水素を有する非晶
質シリコン半導体層の一部にレーザ光を照射して、その
部分を第1導電型の水素を有する微結晶シリコン半導体
層に変化させる工程とを含むものである。
A method of manufacturing a solar cell according to claim 3 is
Forming a second conductivity type silicon semiconductor on at least the light receiving surface of the first conductivity type silicon semiconductor substrate; forming an amorphous silicon semiconductor layer containing hydrogen over the entire back surface of the silicon semiconductor substrate; A step of irradiating a part of the amorphous silicon semiconductor layer containing hydrogen with a laser beam to change the part to a microcrystalline silicon semiconductor layer containing hydrogen of the first conductivity type is included.

【0014】請求項4に記載の太陽電池の製造方法は、
上記請求項3に記載の製造方法において、レーザ光照射
を行う際の雰囲気に、水素を有する非晶質シリコン半導
体層を第1導電型の水素を有する微結晶シリコン半導体
層に変化させる第1導電型の不純物を含めたものであ
る。
A method of manufacturing a solar cell according to claim 4 is
4. The manufacturing method according to claim 3, wherein the amorphous silicon semiconductor layer containing hydrogen is changed to a microcrystalline silicon semiconductor layer containing hydrogen of the first conductivity type in an atmosphere during laser light irradiation. Includes mold impurities.

【0015】請求項5に記載の太陽電池の製造方法は、
上記請求項3に記載の製造方法において、シリコン半導
体基板の裏面上の全面に第1導電型の水素を有する非晶
質シリコン半導体層を形成し、この第1導電型の水素を
有する非晶質シリコン半導体層の一部にレーザ光を照射
して、その部分を第1導電型の水素を有する微結晶シリ
コン半導体層に変化させてなるものである。
A method of manufacturing a solar cell according to claim 5 is
4. The manufacturing method according to claim 3, wherein an amorphous silicon semiconductor layer containing hydrogen of the first conductivity type is formed on the entire back surface of the silicon semiconductor substrate, and the amorphous silicon semiconductor layer containing hydrogen of the first conductivity type is formed. A part of the silicon semiconductor layer is irradiated with laser light, and the part is changed to a microcrystalline silicon semiconductor layer containing hydrogen of the first conductivity type.

【0016】また、請求項6に記載の太陽電池の製造方
法は、上記請求項3及び請求項5に記載の製造方法にお
いて、レーザ光の照射を行う際の雰囲気に水素を含めた
ものである。
The solar cell manufacturing method according to claim 6 is the manufacturing method according to any one of claims 3 and 5, wherein hydrogen is included in an atmosphere when the laser light is irradiated. .

【0017】更に、請求項7に記載の太陽電池の製造方
法は、上記請求項5に記載の製造方法において、レーザ
光の照射を行う際の雰囲気に第1導電型のドーパントを
含めたものである。
Further, a solar cell manufacturing method according to a seventh aspect is the manufacturing method according to the fifth aspect, wherein a first conductivity type dopant is included in an atmosphere when the laser light is irradiated. is there.

【0018】[0018]

【作用】請求項1記載の太陽電池は、上述のように、裏
面パッシベーション層として水素を有する非晶質シリコ
ン半導体層を用いるため、シリコン半導体基板の裏面に
発生する欠陥を水素を有する非晶質シリコン半導体層中
の水素原子により不活性化することができ、光電変換に
より生じるキャリアの前記欠陥を介した再結合を抑制で
きる。また、水素を有する非晶質シリコン半導体層の形
成に必要な基板温度は300℃以下であり、裏面パッシ
ベーション層に熱酸化膜層を用いた場合のような高温で
の処理を必要とせず、受光面のPN特性の変化や基板特
性の変化を抑制できる。
Since the solar cell according to claim 1 uses the amorphous silicon semiconductor layer having hydrogen as the back surface passivation layer as described above, the defects having hydrogen on the back surface of the silicon semiconductor substrate are amorphous. It can be inactivated by hydrogen atoms in the silicon semiconductor layer, and recombination of carriers generated by photoelectric conversion via the defects can be suppressed. Further, the substrate temperature required for forming the amorphous silicon semiconductor layer containing hydrogen is 300 ° C. or lower, which does not require high temperature treatment as in the case where a thermal oxide film layer is used for the back surface passivation layer, It is possible to suppress changes in the PN characteristics of the surface and changes in the substrate characteristics.

【0019】また、請求項2に記載したように、この構
造において、水素を有する非晶質シリコン半導体層の導
電型を基板と同一の導電型とし、抵抗を低くすることが
可能であり、この層を通して基板裏面近傍で発生した多
数キャリアの一部を裏面電極に導くことができる。
Further, as described in claim 2, in this structure, the conductivity type of the amorphous silicon semiconductor layer containing hydrogen can be made the same as that of the substrate, and the resistance can be lowered. A part of majority carriers generated in the vicinity of the back surface of the substrate can be guided to the back surface electrode through the layer.

【0020】また、請求項3記載の製造方法では、第1
導電型のシリコン半導体基板上に形成した水素を有する
非晶質シリコン半導体層の一部に、レーザ光照射を行う
ことにより、水素を有する第1導電型の微結晶シリコン
半導体層を得る。従って、基板裏面での処理工程には、
堆積速度の遅いプラズマCVD法により水素を有する微
結晶シリコン半導体層を堆積する工程や、フォトエッチ
ング等の複雑な工程を含まないため、処理を容易にしか
も短時間(通常数分)で行うことができる。
According to the manufacturing method of claim 3, the first
By irradiating part of the hydrogen-containing amorphous silicon semiconductor layer formed over the conductivity-type silicon semiconductor substrate with laser light, a first-conductivity-type microcrystalline silicon semiconductor layer containing hydrogen is obtained. Therefore, in the processing step on the back side of the substrate,
Since a step of depositing a microcrystalline silicon semiconductor layer containing hydrogen by a plasma CVD method with a low deposition rate and a complicated step such as photoetching are not included, the treatment can be performed easily and in a short time (usually several minutes). it can.

【0021】請求項4記載の製造方法によれば、レーザ
光照射を行う際の雰囲気に第1導電型の不純物を含める
ことにより、水素を有する非晶質シリコン半導体層を第
1導電型の微結晶シリコン半導体層に変化させることが
できる。
According to the manufacturing method of the fourth aspect, the amorphous silicon semiconductor layer containing hydrogen is made to have a fineness of the first conductivity type by including impurities of the first conductivity type in the atmosphere during the laser irradiation. It can be changed to a crystalline silicon semiconductor layer.

【0022】請求項5記載の製造方法では、第1導電型
のシリコン半導体基板上に形成した第1導電型の水素を
有する非晶質シリコン半導体層の一部に、レーザ光照射
を行うことにより、水素を有する第1導電型の微結晶シ
リコン半導体層を得る。
In the manufacturing method according to the fifth aspect, a part of the amorphous silicon semiconductor layer containing hydrogen of the first conductivity type formed on the silicon semiconductor substrate of the first conductivity type is irradiated with laser light. A first-conductivity-type microcrystalline silicon semiconductor layer containing hydrogen is obtained.

【0023】請求項6記載の製造方法では、レーザ光照
射を行う際の雰囲気に水素を含めているため、レーザ光
照射中に層中から放出される水素を補充することができ
る。
In the manufacturing method according to the sixth aspect, since hydrogen is included in the atmosphere when the laser light irradiation is performed, hydrogen released from the layer during the laser light irradiation can be replenished.

【0024】請求項7記載の製造方法では、レーザ光照
射を行う際の雰囲気に第1導電型のドーパントを含めて
いるため、形成される水素を有する微結晶シリコン半導
体層の不純物濃度を高めることができる。
In the manufacturing method according to the seventh aspect, since the first conductivity type dopant is included in the atmosphere when the laser light irradiation is performed, the impurity concentration of the formed microcrystalline silicon semiconductor layer containing hydrogen is increased. You can

【0025】[0025]

【実施例】【Example】

(第1の実施例)図1は本発明の第1の実施例の太陽電
池の断面図である。P型シリコン半導体基板11の受光
面には、N型シリコン半導体層12が形成されている。
そして、更にその上を覆って酸化シリコン膜層13,反
射防止膜層14が形成されている。酸化シリコン膜層1
3はN型シリコン半導体層12の表面欠陥を不活性化す
るために、反射防止膜層14は入射光の反射を低減する
ために、設けられている。電流は、酸化シリコン膜層1
3,反射防止膜層14を貫通してN型シリコン半導体層
12に接続されたグリッド電極15を介して取り出され
る。P型シリコン半導体基板11の裏面には水素を有す
る真性の非晶質シリコン半導体層16が形成されてお
り、その層16部に分散して不純物が高濃度に添加され
た水素を有するP+ 型微結晶シリコン半導体層17が形
成されている。それらは裏面電極18によって覆われて
いる。裏面での電流は、P型シリコン半導体基板11か
ら水素を有するP+ 型微結晶シリコン半導体層17と裏
面電極18を介して取り出される。
(First Embodiment) FIG. 1 is a sectional view of a solar cell according to the first embodiment of the present invention. An N-type silicon semiconductor layer 12 is formed on the light receiving surface of the P-type silicon semiconductor substrate 11.
Then, a silicon oxide film layer 13 and an antireflection film layer 14 are further formed so as to cover them. Silicon oxide film layer 1
3 is provided to inactivate surface defects of the N-type silicon semiconductor layer 12, and the antireflection film layer 14 is provided to reduce reflection of incident light. Current is silicon oxide film layer 1
3, It is taken out through the grid electrode 15 which penetrates the antireflection film layer 14 and is connected to the N-type silicon semiconductor layer 12. An intrinsic amorphous silicon semiconductor layer 16 having hydrogen is formed on the back surface of the P-type silicon semiconductor substrate 11, and a P + -type having hydrogen added with a high concentration of impurities dispersed in the layer 16 portion. The microcrystalline silicon semiconductor layer 17 is formed. They are covered by the back electrode 18. The current on the back surface is extracted from the P-type silicon semiconductor substrate 11 via the P + -type microcrystalline silicon semiconductor layer 17 containing hydrogen and the back electrode 18.

【0026】上記のような構造であって、本例によれ
ば、水素を有するP+ 型微結晶シリコン半導体層17と
P型シリコン半導体基板11との間には内部電界が存在
するため、P型シリコン半導体基板11の裏面近傍で発
生したキャリアのうちの多数キャリア(空孔)は裏面電
極18へ効率よく導出される。また、P型シリコン半導
体基板11の裏面に接して水素を有する真性非晶質シリ
コン半導体層16を形成しているため、P型シリコン半
導体基板11の裏面に発生する欠陥を、水素を有する非
晶質シリコン半導体層16中の水素原子により不活性化
することができる。その結果、P型シリコン半導体基板
11の裏面近傍で発生したキャリアの上記欠陥を介した
再結合を抑制できる。これらにより、高い光電変換効率
を有する太陽電池が実現できる。
According to the present embodiment having the above structure, an internal electric field exists between the P + -type microcrystalline silicon semiconductor layer 17 containing hydrogen and the P-type silicon semiconductor substrate 11, so that P Of the carriers generated near the back surface of the type silicon semiconductor substrate 11, majority carriers (holes) are efficiently led to the back surface electrode 18. Further, since the intrinsic amorphous silicon semiconductor layer 16 containing hydrogen is formed in contact with the back surface of the P-type silicon semiconductor substrate 11, defects generated on the back surface of the P-type silicon semiconductor substrate 11 are amorphous. Can be inactivated by hydrogen atoms in the silicon semiconductor layer 16. As a result, recombination of carriers generated near the back surface of the P-type silicon semiconductor substrate 11 via the above defects can be suppressed. With these, a solar cell having high photoelectric conversion efficiency can be realized.

【0027】図2は図1の太陽電池の製造方法を示す製
造フロー図である。
FIG. 2 is a manufacturing flow chart showing a method for manufacturing the solar cell of FIG.

【0028】まず、単結晶のP型シリコン半導体基板1
1を洗浄した後、表面が凹凸になるように異方性エッチ
ングを行う。シリコン半導体基板11は、単結晶のP型
シリコン半導体基板に限らず、多結晶のP型シリコン半
導体基板を用いることも可能である。この場合の表面の
凹凸形成は、レーザ光照射や機械的手段によって溝を掘
る事により行う。
First, a single crystal P-type silicon semiconductor substrate 1
After cleaning No. 1, anisotropic etching is performed so that the surface becomes uneven. The silicon semiconductor substrate 11 is not limited to a single crystal P-type silicon semiconductor substrate, but a polycrystalline P-type silicon semiconductor substrate can also be used. In this case, the unevenness on the surface is formed by irradiating a laser beam or digging a groove by a mechanical means.

【0029】次に、N型シリコン半導体層12を、P型
シリコン半導体基板11の受光面に、オキシ塩化リン
(POCl3 )を用いた気相拡散によって、リン(P)
を拡散して形成する。続いて、酸化シリコン(SiO
2 )膜層13を熱酸化法で形成し、窒化シリコン(Si
34 )膜からなる反射防止膜層14をプラズマCVD
法により形成する。反射防止膜14としては酸化チタン
(TiO2 )膜やアルミナ(Al23 )膜等も使用で
きる。
Next, the N-type silicon semiconductor layer 12 is deposited on the light-receiving surface of the P-type silicon semiconductor substrate 11 by phosphorus (P) by vapor phase diffusion using phosphorus oxychloride (POCl 3 ).
Are diffused and formed. Then, silicon oxide (SiO 2
2 ) The film layer 13 is formed by the thermal oxidation method, and the silicon nitride (Si
The antireflection film layer 14 made of 3 N 4 ) film is formed by plasma CVD.
It is formed by the method. As the antireflection film 14, a titanium oxide (TiO 2 ) film, an alumina (Al 2 O 3 ) film, or the like can be used.

【0030】続いて、P型シリコン半導体基板11の裏
面をエッチングして、裏面に堆積したN型シリコン半導
体と酸化シリコン膜を除去する。N型シリコン半導体層
12の形成をリン添加されたシリコン酸化物ガラス液の
ような塗布液を用いて受光面だけに拡散して行った場合
には、裏面のN型シリコン半導体の除去は不要である。
Then, the back surface of the P-type silicon semiconductor substrate 11 is etched to remove the N-type silicon semiconductor and the silicon oxide film deposited on the back surface. When the N-type silicon semiconductor layer 12 is formed by diffusing only the light receiving surface using a coating solution such as a silicon oxide glass solution containing phosphorus, it is not necessary to remove the N-type silicon semiconductor on the back surface. is there.

【0031】次に、プラズマCVD法により、膜厚30
0nmの水素を有する真性非晶質シリコン半導体層16
をP型シリコン半導体基板11の裏面上に形成する。上
記真性非晶質シリコン半導体層16は、基板温度200
℃,入力RFパワー10W(13.56MHz),原料
ガスにシラン(SiH4 )ガスを用いた条件で成膜し
た。成膜速度は約1nm/sであった。この条件は一実
施例であり、成膜条件は上記条件に限られるものではな
い。例えば、原料ガス種では、シランガスと水素(H
2 )ガスの混合ガスやジシラン(Si26 )ガスを用
いても良い。
Next, a film thickness of 30 is formed by the plasma CVD method.
Intrinsic amorphous silicon semiconductor layer 16 having 0 nm hydrogen
Are formed on the back surface of the P-type silicon semiconductor substrate 11. The intrinsic amorphous silicon semiconductor layer 16 has a substrate temperature of 200
The film was formed under the conditions of ℃, input RF power of 10 W (13.56 MHz), and silane (SiH 4 ) gas as a source gas. The film formation rate was about 1 nm / s. This condition is one example, and the film forming condition is not limited to the above condition. For example, in the source gas species, silane gas and hydrogen (H
2 ) A mixed gas of gases or disilane (Si 2 H 6 ) gas may be used.

【0032】次に、水素を有する真性非晶質シリコン半
導体層16の一部に、P型ドーパントを含む雰囲気中で
レーザ光を照射することにより、その部分を微結晶化す
ると同時にP型ドーパントを添加し、水素を有するP+
型微結晶シリコン半導体層17を得る。P型ドーパント
としては3塩化ボロン(BCl3 ),トリメチルボロン
(B(CH33 ),ジボラン(B26 )等が使用で
き、レーザ光としては、ArFエキシマレーザ(波長:
195nm),KrFエキシマレーザ(波長:248n
m),XeClエキシマレーザ(波長:308nm)等
が使用できる。照射レーザ光量は400mJ/cm2
したが、これに限られるものではない。
Next, by irradiating a part of the intrinsic amorphous silicon semiconductor layer 16 containing hydrogen with a laser beam in an atmosphere containing a P-type dopant, that part is microcrystallized and at the same time the P-type dopant is added. P + with hydrogen added
The type microcrystalline silicon semiconductor layer 17 is obtained. Boron trichloride (BCl 3 ), trimethylboron (B (CH 3 ) 3 ), diborane (B 2 H 6 ) or the like can be used as the P-type dopant, and ArF excimer laser (wavelength:
195 nm), KrF excimer laser (wavelength: 248 n
m), XeCl excimer laser (wavelength: 308 nm), etc. can be used. The irradiation laser light amount was set to 400 mJ / cm 2 , but it is not limited to this.

【0033】また、レーザ光を照射する雰囲気に水素ガ
スを加えておけば、水素を有する真性非晶質シリコン半
導体層16を微結晶化する際に放出される水素の補充を
することができる。従って、水素を有する真性非晶質シ
リコン半導体層16及び水素を有するP+ 型微結晶シリ
コン半導体層17中の水素抜けに起因する欠陥を抑制す
ることができる。
If hydrogen gas is added to the atmosphere for irradiating the laser beam, the hydrogen released when the intrinsic amorphous silicon semiconductor layer 16 containing hydrogen is microcrystallized can be replenished. Therefore, it is possible to suppress defects due to hydrogen escape in the intrinsic amorphous silicon semiconductor layer 16 containing hydrogen and the P + -type microcrystalline silicon semiconductor layer 17 containing hydrogen.

【0034】続いて、裏面電極18を、水素を有する真
性の非晶質シリコン半導体層16と水素を有するP+
微結晶シリコン半導体層17を覆って、真空蒸着法でア
ルミニウムや銀などの金属を蒸着することにより形成す
る。次に、フォトエッチング法を用いて受光面側の酸化
シリコン膜層13及び反射防止膜14の加工を行った
後、チタン,パラジウム,銀の順で金属の蒸着を行う。
そして最後に、リフトオフを行うことで、グリッド電極
15を形成する。
Subsequently, the back surface electrode 18 is covered with the hydrogen-containing intrinsic amorphous silicon semiconductor layer 16 and the hydrogen-containing P + -type microcrystalline silicon semiconductor layer 17, and a metal such as aluminum or silver is vacuum-deposited. Is formed by vapor deposition. Next, the silicon oxide film layer 13 and the antireflection film 14 on the light receiving surface side are processed by using a photo-etching method, and then metal is deposited in the order of titanium, palladium, and silver.
Finally, lift-off is performed to form the grid electrode 15.

【0035】以上の工程では、P型シリコン半導体基板
11の裏面をパッシベートする水素を有する真性非晶質
シリコン半導体層16及び内部電界を形成する水素を有
する微結晶シリコン半導体層17の作製を300℃以下
の低温で行うことができる。従って、高温処理を繰り返
すことによって起こる受光面のPN接合の特性変化や基
板特性の劣化を抑制することができる。また、P型シリ
コン基板11の裏面側での処理工程には、フォトエッチ
ング等の複雑な処理工程や、水素を有する微結晶シリコ
ン半導体層のプラズマCVD法による形成のような長時
間かかる工程がないため、処理を容易に短時間で行うこ
とができる。
In the above steps, the intrinsic amorphous silicon semiconductor layer 16 containing hydrogen that passivates the back surface of the P-type silicon semiconductor substrate 11 and the microcrystalline silicon semiconductor layer 17 containing hydrogen that forms an internal electric field are manufactured at 300 ° C. It can be performed at the following low temperatures. Therefore, it is possible to suppress the characteristic change of the PN junction of the light receiving surface and the deterioration of the substrate characteristic which are caused by repeating the high temperature treatment. Further, the processing step on the back surface side of the P-type silicon substrate 11 does not have a complicated processing step such as photoetching or a step which takes a long time such as formation of a microcrystalline silicon semiconductor layer containing hydrogen by a plasma CVD method. Therefore, the processing can be easily performed in a short time.

【0036】(第2の実施例)図3は、第2の実施例の
太陽電池を示す断面図である。図1と同一の部分は同一
符号を用いて表し、説明を省略する。P型シリコン半導
体基板11の裏面上には、水素を有するP型非晶質シリ
コン半導体層19が形成され、更に、P型シリコン半導
体基板11に接し、上記水素を有するP型非晶質シリコ
ン半導体層19部に分散して、水素を有するP+ 型微結
晶シリコン半導体層17が形成されている。この構成の
場合も、水素を有するP型非晶質シリコン半導体層19
が、上記第1の実施例と同様に、P型シリコン半導体基
板11の裏面に発生する欠陥を水素原子により不活性化
することができ、P型シリコン半導体基板11の裏面近
傍で発生したキャリアの上記欠陥を介した再結合を抑制
できる。また、裏面パッシベーション層として、特に、
水素を有するP型非晶質シリコン半導体層19を用いる
と、その層19自身に導電性があるため、この層を通し
て多数キャリアの一部を裏面電極18へと導くことがで
き、更に高い光電変換効率を有する太陽電池が実現でき
る。
(Second Embodiment) FIG. 3 is a sectional view showing a solar cell according to a second embodiment. The same parts as those in FIG. 1 are denoted by the same reference numerals and the description thereof will be omitted. A P-type amorphous silicon semiconductor layer 19 containing hydrogen is formed on the back surface of the P-type silicon semiconductor substrate 11, and is further in contact with the P-type silicon semiconductor substrate 11 and has the above-mentioned P-type amorphous silicon semiconductor containing hydrogen. A P + -type microcrystalline silicon semiconductor layer 17 having hydrogen dispersed in the layer 19 is formed. Also in this configuration, the P-type amorphous silicon semiconductor layer 19 containing hydrogen
However, as in the first embodiment, defects generated on the back surface of the P-type silicon semiconductor substrate 11 can be inactivated by hydrogen atoms, and carriers generated near the back surface of the P-type silicon semiconductor substrate 11 can be removed. Recombination via the above defects can be suppressed. Further, as the back surface passivation layer, in particular,
When the P-type amorphous silicon semiconductor layer 19 containing hydrogen is used, since the layer 19 itself has conductivity, a part of majority carriers can be guided to the back surface electrode 18 through this layer, resulting in higher photoelectric conversion. A solar cell with efficiency can be realized.

【0037】次に、図4は図3の太陽電池の製造方法を
示す製造フロー図である。尚、水素を有するP型非晶質
シリコン半導体層19及び水素を有するP+ 型微結晶シ
リコン半導体層17の作製工程以外、即ち、N型シリコ
ン半導体層12,酸化シリコン膜層13,反射防止膜層
14,グリッド電極15,裏面電極18の作製工程は上
記実施例1の太陽電池の製造工程と同様であるため説明
を省略する。
Next, FIG. 4 is a manufacturing flow chart showing a method of manufacturing the solar cell of FIG. It should be noted that other than the steps of manufacturing the P-type amorphous silicon semiconductor layer 19 containing hydrogen and the P + -type microcrystalline silicon semiconductor layer 17 containing hydrogen, that is, the N-type silicon semiconductor layer 12, the silicon oxide film layer 13, the antireflection film. The manufacturing process of the layer 14, the grid electrode 15, and the back surface electrode 18 is the same as the manufacturing process of the solar cell of the first embodiment, and thus the description thereof is omitted.

【0038】水素を有するP型非晶質シリコン半導体層
19はプラズマCVD法により成膜した。成膜条件は基
板温度=200℃,入力RFパワー=10W,原料ガス
=H2希釈のSiH4とB26の混合ガス,B26/Si
4=0.002,膜厚=300nmである。この条件
は、一実施例であり、上記条件以外でも製膜可能であ
る。
The P-type amorphous silicon semiconductor layer 19 containing hydrogen was formed by the plasma CVD method. The film forming conditions are: substrate temperature = 200 ° C., input RF power = 10 W, source gas = H 2 diluted mixed gas of SiH 4 and B 2 H 6 , B 2 H 6 / Si
H 4 = 0.002, film thickness = 300 nm. This condition is an example, and the film can be formed under other conditions.

【0039】水素を有するP+ 型微結晶シリコン半導体
層17は水素を有するP型非晶質シリコン半導体層19
の一部分にレーザ光を照射することにより得られる。一
般に、水素を有するP型の非晶質シリコン半導体中のボ
ロンの活性化率は低いが、それが微結晶化するとボロン
の活性化率が高くなり、P+ 型となる。
The P + type microcrystalline silicon semiconductor layer 17 containing hydrogen is the P type amorphous silicon semiconductor layer 19 containing hydrogen.
It is obtained by irradiating a part of the laser beam. In general, the activation rate of boron in a P-type amorphous silicon semiconductor containing hydrogen is low, but when it is microcrystallized, the activation rate of boron becomes high and becomes P + -type.

【0040】また、レーザ光照射する際の雰囲気に水素
ガスを含めると、水素を有するP型非晶質シリコン半導
体層19を微結晶化させる際に層中より放出される水素
を補充することができる。従って、水素抜けに起因する
欠陥を抑制することができる。
Further, when hydrogen gas is included in the atmosphere during laser irradiation, hydrogen released from the layer can be replenished when the P-type amorphous silicon semiconductor layer 19 containing hydrogen is microcrystallized. it can. Therefore, it is possible to suppress defects caused by hydrogen desorption.

【0041】更に、水素を有するP型非晶質シリコン半
導体層19にレーザ光を照射して水素を有するP+ 型微
結晶シリコン半導体層17とする際の雰囲気に3塩化ボ
ロンガス,トリメチルボロンガス,ジボランガス等のド
ーパントを含めると、より高濃度の不純物を有する水素
を有するP+ 型微結晶シリコン半導体層17が得られ、
シリコン半導体基板11の裏面と水素を有するP+ 型微
結晶シリコン半導体層17との間により大きな内部電界
が生じる。
Further, the P-type amorphous silicon semiconductor layer 19 containing hydrogen is irradiated with laser light to form the P + -type microcrystalline silicon semiconductor layer 17 containing hydrogen in the atmosphere of boron trichloride gas, trimethylboron gas, When a dopant such as diborane gas is included, a P + -type microcrystalline silicon semiconductor layer 17 having hydrogen having a higher concentration of impurities is obtained,
A larger internal electric field is generated between the back surface of the silicon semiconductor substrate 11 and the P + -type microcrystalline silicon semiconductor layer 17 containing hydrogen.

【0042】以上の製造方法においても、上記第1の実
施例の場合と同様に、太陽電池の作製を容易にしかも短
時間で行うことができる。
Also in the above manufacturing method, the solar cell can be manufactured easily and in a short time, as in the case of the first embodiment.

【0043】(第3の実施例)図5は本発明の第3の実
施例の太陽電池の断面図である。N型シリコン半導体基
板21の受光面には、P型シリコン半導体層22が形成
されている。そして、更にその上を覆って酸化シリコン
膜層23,反射防止膜層24が形成されている。酸化シ
リコン膜層23はP型シリコン半導体層22の表面欠陥
を不活性化するために、反射防止膜層24は入射光の反
射を低減するために、設けられている。電流は、酸化シ
リコン膜層23,反射防止膜層24を貫通してP型シリ
コン半導体層22に接続されたグリッド電極25を介し
て取り出される。N型シリコン半導体基板21の裏面に
は水素を有する真性の非晶質シリコン半導体層26が形
成されており、その層26部に分散して不純物が高濃度
に添加された水素を有するN+ 型微結晶シリコン半導体
層27が形成されている。それらは裏面電極28によっ
て覆われており、裏面での電流は、N型シリコン半導体
基板21から水素を有するN+ 型微結晶シリコン半導体
層27と裏面電極28を介して取り出される。
(Third Embodiment) FIG. 5 is a sectional view of a solar cell according to a third embodiment of the present invention. A P-type silicon semiconductor layer 22 is formed on the light-receiving surface of the N-type silicon semiconductor substrate 21. Then, a silicon oxide film layer 23 and an antireflection film layer 24 are further formed so as to cover them. The silicon oxide film layer 23 is provided to inactivate surface defects of the P-type silicon semiconductor layer 22, and the antireflection film layer 24 is provided to reduce reflection of incident light. The electric current is taken out through the grid electrode 25 penetrating the silicon oxide film layer 23 and the antireflection film layer 24 and connected to the P-type silicon semiconductor layer 22. An intrinsic amorphous silicon semiconductor layer 26 containing hydrogen is formed on the back surface of the N-type silicon semiconductor substrate 21, and an N + -type containing hydrogen added with a high concentration of impurities dispersed in the layer 26 portion. A microcrystalline silicon semiconductor layer 27 is formed. They are covered with the back surface electrode 28, and the current on the back surface is taken out from the N type silicon semiconductor substrate 21 via the N + type microcrystalline silicon semiconductor layer 27 containing hydrogen and the back surface electrode 28.

【0044】上記のような構造であって、本例によれ
ば、水素を有するN+ 型微結晶シリコン半導体層27と
N型シリコン半導体基板21との間には内部電界が存在
するため、N型シリコン半導体基板21の裏面近傍で発
生したキャリアのうちの多数キャリア(電子)は裏面電
極28へ効率よく導出される。また、N型シリコン半導
体基板21の裏面に接して水素を有する真性非晶質シリ
コン半導体層26を形成しているため、N型シリコン半
導体基板21の裏面に発生する欠陥を、水素を有する真
性非晶質シリコン半導体層26中の水素原子により不活
性化することができる。その結果、N型シリコン半導体
基板21の裏面近傍で発生したキャリアの上記欠陥を介
した再結合を抑制できる。これらにより、高い光電変換
効率を有する太陽電池が実現できる。
According to the present embodiment having the above structure, an internal electric field exists between the N + type microcrystalline silicon semiconductor layer 27 containing hydrogen and the N type silicon semiconductor substrate 21. Majority carriers (electrons) among the carriers generated near the back surface of the type silicon semiconductor substrate 21 are efficiently led to the back surface electrode 28. In addition, since the intrinsic amorphous silicon semiconductor layer 26 containing hydrogen is formed in contact with the back surface of the N-type silicon semiconductor substrate 21, defects generated on the back surface of the N-type silicon semiconductor substrate 21 are detected as intrinsic non-silicon containing hydrogen. It can be inactivated by hydrogen atoms in the crystalline silicon semiconductor layer 26. As a result, recombination of carriers generated near the back surface of the N-type silicon semiconductor substrate 21 via the above defects can be suppressed. With these, a solar cell having high photoelectric conversion efficiency can be realized.

【0045】図6は図5の太陽電池の製造方法を示す製
造フロー図である。
FIG. 6 is a manufacturing flow chart showing a method for manufacturing the solar cell of FIG.

【0046】まず、単結晶のN型シリコン半導体基板2
1を洗浄した後、表面が凹凸になるように異方性エッチ
ングを行う。シリコン半導体基板21は、単結晶のN型
シリコン半導体基板に限らず、多結晶のN型シリコン半
導体基板を用いることも可能である。この場合の表面の
凹凸形成は、レーザ光照射や機械的手段によって溝を掘
る事により行う。
First, a single crystal N-type silicon semiconductor substrate 2
After cleaning No. 1, anisotropic etching is performed so that the surface becomes uneven. The silicon semiconductor substrate 21 is not limited to a single crystal N-type silicon semiconductor substrate, but a polycrystalline N-type silicon semiconductor substrate can also be used. In this case, the unevenness on the surface is formed by irradiating a laser beam or digging a groove by a mechanical means.

【0047】次に、3臭化ボロン(BBr3)を用いた
気相拡散によってボロンをN型シリコン基板21の受光
面に拡散してP型シリコン半導体層22を形成する。続
いて、熱酸化法により酸化シリコン(SiO2 )膜層2
3を形成し、窒化シリコン(Si34 )膜からなる反
射防止膜層24をプラズマCVD法により形成する。反
射防止膜24としては酸化チタン(TiO2 )膜やアル
ミナ(Al23 )膜等も使用できる。
Next, the P type silicon semiconductor layer 22 is formed by diffusing boron to the light receiving surface of the N type silicon substrate 21 by vapor phase diffusion using boron tribromide (BBr 3 ). Then, a silicon oxide (SiO 2 ) film layer 2 is formed by a thermal oxidation method.
3 is formed, and the antireflection film layer 24 made of a silicon nitride (Si 3 N 4 ) film is formed by the plasma CVD method. As the antireflection film 24, a titanium oxide (TiO 2 ) film, an alumina (Al 2 O 3 ) film, or the like can be used.

【0048】続いて、N型シリコン半導体基板21の裏
面をエッチングして、裏面に堆積したP型シリコン半導
体と酸化シリコン膜を除去する。P型シリコン半導体層
22の形成をボロン添加されたシリコン酸化物ガラス液
のような塗布液を用いて受光面だけに拡散して行った場
合には裏面のP型シリコン半導体の除去は不要である。
Then, the back surface of the N-type silicon semiconductor substrate 21 is etched to remove the P-type silicon semiconductor and the silicon oxide film deposited on the back surface. When the P-type silicon semiconductor layer 22 is formed by diffusing only the light receiving surface using a coating liquid such as a silicon oxide glass liquid added with boron, it is not necessary to remove the P-type silicon semiconductor on the back surface. .

【0049】次に、プラズマCVD法により、水素を有
する真性非晶質シリコン半導体層26を膜厚300nm
でN型シリコン半導体基板21の裏面上に形成する。上
記真性非晶質シリコン半導体層26は、基板温度200
℃,入力RFパワー10W(13.56MHz),原料
ガスにシランガスを用いた条件で成膜した。成膜速度は
約1nm/sであった。この条件は一実施例であり、成
膜条件は上記条件に限られるものではない。例えば、原
料ガス種では、シランガスと水素ガスの混合ガスやジシ
ランガスを用いても良い。
Next, an intrinsic amorphous silicon semiconductor layer 26 containing hydrogen is formed to a thickness of 300 nm by plasma CVD.
Is formed on the back surface of the N-type silicon semiconductor substrate 21. The intrinsic amorphous silicon semiconductor layer 26 has a substrate temperature of 200
The film was formed under the conditions of ℃, input RF power of 10 W (13.56 MHz), and silane gas as a source gas. The film formation rate was about 1 nm / s. This condition is one example, and the film forming condition is not limited to the above condition. For example, as the source gas species, a mixed gas of silane gas and hydrogen gas or disilane gas may be used.

【0050】次に、3塩化リン(PCl3)ガス中で、
ArFエキシマレーザ光を水素を有する真性非晶質シリ
コン半導体層26の一部に400mJ/cm2の照射量
で照射し、その部分を微結晶化すると同時にリンを添加
する(水素を有するN+ 型微結晶シリコン半導体層27
となる)。微結晶化する方法及び不純物添加する方法は
上記条件に限らず、ホスフィン(PH3),トリメチル
ホスフィン((CH33P)のガス中、あるいは、それ
らのガスと水素ガスとの混合ガス中で、レーザ光を照射
しても良い。また、レーザ光も、KrFエキシマレーザ
光,XeClエキシマレーザ光等でも良い。照射レーザ
光量も400mJ/cm2 に限られるものではない。
Next, in phosphorus trichloride (PCl 3 ) gas,
A part of the intrinsic amorphous silicon semiconductor layer 26 containing hydrogen is irradiated with ArF excimer laser light at a dose of 400 mJ / cm 2 , and the part is microcrystallized and phosphorus is added at the same time (N + type containing hydrogen). Microcrystalline silicon semiconductor layer 27
Will be). The method of microcrystallizing and the method of adding impurities are not limited to the above conditions, and may be in a gas of phosphine (PH 3 ) or trimethylphosphine ((CH 3 ) 3 P) or in a mixed gas of those gases and hydrogen gas. Then, the laser light may be irradiated. Also, the laser light may be KrF excimer laser light, XeCl excimer laser light, or the like. The irradiation laser light amount is not limited to 400 mJ / cm 2 .

【0051】また、レーザ光を照射する雰囲気に水素ガ
スを加えておけば、水素を有する真性非晶質シリコン半
導体層26を微結晶化する際に放出される水素の補充を
することができる。従って、水素を有する真性非晶質シ
リコン半導体層26及び水素を有するN+ 型微結晶シリ
コン半導体層27中の水素抜けに起因する欠陥を抑制す
ることができる。
If hydrogen gas is added to the atmosphere for irradiating the laser beam, hydrogen released when the intrinsic amorphous silicon semiconductor layer 26 containing hydrogen is microcrystallized can be replenished. Therefore, it is possible to suppress defects due to hydrogen escape in the intrinsic amorphous silicon semiconductor layer 26 containing hydrogen and the N + type microcrystalline silicon semiconductor layer 27 containing hydrogen.

【0052】続いて、裏面電極28を、水素を有する真
性の非晶質シリコン半導体層26と水素を有すN+ 型微
結晶シリコン半導体層27を覆って、真空蒸着法でアル
ミニウムや銀などの金属を蒸着することにより形成す
る。次に、フォトエッチング法を用いて受光面側の酸化
シリコン膜層23及び反射防止膜24の加工を行った
後、チタン,パラジウム,銀の順で金属の蒸着を行う。
そして最後に、リフトオフを行うことで、グリッド電極
25を形成する。
Subsequently, the back surface electrode 28 is covered with the intrinsic amorphous silicon semiconductor layer 26 containing hydrogen and the N + type microcrystalline silicon semiconductor layer 27 containing hydrogen, and a back electrode 28 made of aluminum, silver or the like is formed by a vacuum deposition method. It is formed by depositing a metal. Next, the silicon oxide film layer 23 and the antireflection film 24 on the light-receiving surface side are processed by using a photoetching method, and then metal is deposited in the order of titanium, palladium, and silver.
Finally, lift-off is performed to form the grid electrode 25.

【0053】以上の工程では、N型シリコン半導体基板
21の裏面をパッシベートする水素を有する真性非晶質
シリコン半導体層26及び内部電界を形成する水素を有
する微結晶シリコン半導体層27の作製を300℃以下
の低温で行うことができる。従って、高温処理を繰り返
すことによって起こる受光面のPN接合の特性変化や基
板特性の劣化を抑制することができる。また、N型シリ
コン基板21の裏面側での処理工程には、フォトエッチ
ング等の複雑な処理工程や、水素を有する微結晶シリコ
ン半導体層のプラズマCVD法による形成のような長時
間かかる工程がないため、処理を容易に短時間で行うこ
とができる。
In the above steps, the intrinsic amorphous silicon semiconductor layer 26 containing hydrogen that passivates the back surface of the N-type silicon semiconductor substrate 21 and the microcrystalline silicon semiconductor layer 27 containing hydrogen that forms an internal electric field are manufactured at 300 ° C. It can be performed at the following low temperatures. Therefore, it is possible to suppress the characteristic change of the PN junction of the light receiving surface and the deterioration of the substrate characteristic which are caused by repeating the high temperature treatment. In addition, the processing step on the back surface side of the N-type silicon substrate 21 does not have a complicated processing step such as photoetching or a step that takes a long time such as formation of a microcrystalline silicon semiconductor layer containing hydrogen by a plasma CVD method. Therefore, the processing can be easily performed in a short time.

【0054】(第4の実施例)図7は、第4の実施例の
太陽電池を示す断面図である。図5と同一の部分は同一
符号を用いて表し、説明を省略する。N型シリコン半導
体基板21の裏面上には、水素を有するN型非晶質シリ
コン半導体層29が形成され、更に、N型シリコン半導
体基板21に接し、上記水素を有するN型非晶質シリコ
ン半導体層29部に分散して、水素を有するN+ 型微結
晶シリコン半導体層27が形成されている。この構成の
場合も、水素を有するN型非晶質シリコン半導体層29
が、上記実施例3と同様に、N型シリコン半導体基板2
1の裏面に発生する欠陥を水素原子により不活性化する
ことができ、N型シリコン半導体基板21の裏面近傍で
発生したキャリアの上記欠陥を介した再結合を抑制でき
る。また、裏面パッシベーション層として、特に、水素
を有するN型非晶質シリコン半導体層29を用いると、
その層29自身に導電性があるため、この層29を通し
て多数キャリアの一部を裏面電極28へと導くことがで
き、更に高い光電変換効率を有する太陽電池が実現でき
る。
(Fourth Embodiment) FIG. 7 is a sectional view showing a solar cell according to a fourth embodiment. The same parts as those in FIG. 5 are represented by the same reference numerals and the description thereof will be omitted. An N-type amorphous silicon semiconductor layer 29 having hydrogen is formed on the back surface of the N-type silicon semiconductor substrate 21, and is further in contact with the N-type silicon semiconductor substrate 21 and has the hydrogen. An N + -type microcrystalline silicon semiconductor layer 27 having hydrogen dispersed in the layer 29 is formed. Also in this configuration, the N-type amorphous silicon semiconductor layer 29 containing hydrogen
However, similar to the third embodiment, the N-type silicon semiconductor substrate 2
The defects generated on the back surface of No. 1 can be inactivated by hydrogen atoms, and the recombination of carriers generated near the back surface of the N-type silicon semiconductor substrate 21 via the above defects can be suppressed. Further, when the N-type amorphous silicon semiconductor layer 29 containing hydrogen is used as the back surface passivation layer,
Since the layer 29 itself has conductivity, a part of majority carriers can be guided to the back electrode 28 through this layer 29, and a solar cell having higher photoelectric conversion efficiency can be realized.

【0055】次に、図8は図7の太陽電池の製造方法を
示す製造フロー図である。尚、水素を有するN型非晶質
シリコン半導体層29及び水素を有するN+ 型微結晶シ
リコン半導体層27の作製工程以外、即ち、P型シリコ
ン半導体層22,酸化シリコン膜層23,反射防止膜層
24,グリッド電極25,裏面電極28を作製する工程
は上記第3の実施例の太陽電池の製造工程と同様である
ため説明を省略する。
Next, FIG. 8 is a manufacturing flow chart showing a method for manufacturing the solar cell of FIG. It should be noted that other than the steps of manufacturing the N-type amorphous silicon semiconductor layer 29 containing hydrogen and the N + -type microcrystalline silicon semiconductor layer 27 containing hydrogen, that is, the P-type silicon semiconductor layer 22, the silicon oxide film layer 23, the antireflection film. The steps of manufacturing the layer 24, the grid electrode 25, and the back surface electrode 28 are the same as the steps of manufacturing the solar cell of the third embodiment, and therefore description thereof is omitted.

【0056】水素を有するN型非晶質シリコン半導体層
29はプラズマCVD法により成膜した。成膜条件は基
板温度=200℃,入力RFパワー=10W,原料ガス
=H2希釈のSiH4とPH3の混合ガス,PH3/SiH
4=0.005,膜厚=300nmである。この条件
は、一実施例であり、上記条件以外でも製膜可能であ
る。
The N-type amorphous silicon semiconductor layer 29 containing hydrogen was formed by the plasma CVD method. The film forming conditions are: substrate temperature = 200 ° C., input RF power = 10 W, source gas = H 2 diluted SiH 4 and PH 3 mixed gas, PH 3 / SiH
4 = 0.005, film thickness = 300 nm. This condition is an example, and the film can be formed under other conditions.

【0057】水素を有するN+ 型微結晶シリコン半導体
層27は水素を有するN型非晶質シリコン半導体層29
の一部分にレーザ光を照射することにより得られる。一
般に、水素を有するN型の非晶質シリコン半導体中のリ
ンの活性化率は低いが、それが微結晶化するとリンの活
性化率が高くなり、N+ 型となる。
The N + type microcrystalline silicon semiconductor layer 27 containing hydrogen is the N type amorphous silicon semiconductor layer 29 containing hydrogen.
It is obtained by irradiating a part of the laser beam. Generally, the activation rate of phosphorus in an N-type amorphous silicon semiconductor containing hydrogen is low, but when it is microcrystallized, the activation rate of phosphorus becomes high and becomes N + -type.

【0058】また、レーザ光照射する際の雰囲気に水素
ガスを含めると、水素を有するN型非晶質シリコン半導
体層29を微結晶化させる際に層中より放出される水素
を補充することができる。従って、水素抜けに起因する
欠陥を抑制することができる。
If hydrogen gas is included in the atmosphere during laser irradiation, hydrogen released from the layer can be replenished when the N-type amorphous silicon semiconductor layer 29 containing hydrogen is microcrystallized. it can. Therefore, it is possible to suppress defects caused by hydrogen desorption.

【0059】更に、水素を有するN型非晶質シリコン半
導体層29にレーザ光を照射して水素を有するN+ 型微
結晶シリコン半導体層27とする際の雰囲気にホスフィ
ンガスやトリメチルホスフィンガス等のドーパントを含
めると、より高濃度の不純物を有する水素を有するN+
型微結晶シリコン半導体層27が得られ、シリコン半導
体基板21の裏面と水素を有するN+ 型微結晶シリコン
半導体層27との間により大きな内部電界が生じる。
Further, the N-type amorphous silicon semiconductor layer 29 containing hydrogen is irradiated with laser light to form the N + -type microcrystalline silicon semiconductor layer 27 containing hydrogen in an atmosphere such as phosphine gas or trimethylphosphine gas. Inclusion of dopants results in N + having higher concentrations of hydrogen with impurities.
The type microcrystalline silicon semiconductor layer 27 is obtained, and a large internal electric field is generated between the back surface of the silicon semiconductor substrate 21 and the N + type microcrystalline silicon semiconductor layer 27 containing hydrogen.

【0060】以上の製造方法においても、上記第3の実
施例の場合と同様に、太陽電池の作製を容易にしかも短
時間で行うことができる。
Also in the above manufacturing method, the solar cell can be manufactured easily and in a short time, as in the case of the third embodiment.

【0061】[0061]

【発明の効果】以上のように、本発明の太陽電池によれ
ば、水素を有する非晶質シリコン半導体層を裏面パッシ
ベーション層として用いているため、光電変換効率の向
上を図ることができる。また、裏面パッシベーッション
層の形成に必要な基板温度を低下して、受光面のPN特
性の変化や基板特性の変化を抑制できる。
As described above, according to the solar cell of the present invention, since the amorphous silicon semiconductor layer containing hydrogen is used as the back surface passivation layer, the photoelectric conversion efficiency can be improved. Further, it is possible to reduce the substrate temperature required for forming the back surface passivation layer and suppress changes in the PN characteristics of the light receiving surface and changes in the substrate characteristics.

【0062】また、本発明の太陽電池の製造方法によれ
ば、、水素を含む真性あるいは第1導電型の非晶質シリ
コン半導体層の一部に、レーザ光照射を行うことによ
り、水素を含む第1導電型の微結晶シリコン半導体層を
得ており、微結晶シリコン半導体層を堆積する工程や、
フォトエッチング等の複雑な工程を含まないため、処理
を容易にしかも短時間(通常数分)で行うことができ
る。
Further, according to the method for manufacturing a solar cell of the present invention, a portion of the intrinsic or first conductivity type amorphous silicon semiconductor layer containing hydrogen is irradiated with laser light to contain hydrogen. Obtaining a microcrystalline silicon semiconductor layer of the first conductivity type, depositing the microcrystalline silicon semiconductor layer,
Since complicated steps such as photoetching are not included, the processing can be performed easily and in a short time (usually several minutes).

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の太陽電池の構造を示す
断面図である。
FIG. 1 is a sectional view showing a structure of a solar cell according to a first embodiment of the present invention.

【図2】図1の太陽電池の製造方法を示す製造フロー図
である。
FIG. 2 is a manufacturing flow chart showing a method for manufacturing the solar cell of FIG.

【図3】本発明の第2の実施例の太陽電池の構造を示す
断面図である。
FIG. 3 is a sectional view showing a structure of a solar cell according to a second embodiment of the present invention.

【図4】図3の太陽電池の製造方法を示す製造フロー図
である。
FIG. 4 is a manufacturing flow chart showing a method for manufacturing the solar cell of FIG.

【図5】本発明の第3の実施例の太陽電池の構造を示す
断面図である。
FIG. 5 is a sectional view showing a structure of a solar cell according to a third embodiment of the present invention.

【図6】図5の太陽電池の製造方法を示す製造フロー図
である。
6 is a manufacturing flow chart showing a method for manufacturing the solar cell of FIG.

【図7】本発明の第4の実施例の太陽電池の構造を示す
断面図である。
FIG. 7 is a sectional view showing a structure of a solar cell according to a fourth embodiment of the present invention.

【図8】図7の太陽電池の製造方法を示す製造フロー図
である。
8 is a manufacturing flow chart showing a method for manufacturing the solar cell of FIG. 7. FIG.

【図9】従来の太陽電池の構造を示す断面図である。FIG. 9 is a cross-sectional view showing the structure of a conventional solar cell.

【図10】図9の太陽電池のエネルギバンド図である。FIG. 10 is an energy band diagram of the solar cell of FIG.

【符号の説明】[Explanation of symbols]

11 P型シリコン半導体基板 12 N型シリコン半導体層 16 水素を有する真性非晶質半導体層 17 水素を有するP+ 型微結晶シリコン半導体層 19 水素を有するP型非晶質半導体層 21 N型シリコン半導体基板 22 P型シリコン半導体層 26 水素を有する真性非晶質シリコン半導体層 27 水素を有するN+型微結晶シリコン半導体層 29 水素を有するN型非晶質シリコン半導体層11 P-type silicon semiconductor substrate 12 N-type silicon semiconductor layer 16 Intrinsic amorphous semiconductor layer containing hydrogen 17 P + type microcrystalline silicon semiconductor layer containing hydrogen 19 P-type amorphous semiconductor layer containing hydrogen 21 N-type silicon semiconductor Substrate 22 P-type silicon semiconductor layer 26 Intrinsic amorphous silicon semiconductor layer containing hydrogen 27 N + type microcrystalline silicon semiconductor layer containing hydrogen 29 N-type amorphous silicon semiconductor layer containing hydrogen

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西田 誠 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 小松 雄爾 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Makoto Nishida 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Prefecture Sharp Corporation (72) Yuji Komatsu 22-22, Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Inside the company

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】第1導電型のシリコン半導体基板と、 該シリコン半導体基板の光入射側に形成した第2導電型
のシリコン半導体層とを有する太陽電池において、 前記シリコン半導体基板の裏面上に形成した水素を有す
る非晶質シリコン半導体層と、前記シリコン半導体基板
の裏面上にあって、前記水素を有する非晶質シリコン半
導体層部に分散させて形成した第1導電型の水素を有す
る微結晶シリコン半導体層と、を備えたことを特徴とす
る太陽電池。
1. A solar cell comprising a first-conductivity-type silicon semiconductor substrate and a second-conductivity-type silicon semiconductor layer formed on the light-incident side of the silicon semiconductor substrate, wherein the solar cell is formed on the back surface of the silicon semiconductor substrate. Amorphous silicon semiconductor layer containing hydrogen and microcrystals containing hydrogen of the first conductivity type formed on the back surface of the silicon semiconductor substrate by being dispersed in the amorphous silicon semiconductor layer portion containing hydrogen. A solar cell, comprising: a silicon semiconductor layer.
【請求項2】請求項1に記載の太陽電池において、前記
水素を有する非晶質シリコン半導体層が前記シリコン半
導体基板と同一の導電型を有することを特徴とする太陽
電池。
2. The solar cell according to claim 1, wherein the hydrogen-containing amorphous silicon semiconductor layer has the same conductivity type as the silicon semiconductor substrate.
【請求項3】少なくとも第1導電型のシリコン半導体基
板の光入射側に第2導電型のシリコン半導体層を形成す
る工程と、 前記シリコン半導体基板の裏面上の全面に水素を有する
非晶質シリコン半導体層を形成する工程と、 前記水素を有する非晶質シリコン半導体層の一部分にレ
ーザ光を照射することにより、前記部分の水素を有する
非晶質シリコン半導体層を第1導電型の水素を有する微
結晶シリコン半導体層に変化させる工程と、を含むこと
を特徴とする太陽電池の製造方法。
3. A step of forming a second-conductivity-type silicon semiconductor layer on at least a light incident side of a first-conductivity-type silicon semiconductor substrate; and amorphous silicon having hydrogen on the entire back surface of the silicon semiconductor substrate. Forming a semiconductor layer; and irradiating a portion of the hydrogen-containing amorphous silicon semiconductor layer with laser light so that the hydrogen-containing amorphous silicon semiconductor layer has a first conductivity type hydrogen. And a step of changing to a microcrystalline silicon semiconductor layer.
【請求項4】請求項3に記載の太陽電池の製造方法にお
いて、レーザ光を照射する際の雰囲気に、水素を有する
非晶質シリコン半導体層を第1導電型の水素を有する微
結晶シリコン半導体層に変化させる第1導電型の不純物
を含ませてなることを特徴とする太陽電池の製造方法。
4. The method of manufacturing a solar cell according to claim 3, wherein the amorphous silicon semiconductor layer containing hydrogen is a microcrystalline silicon semiconductor containing hydrogen of a first conductivity type in an atmosphere when the laser beam is irradiated. A method of manufacturing a solar cell, wherein the layer contains impurities of a first conductivity type to be changed.
【請求項5】請求項3に記載の太陽電池の製造方法にお
いて、前記シリコン半導体基板の裏面上の全面に第1導
電型の水素を有する非晶質シリコン半導体層を形成し、
該第1導電型の水素を有する非晶質シリコン半導体層の
一部分にレーザ光を照射することにより、前記部分の水
素を有する非晶質シリコン半導体層を第1導電型の水素
を有する微結晶シリコン半導体層に変化させてなること
を特徴とする太陽電池の製造方法。
5. The method for manufacturing a solar cell according to claim 3, wherein an amorphous silicon semiconductor layer containing hydrogen of the first conductivity type is formed on the entire back surface of the silicon semiconductor substrate,
By irradiating a part of the amorphous silicon semiconductor layer containing hydrogen of the first conductivity type with laser light, the amorphous silicon semiconductor layer containing hydrogen in the part is microcrystalline silicon containing hydrogen of the first conductivity type. A method for manufacturing a solar cell, characterized by being formed into a semiconductor layer.
【請求項6】請求項3及び請求項5に記載の太陽電池の
製造方法において、レーザ光を照射する際の雰囲気に水
素を含ませてなることを特徴とする太陽電池の製造方
法。
6. The method of manufacturing a solar cell according to claim 3 or 5, wherein hydrogen is included in an atmosphere when the laser light is irradiated.
【請求項7】請求項5に記載の太陽電池の製造方法にお
いて、レーザ光を照射する際の雰囲気に第1導電型の不
純物を含ませてなることを特徴とする太陽電池の製造方
法。
7. The method for manufacturing a solar cell according to claim 5, wherein the atmosphere for irradiating the laser beam contains impurities of the first conductivity type.
JP21242594A 1994-09-06 1994-09-06 Solar cell and method of manufacturing the same Expired - Fee Related JP3346907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21242594A JP3346907B2 (en) 1994-09-06 1994-09-06 Solar cell and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21242594A JP3346907B2 (en) 1994-09-06 1994-09-06 Solar cell and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0878710A true JPH0878710A (en) 1996-03-22
JP3346907B2 JP3346907B2 (en) 2002-11-18

Family

ID=16622385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21242594A Expired - Fee Related JP3346907B2 (en) 1994-09-06 1994-09-06 Solar cell and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3346907B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998043304A1 (en) * 1997-03-21 1998-10-01 Sanyo Electric Co., Ltd. Photovoltaic element and method for manufacture thereof
JP2006294802A (en) * 2005-04-08 2006-10-26 Toyota Motor Corp Photoelectric conversion element
JP2010505262A (en) * 2006-09-29 2010-02-18 リニューアブル・エナジー・コーポレーション・エーエスエー Back contact solar cell
CN102386247A (en) * 2010-09-03 2012-03-21 上海凯世通半导体有限公司 Solar wafer and preparation method thereof
JP2015142132A (en) * 2014-01-29 2015-08-03 エルジー エレクトロニクス インコーポレイティド Solar cell and manufacturing method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998043304A1 (en) * 1997-03-21 1998-10-01 Sanyo Electric Co., Ltd. Photovoltaic element and method for manufacture thereof
US6207890B1 (en) 1997-03-21 2001-03-27 Sanyo Electric Co., Ltd. Photovoltaic element and method for manufacture thereof
US6380479B2 (en) 1997-03-21 2002-04-30 Sanyo Electric Co., Ltd. Photovoltaic element and method for manufacture thereof
JP2006294802A (en) * 2005-04-08 2006-10-26 Toyota Motor Corp Photoelectric conversion element
JP2010505262A (en) * 2006-09-29 2010-02-18 リニューアブル・エナジー・コーポレーション・エーエスエー Back contact solar cell
CN102386247A (en) * 2010-09-03 2012-03-21 上海凯世通半导体有限公司 Solar wafer and preparation method thereof
JP2015142132A (en) * 2014-01-29 2015-08-03 エルジー エレクトロニクス インコーポレイティド Solar cell and manufacturing method therefor

Also Published As

Publication number Publication date
JP3346907B2 (en) 2002-11-18

Similar Documents

Publication Publication Date Title
US20200091366A1 (en) Solar cell having an emitter region with wide bandgap semiconductor material
US9099585B2 (en) Method of stabilizing hydrogenated amorphous silicon and amorphous hydrogenated silicon alloys
US20080241988A1 (en) Method for fabricating a silicon solar cell structure having a gallium doped p-silicon substrate
KR20080002657A (en) Photovoltaic device which includes all-back-contact configuration and related processes
WO2014099308A1 (en) Solar cell with silicon oxynitride dielectric layer
US20200098945A1 (en) Process for producing a photovoltaic solar cell having a heterojunction and a diffused-in emitter region
US11211519B2 (en) Method for manufacturing solar cell
CN116581181A (en) Double-doped layer TOPCON battery structure and preparation method thereof
JP3158027B2 (en) Solar cell and method of manufacturing the same
US8921686B2 (en) Back-contact photovoltaic cell comprising a thin lamina having a superstrate receiver element
JP3193287B2 (en) Solar cell
KR20100090015A (en) Solar cell and method for fabricating the same
JP3346907B2 (en) Solar cell and method of manufacturing the same
JP2003152205A (en) Photoelectric conversion element and its manufacturing method
Desrues et al. Ultra-thin poly-Si/SiOx passivating contacts integration for high efficiency solar cells on n-type cast mono silicon wafers
JP5645734B2 (en) Solar cell element
JPH0823114A (en) Solar cell
KR101321538B1 (en) Bulk silicon solar cell and method for producing same
US5242504A (en) Photovoltaic device and manufacturing method therefor
JP3158028B2 (en) Solar cell and method of manufacturing the same
CN117374169B (en) Preparation method of back contact solar cell and back contact solar cell
KR101129422B1 (en) Fabrication method of solar cell and solar cell fabrication by the same
JPS63274184A (en) Photoelectric transducer and manufacture thereof
JP2021044384A (en) Solar cell
TW202404111A (en) Back-contact solar cell comprising passivated contacts, and manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100906

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110906

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120906

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130906

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees