JPH0878363A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0878363A
JPH0878363A JP20862094A JP20862094A JPH0878363A JP H0878363 A JPH0878363 A JP H0878363A JP 20862094 A JP20862094 A JP 20862094A JP 20862094 A JP20862094 A JP 20862094A JP H0878363 A JPH0878363 A JP H0878363A
Authority
JP
Japan
Prior art keywords
film
blanket
hydrogen
partial pressure
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP20862094A
Other languages
Japanese (ja)
Inventor
Shuichi Yamane
秀一 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP20862094A priority Critical patent/JPH0878363A/en
Publication of JPH0878363A publication Critical patent/JPH0878363A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To provide a method in which a substratum TiN film is not stripped when a blanket W film is grown regarding a method in which the blanket W film is formed on a semiconductor substrate. CONSTITUTION: When a blanket W film is to be grown on a semiconductor substrate, the blanket W film is grown by raising the partial pressure of hydrogen gas up to the region of a partial-pressure ratio in which the reaction of tungsten hexafluoride with hydrogen becomes dominant over the decomposition of tungsten hexafluoride out of a mixed of tungsten hexafluoride and hydrogen gas which are used as reaction gases.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体基板上にブランケ
ットタングステン(W)膜を形成する方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a blanket tungsten (W) film on a semiconductor substrate.

【0002】近年、半導体デバイスの高集積化、微細化
により、電極配線にも高融点金属膜、特に、ブランケッ
トW膜や選択成長W膜が多用されている。
In recent years, due to high integration and miniaturization of semiconductor devices, refractory metal films, particularly blanket W films and selective growth W films, are often used for electrode wiring.

【0003】[0003]

【従来の技術】図6は従来例の説明図である。図におい
て、31は半導体基板、32はTi膜、33はTiN膜、34は
水素分子、35はW核、36はW膜、37はTiF膜である。
2. Description of the Related Art FIG. 6 is an explanatory view of a conventional example. In the figure, 31 is a semiconductor substrate, 32 is a Ti film, 33 is a TiN film, 34 is a hydrogen molecule, 35 is a W nucleus, 36 is a W film, and 37 is a TiF film.

【0004】現在、ブランケットW膜の成長は、通常初
期の核形成として六弗化タングステン(WF6 )のシラ
ン(SiH4 )還元により表面に半導体膜、金属膜、絶
縁膜の混在する半導体基板上全面に薄い膜を形成する。
At present, the blanket W film is usually grown on a semiconductor substrate in which a semiconductor film, a metal film and an insulating film are mixed on the surface by silane (SiH 4 ) reduction of tungsten hexafluoride (WF 6 ) as the initial nucleation. A thin film is formed on the entire surface.

【0005】そして、Wの核を形成後、水素(H2 )還
元により基板全面にブランケットW膜を被覆形成する。
この際、特にコンタクトホール埋め込みに用いる場合は
段差被覆性が重要になる。段差被覆性にはWF6 の分圧
が高く、温度が低い方が良い。
After forming W nuclei, a blanket W film is formed on the entire surface of the substrate by hydrogen (H 2 ) reduction.
At this time, step coverage is particularly important when used for filling contact holes. For the step coverage, it is better that the partial pressure of WF 6 is high and the temperature is low.

【0006】通常は、下地にTiN膜を用いるが、WF
6 分圧を高くすると、つまり、図6(a)に示すよう
に、H2 の分圧が低い状態では、W核5が形成されてい
る部分では水素分子34は解離するが、TiN膜33上では
解離しにくい。このため、TiN膜33上でのW膜36の成
長は、WF6 →W+6F- の反応が支配的となる。
Usually, a TiN film is used as a base, but WF
When the partial pressure of 6 is increased, that is, when the partial pressure of H 2 is low, as shown in FIG. 6A, the hydrogen molecules 34 dissociate in the portion where the W nucleus 5 is formed, but the TiN film 33. Hard to dissociate above. Therefore, the growth of the W film 36 on the TiN film 33 is dominated by the reaction of WF 6 → W + 6F .

【0007】その結果、図6(b)に示すように、解離
したFイオン(F- )がTiN膜33の中に潜り込み、下
地のTi膜32と反応してTiの弗化物であるTiF膜37
を形成し、TiN膜33が剥がれてしまう。
[0007] As a result, as shown in FIG. 6 (b), dissociated F ion (F -) is slip in the TiN film 33, TiF film is fluorides Ti reacts with Ti film 32 underlying 37
And the TiN film 33 is peeled off.

【0008】特に、低温の場合だとシラン還元時の反応
が悪く、図6(a)に示したように局所的に基板表面に
TiN膜33が露出している場合があり、W膜36の成長時
に、WF6 が余っていることによりTiN膜33が剥がれ
やすい傾向にある。
Particularly at low temperatures, the reaction at the time of silane reduction is poor, and the TiN film 33 may be locally exposed on the substrate surface as shown in FIG. At the time of growth, the TiN film 33 tends to peel off due to the excess WF 6 .

【0009】本発明は、以上の点を鑑み、ブランケット
W膜成長時において下地のTiN膜が剥がれないW膜の
成長方法を提供する。
In view of the above points, the present invention provides a W film growth method in which the underlying TiN film is not peeled off during blanket W film growth.

【0010】[0010]

【課題を解決するための手段】図1は本発明の原理説明
図、図2はW膜成長レートと水素分圧の関係図(理論
値)である。
FIG. 1 is a diagram for explaining the principle of the present invention, and FIG. 2 is a relationship diagram (theoretical value) between the W film growth rate and the hydrogen partial pressure.

【0011】図において、1は半導体基板、2はTi
膜、3はTiN膜、4は水素分子、5はW核、6はW膜
である。従来の処理条件で用いている水素分圧条件は、
図2に示すように、W膜の成長レートが水素分圧の1/
2乗に比例する領域Iの範囲内であり、このときは半導
体基板上での水素の解離反応が律則しているが、図6で
説明したように、TiN膜上では水素が解離しにくい。
In the figure, 1 is a semiconductor substrate, 2 is Ti
A film, 3 is a TiN film, 4 is a hydrogen molecule, 5 is a W nucleus, and 6 is a W film. The hydrogen partial pressure conditions used in conventional processing conditions are
As shown in FIG. 2, the growth rate of the W film is 1 / the hydrogen partial pressure.
It is within the range of the region I proportional to the square, and at this time, the dissociation reaction of hydrogen on the semiconductor substrate is a rule, but as described in FIG. 6, hydrogen is difficult to dissociate on the TiN film. .

【0012】つまり、WF6 が反応の対象を求めて漂っ
ていることになり、これがTiN膜の表面に達すると、
ここで電子の授受が発生し、WF6 が分解してしまう。
そのためF原子は静電力でTiN膜中に引っ張り込まれ
るが、この際、TiN膜とは反応せず、更に下層に存在
するTi膜のTi原子と反応する。TiFは常温で固体
であり、これが形成されると、TiN膜が押し上げら
れ、剥がれることとなる。
That is, the WF 6 is drifting in search of the reaction target, and when this reaches the surface of the TiN film,
Transfer of electrons occurs here, and WF 6 is decomposed.
Therefore, F atoms are pulled into the TiN film by electrostatic force, but at this time, they do not react with the TiN film, and further react with Ti atoms of the Ti film existing in the lower layer. TiF is solid at room temperature, and when it is formed, the TiN film is pushed up and peeled off.

【0013】そこで、本発明では、図1(a)に示すよ
うに、半導体基板1上での水素の解離は確立の問題なの
で、水素分圧を上げてやることにより、水素分子4を増
やして、出来るだけ半導体基板1の表面に反応せずに余
るWF6 ガスをなくそうとするものである。
Therefore, in the present invention, as shown in FIG. 1A, since dissociation of hydrogen on the semiconductor substrate 1 is a matter of establishment, the hydrogen partial pressure is increased to increase the number of hydrogen molecules 4. As much as possible, the surface of the semiconductor substrate 1 is not reacted and the remaining WF 6 gas is removed.

【0014】つまり、上記の問題解決するために、図1
(b)に示すWF6 成長時の水素分圧を上げてやり、余
剰WF6 をなくしてやるものとする。W膜の段差被覆性
はWF6 の供給律則領域では劣っている。水素分圧を上
げながらWF6 の反応律則領域で成膜してやる必要があ
る。
That is, in order to solve the above problems, FIG.
The surplus WF 6 is eliminated by increasing the hydrogen partial pressure during the growth of WF 6 shown in (b). The step coverage of the W film is inferior in the supply regulation region of WF 6 . It is necessary to form a film in the reaction law region of WF 6 while increasing the hydrogen partial pressure.

【0015】そこで、本発明の手段として、W膜の成長
レートから、水素の移動限界分圧を求めた上で、図2の
領域IIに相当するそれ以上の分圧領域で成膜する。すな
わち、本発明の目的は、半導体基板上へのブランケット
W膜の成長において、反応ガスとして用いる六弗化タン
グステンガスと水素ガスとの混合ガスの内、図2に示す
ような六弗化タングステンと水素の反応が六弗化タング
ステンの分解に対して支配的となる分圧比の領域まで水
素ガスの分圧を上げて、ブランケットW膜の成長を行う
ことにより達成される。
Therefore, as a means of the present invention, after determining the hydrogen transfer limit partial pressure from the growth rate of the W film, the film is formed in a partial pressure region higher than that corresponding to the region II in FIG. That is, an object of the present invention is to use tungsten hexafluoride as shown in FIG. 2 in a mixed gas of tungsten hexafluoride gas and hydrogen gas used as a reaction gas in growing a blanket W film on a semiconductor substrate. This is achieved by increasing the partial pressure of hydrogen gas to a partial pressure ratio region where the reaction of hydrogen is dominant for the decomposition of tungsten hexafluoride and growing the blanket W film.

【0016】[0016]

【作用】上記のように、本発明のCVD−W膜成長方法
を用いれば、この結果、TiN膜上でのW膜の成長は、
図2に示すように、 WF6 + 3H2 → W + 6HF↑ が支配的になり、余剰のWF6 がTiN膜の表面に到達
しないので、W膜は一様に均一な厚さで成長する。
As described above, when the CVD-W film growth method of the present invention is used, as a result, the growth of the W film on the TiN film is
As shown in FIG. 2, since WF 6 + 3H 2 → W + 6HF ↑ becomes dominant and the surplus WF 6 does not reach the surface of the TiN film, the W film grows to a uniform thickness. .

【0017】すなわ余剰WF6 によるTiN膜剥がれが
抑えられる。更に、段差被覆性を犠牲にせずにスループ
ットが上がり、また成膜中にチャンバー内に吸着したF
原子をHFにして飛ばす効果も期待でき、結果として微
小なゴミ・異物等のパーティクルの減少、品質向上に寄
与する。
That is, peeling of the TiN film due to excess WF 6 is suppressed. Further, the throughput is increased without sacrificing the step coverage, and the amount of F adsorbed in the chamber during film formation is increased.
The effect of making atoms HF and flying can be expected, and as a result, it contributes to the reduction of particles such as minute dusts and foreign substances and the improvement of quality.

【0018】[0018]

【実施例】図3はW膜成長レートと水素分圧の関係図
(実験値)、図4は本発明の一実施例の工程順模式断面
図である。
EXAMPLE FIG. 3 is a diagram showing the relationship between W film growth rate and hydrogen partial pressure (experimental value), and FIG. 4 is a schematic cross-sectional view in order of the processes of one example of the present invention.

【0019】図において、11はシリコン(Si)基板、
12はフィールド二酸化シリコン(SiO2)膜、13はp型ウェ
ル、14はソース・ドレイン拡散層、15はゲート電極、16
は層間SiO2膜、17はコンタクトホール、18はTi膜、19
はTiN膜、20はブランケットW膜、21はAl−Si−
Cu膜、22はSiO2膜、23はSOG膜、24はTEOSSiO2
膜、25はTi膜、26はTiN膜、27はAl−Si−Cu
膜、28はパッシベーションSiO2膜、29はパッシベーショ
ン Si3N4膜である。
In the figure, 11 is a silicon (Si) substrate,
12 is a field silicon dioxide (SiO 2 ) film, 13 is a p-type well, 14 is a source / drain diffusion layer, 15 is a gate electrode, 16
Is an interlayer SiO 2 film, 17 is a contact hole, 18 is a Ti film, 19
Is a TiN film, 20 is a blanket W film, and 21 is Al-Si-
Cu film, 22 SiO 2 film, 23 SOG film, 24 TEOS SiO 2
Film, 25 Ti film, 26 TiN film, 27 Al-Si-Cu
A film, 28 is a passivation SiO 2 film, and 29 is a passivation Si 3 N 4 film.

【0020】図3に先ず、水素分圧を種々変えて、W膜
成長レートを測定し、理論値との整合性を確認した実験
結果を示す。図3において、領域Iは従来から用いられ
てきた条件の範囲であり、水素分圧の1/2乗に比例し
た直線にのっている。
First, FIG. 3 shows an experimental result in which the W film growth rate was measured while various hydrogen partial pressures were changed and the consistency with the theoretical value was confirmed. In FIG. 3, the region I is the range of the condition that has been conventionally used, and is on a straight line proportional to the 1/2 power of the hydrogen partial pressure.

【0021】領域IIではW膜の成長レートが落ちている
が、これは水素の移動限界に達したか、或いは、WF6
の反応速度が追いついていないかのどちらかである。実
験によるTiN膜の剥がれ調査から、水素分圧を上げる
と剥がれが抑えられる効果が確認できているので、後者
であることが判明する。
In the region II, the growth rate of the W film is lowered, but this is because the hydrogen migration limit is reached or WF 6
Either the reaction speed of is not catching up. From the peeling investigation of the TiN film by the experiment, it has been confirmed that the peeling can be suppressed by increasing the hydrogen partial pressure, and it is therefore proved to be the latter.

【0022】次に、本発明のブランケットW膜の成長方
法をMOS形LSIデバイスに適用した本発明の一実施
例について図4の工程順模式断面図を用いて説明する。
図4(a)に示すように、n型のSi基板11の表面にフィ
ールドSiO2膜12が形成され、活性領域が画定される。
Next, an embodiment of the present invention in which the blanket W film growth method of the present invention is applied to a MOS type LSI device will be described with reference to the schematic cross-sectional views in the order of steps of FIG.
As shown in FIG. 4A, the field SiO 2 film 12 is formed on the surface of the n-type Si substrate 11 to define the active region.

【0023】活性領域にはp型ウェル13が形成されてお
り、p型ウェル13内にはn+ 型領域のソース・ドレイン
拡散層14と、Si基板11とゲートSiO2膜を隔てて形成され
たポリSi膜等の絶縁ゲート構造を有するゲート電極15か
らなるnチャネルMOSFETが形成されている。
A p-type well 13 is formed in the active region, and in the p-type well 13, the source / drain diffusion layer 14 in the n + type region, the Si substrate 11 and the gate SiO 2 film are separated from each other. An n-channel MOSFET including a gate electrode 15 having an insulated gate structure such as a poly-Si film is formed.

【0024】活性領域及びフィールドSiO2膜12上には層
間SiO2膜16が形成されている。層間SiO2膜16はTEOS
系SiO2膜を1.0μm堆積した後、エッチバックにより
表面を平坦化したものである。
An interlayer SiO 2 film 16 is formed on the active region and field SiO 2 film 12. The interlayer SiO 2 film 16 is TEOS
The surface is flattened by etching back after depositing a 1.0-μm thick SiO 2 film.

【0025】層間SiO2膜16のソース・ドレイン拡散層14
の領域に相当する部分にコンタクトホール17を形成す
る。コンタクトホール17形成後、図4(b)に示すよう
に、層間SiO2膜16の表面にスパッタによりTi膜18を 2
00Å、TiN膜19を 1,000Åの厚さに連続的に堆積し、
コンタクトメタル及び接着層とする。続いて、枚葉式減
圧CVD装置により本発明のブランケットW膜20を堆積
する。ブランケットW膜20の厚さはコンタクトホール17
の径とほぼ同等とする。成膜条件は、温度 450℃、ガス
圧80Torr、水素分圧22Torr、WF6 分圧1Torrとする。
Source / drain diffusion layer 14 of interlayer SiO 2 film 16
A contact hole 17 is formed in a portion corresponding to the area. After forming the contact hole 17, as shown in FIG. 4B, a Ti film 18 is sputtered on the surface of the interlayer SiO 2 film 16.
00Å, TiN film 19 is continuously deposited to a thickness of 1,000Å,
Contact metal and adhesive layer. Then, the blanket W film 20 of the present invention is deposited by a single wafer type low pressure CVD apparatus. The blanket W film 20 has a contact hole 17 thickness.
It is almost the same as the diameter. The film forming conditions are a temperature of 450 ° C., a gas pressure of 80 Torr, a hydrogen partial pressure of 22 Torr, and a WF 6 partial pressure of 1 Torr.

【0026】WF6 等の弗素系ガス及び不活性ガスによ
りSi基板11上全面に堆積したブランケットW膜20をエッ
チバックし、コンタクトホール17の中以外のブランケッ
トW膜20を除去する。このようにして、コンタクトホー
ル17内はブランケットW膜20により充填される。
The blanket W film 20 deposited on the entire surface of the Si substrate 11 is etched back by a fluorine-based gas such as WF 6 and an inert gas, and the blanket W film 20 other than in the contact hole 17 is removed. In this way, the contact hole 17 is filled with the blanket W film 20.

【0027】次に、スパッタ法により、厚さ 6,000Åの
Al−Si−Cu膜21を成膜する。これとTi膜18及び
TiN膜19との積層膜をパターニングし、一層目の配線
を形成する。このようにして、n+ 型領域のソース・ド
レイン拡散層14と一層目の配線とを電気的に接続するこ
とができる。
Next, an Al-Si-Cu film 21 having a thickness of 6,000Å is formed by the sputtering method. The laminated film of this and the Ti film 18 and the TiN film 19 is patterned to form a first layer wiring. In this way, the source / drain diffusion layer 14 in the n + type region and the wiring of the first layer can be electrically connected.

【0028】続いて、図4(c)に示すように、プラズ
マCVD法により、厚さ 4,000ÅのSiO2膜22を一層目配
線上、Si基板11の全面に堆積する。そして、厚さ 2,500
ÅのSOG膜23を塗布してエッチバックすることによ
り、表面を平坦化する。その上に厚さ 6,000ÅのTEO
S系SiO2膜24を被覆する。
Subsequently, as shown in FIG. 4C, a SiO 2 film 22 having a thickness of 4,000 Å is deposited on the entire surface of the Si substrate 11 on the first wiring by the plasma CVD method. And thickness 2,500
The SOG film 23 of Å is applied and etched back to flatten the surface. On top of that, TEO with a thickness of 6,000Å
The S-based SiO 2 film 24 is covered.

【0029】次に、図示はしないが、一層目の配線と二
層目の配線の接続をするために、接続領域において、T
EOS系SiO2膜24とSiO2膜22に二層目のAl−Si−C
u膜27に接続するためのコンタクトホールを形成する。
一層目のコンタクトホールと同様に、Ti膜25、TiN
膜26のスパッタを行い、二層目のブランケットW膜の堆
積、更にエッチバックによりコンタクトホール内にのみ
ブランケットW膜を充填する。
Next, although not shown, in order to connect the wiring of the first layer and the wiring of the second layer, in the connection region, T
A second layer of Al-Si-C is formed on the EOS-based SiO 2 film 24 and the SiO 2 film 22.
A contact hole for connecting to the u film 27 is formed.
Similar to the contact hole in the first layer, Ti film 25, TiN
The film 26 is sputtered to deposit a blanket W film of the second layer, and then the blanket W film is filled only in the contact holes by etching back.

【0030】続いて、二層目の配線となるAl−Si−
Cu膜27をスパッタ法により堆積し、Ti膜25、TiN
膜26とともにパターニングを行い、二層目配線を形成す
る。このようにして、一層目配線と二層目配線とを電気
的に接続する。
Subsequently, Al-Si- which will be the second layer wiring
Cu film 27 is deposited by the sputtering method, and Ti film 25 and TiN are deposited.
Patterning is performed together with the film 26 to form a second layer wiring. In this way, the first-layer wiring and the second-layer wiring are electrically connected.

【0031】更に、プラズマCVD法によりパッシベー
ション膜として厚さ 2,000ÅのパッシベーションSiO2
28及び厚さ1μmのパッシベーション Si3N4膜29を被覆
してMOS型LSIを形成する。
Further, a passivation SiO 2 film having a thickness of 2,000Å is formed by a plasma CVD method as a passivation film.
28 and a 1 μm thick passivation Si 3 N 4 film 29 is coated to form a MOS type LSI.

【0032】本発明の水素分圧を上げてTiN膜の剥離
を防止したロットと、従来方法の剥がれ対策を採らない
ロットとの歩留りを調べた結果、図5に示すように本発
明は歩留りが平均して二倍以上に向上している。
As a result of examining the yield of the lot of the present invention in which peeling of the TiN film was prevented by increasing the hydrogen partial pressure and the lot in which the peeling countermeasure of the conventional method was not taken, the yield of the present invention was as shown in FIG. It is more than doubled on average.

【0033】[0033]

【発明の効果】上記のように、本発明のCVD法による
ブランケットW膜成長方法を用いれば、余剰のWF6
TiN膜の表面に到達しないので、余剰WF6 によるT
iN膜剥がれが抑えられて、W膜は一様に均一な厚さで
成長し、段差被覆性を犠牲にせずにスループットが上が
り、歩留りの向上が期待できる。
As described above, according to the present invention, the use of the blanket W film growth method by CVD of the present invention, since the excess WF 6 does not reach the surface of the TiN film, due to the surplus WF 6 T
The peeling of the iN film is suppressed, the W film grows to a uniform thickness, the throughput increases without sacrificing the step coverage, and the yield can be expected to improve.

【0034】また成膜中にチャンバー内に吸着したF原
子をHFにして飛ばす効果も期待でき、微小なゴミ・異
物等のパーティクルの減少、品質向上に寄与する。
Further, it is expected that the F atoms adsorbed in the chamber during the film formation can be converted into HF to be ejected, which contributes to the reduction of particles such as minute dusts and foreign matters and the improvement of quality.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の原理説明図FIG. 1 is an explanatory view of the principle of the present invention.

【図2】 W膜成長レートとH2 分圧の関係図(理論
値)
[Fig. 2] Relationship between W film growth rate and H 2 partial pressure (theoretical value)

【図3】 W膜成長レートとH2 分圧の関係図(実験
値)
[Fig. 3] Relationship between W film growth rate and H 2 partial pressure (experimental value)

【図4】 本発明の一実施例の工程順模式断面図FIG. 4 is a schematic cross-sectional view in order of the processes of an embodiment of the present invention.

【図5】 本発明と従来例との歩留り比較FIG. 5: Yield comparison between the present invention and a conventional example

【図6】 従来例の説明図FIG. 6 is an explanatory diagram of a conventional example.

【符号の説明】[Explanation of symbols]

図において 1 半導体基板 2 Ti膜 3 TiN膜 4 水素分子 5 W核 6 W膜 11 Si基板 12 フィールドSiO2膜 13 p型ウェル 14 ソース・ドレイン拡散層 15 ゲート電極 16 層間SiO2膜 17 コンタクトホール 18 Ti膜 19 TiN膜 20 ブランケットW膜 21 Al−Si−Cu膜 22 SiO2膜 23 SOG膜 24 TEOS系SiO2膜 25 Ti膜 26 TiN膜 27 Al−Si−Cu膜 28 パッシベーションSiO2膜 29 パッシベーション Si3N4In the figure, 1 semiconductor substrate 2 Ti film 3 TiN film 4 hydrogen molecule 5 W nucleus 6 W film 11 Si substrate 12 field SiO 2 film 13 p-type well 14 source / drain diffusion layer 15 gate electrode 16 interlayer SiO 2 film 17 contact hole 18 Ti film 19 TiN film 20 Blanket W film 21 Al-Si-Cu film 22 SiO 2 film 23 SOG film 24 TEOS-based SiO 2 film 25 Ti film 26 TiN film 27 Al-Si-Cu film 28 Passivation SiO 2 film 29 Passivation Si 3 N 4 membrane

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上へのブランケットタングス
テン膜の成長において、反応ガスとして用いる六弗化タ
ングステンガスと水素ガスの混合ガスの内、該六弗化タ
ングステンと該水素との反応が該六弗化タングステンの
分解に対して支配的となる分圧比の領域まで該水素ガス
の分圧を上げて該ブランケットタングステン膜の成長を
行うことを特徴とする半導体装置の製造方法。
1. A reaction between tungsten hexafluoride and hydrogen in a mixed gas of tungsten hexafluoride gas and hydrogen gas used as a reaction gas in growing a blanket tungsten film on a semiconductor substrate, A method of manufacturing a semiconductor device, wherein the blanket tungsten film is grown by increasing the partial pressure of the hydrogen gas to a region having a partial pressure ratio that is dominant for decomposition of tungsten carbide.
JP20862094A 1994-09-01 1994-09-01 Manufacture of semiconductor device Withdrawn JPH0878363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20862094A JPH0878363A (en) 1994-09-01 1994-09-01 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20862094A JPH0878363A (en) 1994-09-01 1994-09-01 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0878363A true JPH0878363A (en) 1996-03-22

Family

ID=16559245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20862094A Withdrawn JPH0878363A (en) 1994-09-01 1994-09-01 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0878363A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6315836B1 (en) 1998-07-13 2001-11-13 Kokusai Electric Co., Ltd. Clean, recirculating processing method which prevents surface contamination of an object

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6315836B1 (en) 1998-07-13 2001-11-13 Kokusai Electric Co., Ltd. Clean, recirculating processing method which prevents surface contamination of an object
US6431190B1 (en) 1998-07-13 2002-08-13 Kokusai Electric Co., Ltd. Fluid processing apparatus

Similar Documents

Publication Publication Date Title
US4617087A (en) Method for differential selective deposition of metal for fabricating metal contacts in integrated semiconductor circuits
US5607880A (en) Method of fabricating multilevel interconnections in a semiconductor integrated circuit
KR900008387B1 (en) Method of producing a contact for a semiconductor device
EP0740336B1 (en) Method for fabricating semiconductor device having buried contact structure
JP2000306997A (en) Semiconductor device having barrier metal layer and fabrication thereof
JPH09186102A (en) Manufacture of semiconductor device
JPH1012732A (en) Manufacture of semiconductor device
JPH06291084A (en) Semiconductor device and preparation of tungsten in semiconductor device
US5851581A (en) Semiconductor device fabrication method for preventing tungsten from removing
JP3027946B2 (en) Semiconductor device and manufacturing method thereof
JP2000058643A (en) Formation method for plug
JPS60117719A (en) Manufacture of semiconductor device
JPH0878363A (en) Manufacture of semiconductor device
JPH08288390A (en) Semiconductor device and manufacture thereof
JP3628570B2 (en) Method for forming tungsten thin film and method for manufacturing semiconductor device
JP2937998B1 (en) Wiring manufacturing method
US20040224501A1 (en) Manufacturing method for making tungsten-plug in an intergrated circuit device without volcano phenomena
JP3399798B2 (en) Method for manufacturing semiconductor device
JP2002025991A (en) Plasma cleaning method and method of manufacturing semiconductor device
JPH053170A (en) Forming method of blanket tungsten plug
JP3191477B2 (en) Wiring structure and method of manufacturing the same
JPH0817762A (en) Manufacture of semiconductor device
US20040115880A1 (en) Method for forming capacitor of semiconductor device
JP2674654B2 (en) Method for manufacturing semiconductor device
JPH0529258A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011106