JPH0878159A - Sealing method of organic el element, and organic el element - Google Patents

Sealing method of organic el element, and organic el element

Info

Publication number
JPH0878159A
JPH0878159A JP6214718A JP21471894A JPH0878159A JP H0878159 A JPH0878159 A JP H0878159A JP 6214718 A JP6214718 A JP 6214718A JP 21471894 A JP21471894 A JP 21471894A JP H0878159 A JPH0878159 A JP H0878159A
Authority
JP
Japan
Prior art keywords
organic
inert liquid
layer
less
dissolved oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6214718A
Other languages
Japanese (ja)
Other versions
JP3254335B2 (en
Inventor
Masato Fujita
正登 藤田
Kenichi Fukuoka
賢一 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP21471894A priority Critical patent/JP3254335B2/en
Priority to DE69524429T priority patent/DE69524429T2/en
Priority to PCT/JP1995/001764 priority patent/WO1996008122A1/en
Priority to EP95930701A priority patent/EP0781075B1/en
Priority to US08/793,932 priority patent/US5962962A/en
Publication of JPH0878159A publication Critical patent/JPH0878159A/en
Application granted granted Critical
Publication of JP3254335B2 publication Critical patent/JP3254335B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • H01L51/5237

Abstract

PURPOSE: To strongly suppress the growth of a dark spot by sealing the outer circumference of an organic EL element with an inert liquid metal having a dissolved oxygen concentration less than 1ppm and, preferably, a contained moisture less than 10ppm. CONSTITUTION: An organic EL element 10 is preferably covered with a housing member 18 consisting of an electric insulating material such as glass, and the element 10 is housed in the recessed part of the housing member 18. The base 11 of the element 10 is stuck to the housing member 18 by an adhesive 17. An inert liquid 20 is filled and sealed in the space among the base 11, the element 10 and the housing member 18 through an injection port on the bottom part. As the liquid 20, a one having a dissolved oxygen concentration less than 1ppm is used, and a liquefied carbon fluoride having a contained moisture less than 10ppm and a vapor pressure at 25 deg.C, less than 10<-2> Torr is preferably used. As the liquid 20, in general, a commercially available product is treated by means of ordinary temperature vacuum deaeration, freezing vacuum deaeration, or inert gas substitution, and used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、有機エレクトロルミネ
ッセンス素子(以下、有機EL素子と略記する)の封止
方法と、封止された有機EL素子とに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of encapsulating an organic electroluminescence element (hereinafter abbreviated as an organic EL element) and an encapsulated organic EL element.

【0002】[0002]

【従来の技術】EL素子は自己発光のため視認性が高
く、また、完全固体素子であるため耐衝撃性に優れてい
る。このような特徴を有していることから、現在では、
発光材料として無機化合物を用いた種々の無機EL素子
や、発光材料として有機化合物(以下、この化合物を有
機発光材料という)を用いた種々の有機EL素子が提案
されており、かつ実用化が試みられている。なかでも有
機EL素子は、無機EL素子に比べて印加電圧を大幅に
低下させることができるため、より高性能の有機EL素
子を得るための開発が活発に進められている。
2. Description of the Related Art EL elements have high visibility because they are self-luminous, and have excellent impact resistance because they are completely solid elements. Due to its characteristics,
Various inorganic EL elements using an inorganic compound as a light emitting material and various organic EL elements using an organic compound (hereinafter, referred to as an organic light emitting material) as a light emitting material have been proposed and attempted for practical use. Has been. Among them, the organic EL element can drastically reduce the applied voltage as compared with the inorganic EL element, and therefore, development for obtaining a higher performance organic EL element is being actively pursued.

【0003】有機EL素子の基本構成は陽極、発光層、
陰極が順次積層された構成であり、この有機EL素子は
多くの場合、基板上に形成される。このとき、陽極と陰
極の位置は逆転することもある。また、性能を向上させ
るために、陽極と発光層の間に正孔輸送層を設けたり、
陰極と発光層との間に電子注入層を設けたり、陰極と発
光層の間または電子注入層と発光層との間に接着層を設
けたりする場合がある。発光層は、通常、1種または複
数種の有機発光材料により形成するが、有機発光材料と
正孔輸送材料および/または電子注入材料との混合物に
より形成する場合もある。
The basic structure of an organic EL device is an anode, a light emitting layer,
The cathode has a structure in which the cathodes are sequentially laminated, and in many cases, this organic EL element is formed on a substrate. At this time, the positions of the anode and the cathode may be reversed. Further, in order to improve the performance, a hole transport layer is provided between the anode and the light emitting layer,
An electron injection layer may be provided between the cathode and the light emitting layer, or an adhesive layer may be provided between the cathode and the light emitting layer or between the electron injection layer and the light emitting layer. The light emitting layer is usually formed of one or more kinds of organic light emitting materials, but may be formed of a mixture of an organic light emitting material and a hole transporting material and / or an electron injecting material.

【0004】また、有機EL素子を構成する1対の電極
(陽極および陰極)のうち、光取出し面側に位置する電
極は、光の取出し効率を向上させるため、また、面発光
素子としての構成上、透明ないし半透明の薄膜からな
る。一方、光取出し面とは反対の側に位置する電極(以
下、対向電極という)は、特定の金属薄膜(金属、合
金、混合金属等の薄膜)からなる。
Of the pair of electrodes (anode and cathode) forming the organic EL element, the electrode located on the light extraction surface side improves the light extraction efficiency and is also configured as a surface emitting element. Above, it consists of a transparent or translucent thin film. On the other hand, the electrode located on the side opposite to the light extraction surface (hereinafter referred to as the counter electrode) is made of a specific metal thin film (thin film of metal, alloy, mixed metal, etc.).

【0005】上記の構成を有する有機EL素子は電流駆
動型の発光素子であり、発光させるためには陽極と陰極
との間に高電流を流さなければならない。その結果、発
光時において素子が発熱し、素子の周囲に酸素や水分が
あった場合にはこれらの酸素や水分による素子構成材料
の酸化が促進されて素子が劣化する。酸化や水による素
子の劣化の代表的なものはダークスポットの発生および
その成長である。ダークスポットとは発光欠陥点のこと
である。そして、有機EL素子の駆動に伴って当該素子
の構成材料の酸化が進むと、既存のダークスポットの成
長が起こり、ついには発光面全体にダークスポットが拡
がる。
The organic EL element having the above structure is a current-driven type light emitting element, and a high current must be passed between the anode and the cathode in order to emit light. As a result, the element generates heat during light emission, and when oxygen or moisture is present around the element, oxidation of the element constituent material due to the oxygen or moisture is promoted to deteriorate the element. The typical deterioration of the device due to oxidation and water is the generation and growth of dark spots. The dark spot is a light emission defect point. Then, as the constituent material of the organic EL element is oxidized as the organic EL element is driven, the existing dark spots grow, and finally the dark spots spread over the entire light emitting surface.

【0006】上記の劣化を抑えるため、従来より種々の
方法が提案されている。例えば特開平5−41281号
公報には、劣化原因の一つである水分を取り除く方法と
して、液状フッ素化炭素に合成ゼオライト等の脱水剤を
含有させてなる不活性液状化合物中に有機EL素子を保
持する方法が開示されている。また、特開平5−114
486号公報には、陽極と陰極の少なくとも一方の上に
フルオロカーボン油を封入した放熱層を設け、素子駆動
の際に発生する熱を前記の放熱層より放熱することで素
子の発光寿命を長くする方法が開示されている。
In order to suppress the above deterioration, various methods have been conventionally proposed. For example, JP-A-5-41281 discloses a method of removing water, which is one of the causes of deterioration, by forming an organic EL device in an inert liquid compound prepared by adding a dehydrating agent such as synthetic zeolite to liquid fluorinated carbon. A method of retaining is disclosed. In addition, JP-A-5-114
In Japanese Patent Publication No. 486, a heat dissipation layer in which fluorocarbon oil is sealed is provided on at least one of an anode and a cathode, and the heat generated when the device is driven is dissipated from the heat dissipation layer to prolong the light emission life of the device. A method is disclosed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述し
た従来の方法よっても、ダークスポットの生成や成長を
十分に抑えることは困難であった。その理由は次のよう
に推察される。すなわち、そもそも脱水剤は水の捕獲、
放出を常に行いながら平衡状態を保っているので、液状
フッ素化炭素に脱水剤を含有させたとしても水分を十分
に除去することはできない。また、ダークスポットの生
成や成長の原因は水のみでなく、液状フッ素化炭素中に
溶存している酸素の方がむしろ大きく影響していること
を本願発明者らは見いだした。液状フッ素化炭素は非常
に良く気体を溶解し、例えばパーフルオロアミン(住友
スリーエム社製のフロリナートFC−70(商品名))
は100ml中に最大22mlもの空気を溶解する(溶
存酸素濃度63ppm)。
However, even with the above-mentioned conventional method, it is difficult to sufficiently suppress the generation and growth of dark spots. The reason is guessed as follows. That is, the dehydrating agent captures water in the first place,
Since the equilibrium state is maintained while constantly releasing the water, even if the dehydrating agent is contained in the liquid fluorinated carbon, the water cannot be sufficiently removed. The inventors of the present application have found that not only water but also oxygen dissolved in liquid fluorinated carbon has a greater influence on the cause of dark spot formation and growth. Liquid fluorinated carbon dissolves gas very well, for example perfluoroamine (Sumitomo 3M Fluorinert FC-70 (trade name))
Dissolves up to 22 ml of air in 100 ml (dissolved oxygen concentration 63 ppm).

【0008】本発明の目的は、有機EL素子におけるダ
ークスポットの成長を強く抑制することができる有機E
L素子の封止方法およびダークスポットの成長が起こり
にくい有機EL素子を提供することにある。
An object of the present invention is to provide an organic EL device capable of strongly suppressing the growth of dark spots in an organic EL device.
An object of the present invention is to provide a method for sealing an L element and an organic EL element in which growth of dark spots is unlikely to occur.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成する本
発明の有機EL素子の封止方法は、陽極と陰極とが少な
くとも発光層を介して積層されてる有機EL素子の外周
に、溶存酸素濃度が1ppm以下の不活性液体層を設け
ることを特徴とするものである。
[Means for Solving the Problems] A method for sealing an organic EL device of the present invention which achieves the above-mentioned object is to provide dissolved oxygen in the outer periphery of an organic EL device in which an anode and a cathode are laminated at least with a light emitting layer interposed therebetween. It is characterized in that an inert liquid layer having a concentration of 1 ppm or less is provided.

【0010】また、上記の目的を達成する本発明の有機
EL素子は、上述した本発明の方法により封止されてい
ることを特徴とするものである。
The organic EL device of the present invention which achieves the above object is characterized by being sealed by the above-mentioned method of the present invention.

【0011】以下、本発明を詳細に説明する。まず、本
発明の有機EL素子の封止方法について説明すると、こ
の方法では上述のように有機EL素子の外周に溶存酸素
濃度が1ppm以下の不活性液体層を設ける。ここで、
前記の不活性液体の溶存酸素濃度を1ppm以下に限定
する理由は、溶存酸素濃度が1ppmを超える不活性液
体を用いたのではダークスポットの成長を強く抑制する
ことが困難であるからである。溶存酸素濃度は低ければ
低いほど好ましいが、実用上は0.01〜1ppmの範
囲内が好ましく、特に0.1ppm以下が好ましい。
The present invention will be described in detail below. First, the method for sealing an organic EL element of the present invention will be described. In this method, an inert liquid layer having a dissolved oxygen concentration of 1 ppm or less is provided on the outer periphery of the organic EL element as described above. here,
The reason for limiting the dissolved oxygen concentration of the inert liquid to 1 ppm or less is that it is difficult to strongly suppress the growth of dark spots when an inert liquid having a dissolved oxygen concentration of more than 1 ppm is used. The lower the dissolved oxygen concentration is, the more preferable it is, but in practical use, it is preferably in the range of 0.01 to 1 ppm, and particularly preferably 0.1 ppm or less.

【0012】また、本発明の方法で言う不活性液体と
は、化学的、物理的に安定な液体のことであり、例えば
他物質と接触しても化学反応や溶解を起こさない等の安
定性を持つ液体を意味する。このような不活性液体の具
体例としてはパーフルオロアルカン,パーフルオロアミ
ン,パーフルオロポリエーテル等の液状フッ素化炭素等
が挙げられる。液状フッ素化炭素は、(1)電気絶縁性
に優れている(例えば後掲の表1に示すデムナムS−2
0の絶縁破壊電圧は試料厚が2.5mmの場合72kV
である)、(2)水にも油にも溶解しない性質があるこ
とから有機EL素子を構成している層を溶解することが
実質的にない、(3)金属やガラス表面に対する濡れ性
が低いため、有機EL素子が基板上に設けられている場
合でも基板面とその直上の電極(有機EL素子を構成し
ているもの)との隙間に入り込んで電極の剥離を起こす
ことが実質的にない、等の利点を有していることから、
特に好適な不活性液体である。
The inert liquid referred to in the method of the present invention is a chemically and physically stable liquid, for example, a stability such that it does not cause a chemical reaction or dissolution even when it comes into contact with other substances. Means a liquid with. Specific examples of such an inert liquid include liquid fluorinated carbon such as perfluoroalkane, perfluoroamine, and perfluoropolyether. Liquid fluorinated carbon is (1) excellent in electrical insulation (for example, Demnum S-2 shown in Table 1 below).
Dielectric breakdown voltage of 0 is 72 kV when the sample thickness is 2.5 mm
(2) It has a property of being insoluble in neither water nor oil, so that it does not substantially dissolve the layer constituting the organic EL element, and (3) has a wettability with respect to a metal or glass surface. Since it is low, even if the organic EL element is provided on the substrate, it is possible that the electrode may be peeled by entering the gap between the surface of the substrate and the electrode (which constitutes the organic EL element) immediately thereabove. Since it has advantages such as not
It is a particularly suitable inert liquid.

【0013】上述した不活性液体は市販されているが、
本発明の方法で使用する不活性液体の溶存酸素濃度は前
述のように1ppm以下に限定され、市販品の溶存酸素
濃度は1ppmより遥かに高いので、そのままでは本発
明の方法に使用することができない。そこで、常温真空
脱気法、凍結真空脱気法、不活性ガス置換法等の方法に
より溶存酸素濃度を1ppm以下に減じてから本発明の
方法に供する。どのような方法によって溶存酸素濃度を
減じるかは、使用する不活性液体の種類に応じて適宜選
択される。
Although the above-mentioned inert liquid is commercially available,
Since the dissolved oxygen concentration of the inert liquid used in the method of the present invention is limited to 1 ppm or less as described above, and the dissolved oxygen concentration of the commercial product is much higher than 1 ppm, it can be used as it is in the method of the present invention. Can not. Therefore, the dissolved oxygen concentration is reduced to 1 ppm or less by a method such as a room temperature vacuum degassing method, a freeze vacuum degassing method, an inert gas replacement method, etc., before the method of the present invention is applied. The method of reducing the dissolved oxygen concentration is appropriately selected according to the type of the inert liquid used.

【0014】例えば、パーフルオロアルカンやパーフル
オロアミンでは25℃における蒸気圧が10-2Torrを超
えるものが多いが、25℃における蒸気圧が10-2Torr
を超えるものについて常温真空脱気を行おうとしてもそ
の蒸気圧以下にまで真空度を上げることができず、ま
た、常温下でその蒸発が容易に進行することから、常温
真空脱気法により溶存酸素濃度を減じることは極めて困
難である。したがって、25℃における蒸気圧が10-2
Torrを超えるものについては凍結真空脱気法や不活性ガ
ス置換法により溶存酸素濃度を減じることが好ましい。
For example, many perfluoroalkanes and perfluoroamines have a vapor pressure at 25 ° C. of more than 10 -2 Torr, but the vapor pressure at 25 ° C. is 10 -2 Torr.
Even if vacuum deaeration at room temperature is attempted, the degree of vacuum cannot be raised to below its vapor pressure, and since evaporation easily proceeds at room temperature, it will be dissolved by the room temperature vacuum deaeration method. Reducing the oxygen concentration is extremely difficult. Therefore, the vapor pressure at 25 ° C is 10 -2.
For those exceeding Torr, it is preferable to reduce the dissolved oxygen concentration by a freeze vacuum degassing method or an inert gas replacement method.

【0015】凍結真空脱気法により溶存酸素濃度を減じ
る場合には、例えば、液体窒素等を用いて脱気対象物
(溶存酸素濃度を減じようとする不活性液体)を凍結さ
せる工程と、凍結状態にある脱気対象物を10-2Torr以
下で真空引きする工程と、凍結状態にある脱気対象物を
融解させる工程とからなる一連の操作を、脱気対象物中
の溶存酸素濃度が1ppm以下になるまで所望回数行
う。脱気対象物が住友スリーエム社製のフロリナートF
C−72,フロリナートFC−84,フロリナートFC
−77,フロリナートFC−75(いずれも商品名であ
り、これらは全てパーフルオロアルカンの1種である)
や同社のフロリナートFC−40,フロリナートFC−
43,フロリナートFC−70(いずれも商品名であ
り、これらは全てパーフルオロアミンの1種である)で
ある場合には、上記の操作を概ね5回以上繰り返すこと
により目的物が得られる。また、不活性ガス置換法によ
り溶存酸素濃度を減じる場合には、例えば、脱気対象物
50ccに対して0.1〜1リットル/分の不活性ガス
(アルゴンガス、窒素ガス、ヘリウムガス、ネオンガス
等)を供給して、脱気対象物中の溶存酸素濃度が1pp
m以下になるまで概ね4〜8時間バブリングすることに
より目的物を得ることができる。これら2つの方法の中
では、比較的短時間の操作で溶存酸素濃度を減じること
ができるという点から、凍結真空脱気法が好ましい。
When the dissolved oxygen concentration is reduced by the freezing vacuum degassing method, for example, a step of freezing the object to be degassed (an inert liquid whose dissolved oxygen concentration is to be reduced) using liquid nitrogen or the like, and freezing The dissolved oxygen concentration in the degassed object is changed by performing a series of operations including a step of vacuuming the degassed object in the state of 10 −2 Torr or less and a step of melting the degassed object in the frozen state. Perform the desired number of times until it becomes 1 ppm or less. The deaeration target is Fluorinert F manufactured by Sumitomo 3M.
C-72, Fluorinert FC-84, Fluorinert FC
-77, Fluorinert FC-75 (All are trade names, all of which are one type of perfluoroalkane)
And the company's Fluorinert FC-40, Fluorinert FC-
In the case of 43 and Fluorinert FC-70 (all of which are trade names and all are one kind of perfluoroamine), the target product can be obtained by repeating the above-mentioned operation approximately 5 times or more. When the dissolved oxygen concentration is reduced by the inert gas replacement method, for example, 0.1 to 1 liter / min of an inert gas (argon gas, nitrogen gas, helium gas, neon gas with respect to the degassing target 50 cc) is used. Etc., and the dissolved oxygen concentration in the degassing target is 1 pp
The target product can be obtained by bubbling for about 4 to 8 hours until it becomes m or less. Among these two methods, the freeze vacuum degassing method is preferable because the dissolved oxygen concentration can be reduced by a relatively short time operation.

【0016】一方、パーフルオロポリエーテルでは25
℃における蒸気圧が10-2Torr以下のものが多く、25
℃における蒸気圧が10-2Torr以下のものについては常
温下での蒸気圧が低いことと常温下での蒸発量が少ない
こととから、真空凍結脱気法や不活性ガス置換法以外に
常温真空脱気法によっても溶存酸素濃度を減じることが
できる。
On the other hand, with perfluoropolyether, 25
The vapor pressure at ℃ is often less than 10 -2 Torr.
For vapor pressures below 10 -2 Torr at ℃, the vapor pressure at room temperature is low and the amount of evaporation at room temperature is small. The dissolved oxygen concentration can also be reduced by the vacuum degassing method.

【0017】25℃における蒸気圧が10-2Torr以下で
ある不活性液体の溶存酸素濃度を常温真空脱気法により
減じる場合には、例えば、160℃以下に保持した脱気
対象物を当該脱気対象物中の溶存酸素濃度が1ppm以
下になるまで10-2Torr以下で真空引きする。脱気対象
物の動粘度が脱気操作時に65cSt以下であれば比較
的容易に溶存酸素を脱気することができる。脱気操作時
の脱気対象物の動粘度が高いと、酸素や水分が分子間に
強固にかみ込んでいるために十分な脱気が困難になるの
で、加熱する等して脱気対象物の動粘度を低下させるこ
とが好ましいが、この場合には脱気操作が煩雑になる。
また、脱気時には必要に応じて脱気対象物の撹拌および
/または脱気対象物中への沸石の投入を行ってもよい。
沸石を使用する場合、この沸石としては素焼き、ガラ
ス、ポリテトラフルオロカーボン(テフロン)等、多孔
質な材料からなるものを使用することが好ましい。常温
真空脱気法により目的物を得る場合、脱気対象物の動粘
度が脱気操作時に65cSt以下であれば、脱気操作に
要する時間は概ね0.1〜2時間である。
When the dissolved oxygen concentration of an inert liquid having a vapor pressure of 10 -2 Torr or less at 25 ° C is reduced by a vacuum degassing method at room temperature, for example, the degassing target kept at 160 ° C or less is degassed. Evacuation is performed at 10 -2 Torr or less until the dissolved oxygen concentration in the gas target becomes 1 ppm or less. If the kinematic viscosity of the degassed object is 65 cSt or less during the degassing operation, the dissolved oxygen can be degassed relatively easily. When the kinematic viscosity of the degassed object during the degassing operation is high, oxygen and water are firmly entrapped between the molecules, which makes it difficult to degas sufficiently. However, in this case, the degassing operation becomes complicated.
Further, during degassing, stirring of the degassed object and / or addition of zeolite to the degassed object may be carried out as necessary.
When using zeolite, it is preferable to use one made of a porous material such as unglazed glass, glass, and polytetrafluorocarbon (Teflon). When the target product is obtained by the room temperature vacuum degassing method, if the kinematic viscosity of the degassing target is 65 cSt or less during the degassing operation, the time required for the degassing operation is approximately 0.1 to 2 hours.

【0018】また、25℃における蒸気圧が10-2Torr
以下である不活性液体中の溶存酸素濃度を凍結真空脱気
法や不活性ガス置換法により減じる場合には、25℃に
おける蒸気圧が10-2Torrを超えるものに対する操作と
同様の操作を行う。25℃における蒸気圧が10-2Torr
以下である不活性液体につては、上述した3つの方法の
中でも短時間の操作で溶存酸素濃度を減じることがで
き、かつ脱気操作が簡単であるという点から、常温真空
脱気法により溶存酸素濃度を減じることが好ましい。
The vapor pressure at 25 ° C. is 10 -2 Torr.
When reducing the dissolved oxygen concentration in the following inert liquid by the freeze vacuum degassing method or the inert gas replacement method, the same operation as the operation for the one whose vapor pressure at 25 ° C exceeds 10 -2 Torr is performed. . Vapor pressure at 25 ℃ is 10 -2 Torr
Regarding the following inert liquids, the dissolved oxygen concentration can be reduced by the room temperature vacuum degassing method because the dissolved oxygen concentration can be reduced by a short-time operation among the above three methods and the degassing operation is simple. It is preferable to reduce the oxygen concentration.

【0019】常温真空脱気法により溶存酸素濃度が1p
pm以下のものが容易に得られる不活性液体の具体例と
しては、表1に示す各種パーフルオロポリエーテルが挙
げられる。
The dissolved oxygen concentration is 1 p by the vacuum degassing method at room temperature.
Specific examples of the inert liquid that can easily obtain pm or less include various perfluoropolyethers shown in Table 1.

【表1】 [Table 1]

【0020】なお、上記の表1中のデムナムS−20は
平均分子量が2700であり、絶縁破壊電圧は2.5m
m厚の試料で72kV、体積固有抵抗は約20℃下で1
13Ωcmである。そして、その構造式は下式(1)で
表される。
The demnum S-20 in Table 1 above has an average molecular weight of 2700 and a dielectric breakdown voltage of 2.5 m.
72kV for m-thick sample, volume resistivity is about 20 ℃ under 1
It is 0 13 Ωcm. The structural formula thereof is expressed by the following formula (1).

【化1】 Embedded image

【0021】また、表1中のフォンブリンZ03の構造
式は下式(2)で表される。
The structural formula of Fomblin Z03 in Table 1 is represented by the following formula (2).

【化2】 Embedded image

【0022】そして、表1中のガルデンH250の構造
式は下式(3)で表される。
The structural formula of Galden H250 in Table 1 is represented by the following formula (3).

【化3】 [Chemical 3]

【0023】本発明の方法では、溶存酸素濃度が1pp
m以下である上述の不活性液体の層を有機EL素子の外
周に設けるわけであるが、前記の不活性液体は溶存酸素
濃度を1ppm以下にしたものであるとともに、水分量
を10ppm以下にしたものであることが特に好まし
い。不活性液体中の溶存酸素濃度を常温真空脱気法によ
り1ppm以下にする場合には、この方法により溶存酸
素濃度を1ppm以下にすると同時に、または脱気操作
を更に数回繰り返すことにより、溶存酸素濃度が1pp
m以下であるとともに水分量が10ppm以下である不
活性液体を得ることができる。また、不活性液体中の溶
存酸素濃度を不活性ガス置換法により1ppm以下にす
る場合には、この方法により溶存酸素濃度を1ppm以
下にすると同時に、またはバブリング時間を若干長めに
すことにより、溶存酸素濃度1ppm以下、水分量10
ppm以下の目的物が得られる。そして、不活性液体中
の溶存酸素濃度を凍結真空脱気法により1ppm以下に
する場合には、この方法により溶存酸素濃度を1ppm
以下にする前、または1ppm以下にした後に、不活性
液体を真空中で蒸留して初留、本留、後留に分け、初留
と後留を除くことにより、溶存酸素濃度1ppm以下、
水分量10ppm以下の目的物が得られる。溶存酸素濃
度が1ppm以下であるとともに水分量が10ppm以
下である不活性液体を用いることにより、ダークスポッ
トの成長を更に強く抑制することが可能になる。
In the method of the present invention, the dissolved oxygen concentration is 1 pp.
A layer of the above-mentioned inert liquid of m or less is provided on the outer periphery of the organic EL element. The inert liquid has a dissolved oxygen concentration of 1 ppm or less and a water content of 10 ppm or less. It is particularly preferable that it is one. When the dissolved oxygen concentration in the inert liquid is reduced to 1 ppm or less by the room temperature vacuum degassing method, the dissolved oxygen concentration is reduced to 1 ppm or less by this method, or the degassing operation is repeated several times to dissolve the dissolved oxygen. Concentration is 1pp
An inert liquid having a water content of m or less and a water content of 10 ppm or less can be obtained. When the dissolved oxygen concentration in the inert liquid is reduced to 1 ppm or less by the inert gas substitution method, the dissolved oxygen concentration is reduced to 1 ppm or less by this method, or the bubbling time is set to be slightly longer. Oxygen concentration 1ppm or less, water content 10
The target product of ppm or less can be obtained. When the dissolved oxygen concentration in the inert liquid is set to 1 ppm or less by the freeze vacuum degassing method, the dissolved oxygen concentration is 1 ppm by this method.
Before or below 1 ppm or less, the inert liquid is distilled in vacuum to be divided into initial distillation, main distillation and post-distillation. By removing the initial distillation and post-distillation, the dissolved oxygen concentration is 1 ppm or less,
The target product having a water content of 10 ppm or less is obtained. The use of an inert liquid having a dissolved oxygen concentration of 1 ppm or less and a water content of 10 ppm or less makes it possible to further strongly suppress the growth of dark spots.

【0024】上述した不活性液体の層を有機EL素子の
外周に設けるにあたっては、容器に充填された不活性液
体中に有機EL素子全体を浸漬することにより前記の有
機EL素子の外周に不活性液体層を設けてもよいが、有
機EL素子が基板上に形成されている場合には次のよう
にして不活性液体層を設けることがより好ましい。すな
わち、基板上に形成されている有機EL素子の外側に、
当該有機EL素子との間に空隙を形成しつつ前記の基板
と共同して有機EL素子を覆うハウジング材を設け、前
記の基板と前記のハウジング材とによって形成された空
間内に不活性液体を充填することにより不活性液体層を
形成することが好ましい。不活性液体の充填は、ハウジ
ング材または基板に予め設けられている注入口から前記
の空間内に不活性液体を注入することで行われ、前記の
注入口は不活性液体の注入後に封止される。
When the above-mentioned layer of the inert liquid is provided on the outer periphery of the organic EL element, the entire organic EL element is immersed in the inert liquid filled in the container so that the outer periphery of the organic EL element is inactive. A liquid layer may be provided, but when the organic EL element is formed on the substrate, it is more preferable to provide the inert liquid layer as follows. That is, on the outside of the organic EL element formed on the substrate,
A housing material is provided in cooperation with the substrate to cover the organic EL element while forming a gap between the organic EL element and the organic EL element, and an inert liquid is introduced into the space formed by the substrate and the housing material. It is preferable to form an inert liquid layer by filling. The filling of the inert liquid is performed by injecting the inert liquid into the space through an injection port provided in the housing material or the substrate in advance, and the injection port is sealed after the injection of the inert liquid. It

【0025】この場合、前記のハウジング材は封止しよ
うとする有機EL素子の外寸よりも内寸が大きい凹部を
有するキャップ状物、板状物(例えば座ぐり基板)、シ
ート状物あるいはフィルム状物であり、このハウジング
材は前記の基板と共同して実質的な密閉空間を形成する
ようにして基板上に固着される。このとき、封止対象の
有機EL素子は前記の凹部内に収納された状態となる。
基板上に複数個の有機EL素子が形成されている場合、
前記のハウジング材は有機EL素子毎に設けてもよい
し、全ての有機EL素子に共通するものを1枚のみ設け
てもよいし、全ての有機EL素子のうちの複数個に共通
するものを複数枚設けてもよい。同様に、ハウジング材
に形成される前記の凹部は、個々の有機EL素子に対応
したものであってもよいし、全ての有機EL素子を収納
し得る大きさのものであってもよいし、全ての有機EL
素子のうちの複数個を収納し得る大きさのものであって
もよい。
In this case, the above-mentioned housing material is a cap-shaped material, a plate-shaped material (for example, a counterbore substrate), a sheet-shaped material or a film having a recess whose inner dimension is larger than the outer dimension of the organic EL element to be sealed. The housing material is fixed on the substrate so as to form a substantially closed space together with the substrate. At this time, the organic EL element to be sealed is in a state of being housed in the recess.
When a plurality of organic EL elements are formed on the substrate,
The above-mentioned housing material may be provided for each organic EL element, only one common to all organic EL elements may be provided, or one common to a plurality of all organic EL elements. Multiple sheets may be provided. Similarly, the recess formed in the housing material may correspond to each organic EL element, or may have a size capable of accommodating all the organic EL elements, All organic EL
It may be of a size capable of accommodating a plurality of elements.

【0026】基板上へのハウジング材の固着は、エポキ
シ樹脂系接着剤やアクリレート樹脂系接着剤等、種々の
接着剤を用いて行うことができる。中でも水や酸素を透
過しにくいものが好ましく、その具体例としてはアラル
ダイトAR−R30(チバガイギー社製のエポキシ樹脂
系接着剤の商品名)が挙げられる。また、熱硬化性樹脂
や光硬化性樹脂等、種々の樹脂を上記の接着剤の代わり
に用いることもできる。
The housing material can be fixed to the substrate by using various adhesives such as an epoxy resin adhesive and an acrylate resin adhesive. Of these, those that are less likely to permeate water and oxygen are preferable, and specific examples thereof include Araldite AR-R30 (trade name of epoxy resin adhesive manufactured by Ciba Geigy). In addition, various resins such as thermosetting resins and photocurable resins may be used instead of the above adhesive.

【0027】ハウジング材の材質はガラス、ポリマー等
の電気絶縁性物質であることが好ましく、その具体例と
してはソーダ石灰ガラス、硼硅酸塩ガラス、硅酸塩ガラ
ス、シリカガラス、無蛍光ガラス、石英、アクリル系樹
脂、スチレン系樹脂、ポリカーボネート系樹脂、エポキ
シ系樹脂、ポリエチレン、ポリエステル、シリコーン系
樹脂等が挙げられる。また、封止対象の有機EL素子が
絶縁被覆された電極線を電極取出しに使用したものであ
る場合や、基板上へのハウジング材の固着を電気絶縁性
の接着剤あるいは電気絶縁性の樹脂により行った場合に
は、ハウジング材としてステンレス鋼やアルミニウム合
金等の導電性金属からなるものを用いてもよい。
The material of the housing material is preferably an electrically insulating substance such as glass or polymer, and specific examples thereof include soda-lime glass, borosilicate glass, silicate glass, silica glass, non-fluorescent glass, Examples thereof include quartz, acrylic resin, styrene resin, polycarbonate resin, epoxy resin, polyethylene, polyester, and silicone resin. In addition, when the organic EL element to be sealed is one in which an insulating coated electrode wire is used for electrode extraction, or when the housing material is fixed on the substrate by an electrically insulating adhesive or an electrically insulating resin. If done, the housing material may be made of a conductive metal such as stainless steel or aluminum alloy.

【0028】有機EL素子が設けられている前記の基板
と前記のハウジング材とによって形成された空間内に不
活性液体を充填することにより不活性液体層を形成する
場合、前記の空間内への不活性液体の注入は大気中で行
ってもよいが、注入操作時に不活性液体中に酸素や水分
が溶解するのを防止するうえからは、窒素ガス雰囲気、
アルゴンガス雰囲気等の不活性ガス雰囲気中で行うほう
がより好ましい。また、いわゆる真空注入法により行っ
てもよい。
When an inert liquid layer is formed by filling an inert liquid in the space formed by the substrate on which the organic EL element is provided and the housing material, the space inside the space is formed. The inert liquid may be injected in the atmosphere, but in order to prevent oxygen and water from dissolving in the inert liquid during the injection operation, a nitrogen gas atmosphere,
It is more preferable to carry out in an inert gas atmosphere such as an argon gas atmosphere. Alternatively, a so-called vacuum injection method may be used.

【0029】ここで、前記の真空注入法とは、注入しよ
うとする液(以下、注入液という)が注入されるべき空
間内を脱気した状態に保ち、この状態下で当該空間内に
注入液を注入する方法、または注入液が注入されるべき
空間内を脱気し、当該空間内の圧力と注入液の供給源を
取り巻く雰囲気の圧力との差(前者の方が低い)を利用
して前記の空間内に注入液を注入する方法を意味する。
具体例としては下記(i)〜(iii) の方法が挙げられ
る。
Here, the above-mentioned vacuum injection method means that the space to be injected with the liquid to be injected (hereinafter referred to as the injection liquid) is kept degassed, and the liquid is injected into the space under this condition. The method of injecting the liquid or degassing the space where the liquid should be injected, and using the difference between the pressure in the space and the pressure of the atmosphere surrounding the supply source of the liquid (the former is lower) Means a method of injecting an injection liquid into the space.
Specific examples include the following methods (i) to (iii).

【0030】(i)注入しようとする液が入った槽中に
対象物(注入液が注入されべきる空間を有しているもの
全体)を浸漬し、この状態下で加温および減圧を行って
前記の空間内の脱気を行うと共に注入液の注入を行う
(特公昭57−47559号公報第6欄第13〜18行
参照)。
(I) An object (the whole thing having a space into which the injection liquid should be injected) is immersed in a tank containing the liquid to be injected, and heating and depressurization are performed under this state. The space is deaerated and the injection liquid is injected (see JP-B-57-47559, column 6, lines 13-18).

【0031】(ii)注入液が入った容器(注入液の供給
源)と対象物(注入液が注入されべきる空間を有してい
るもの全体)とを真空槽内に入れ、この真空槽内を減圧
した後に前記の空間と注入液の供給源との間に管等を用
いて流路を形成し、この後に系全体を大気中にさらすこ
とにより大気圧を利用して対象物中に注入液を注入する
(特公昭57−47559号公報第7欄第15〜26行
参照)。
(Ii) A container containing the injection liquid (supply source of the injection liquid) and an object (whole space having a space into which the injection liquid should be injected) are placed in a vacuum tank, and this vacuum tank After decompressing the inside, form a flow path using a pipe etc. between the above space and the supply source of the injecting liquid, and then exposing the entire system to the atmosphere to utilize the atmospheric pressure to the target object. The injection liquid is injected (see JP-B-57-47559, column 7, lines 15 to 26).

【0032】(iii) まず、無蓋の容器の中に対象物(注
入液が注入されべきる空間を有しているもの全体)を入
れ、これを真空容器内に置いて当該真空容器内を減圧す
る。このとき、前記の対象物は注入液用の注入口が前記
の容器の底に近い所に位置するように入れられる。次い
で、前記の真空容器の外部から前記の容器内に注入液を
導入し、前記の注入口が十分に浸かるまで当該容器内に
注入液を注ぐ。この後、真空容器内に乾燥ガスを導入し
て当該真空容器内の圧力を大気圧に戻し、前記の容器に
入っている注入液を取り巻く雰囲気の圧力(=大気圧)
と注入液が注入されべきる空間内の圧力との差を利用し
て前記の空間内に注入液を注入する(特開昭64−57
590号公報第2頁左下欄第4行〜第3頁左上欄第9行
参照)。
(Iii) First, put an object (entire thing having a space into which the injection liquid should be injected) in an open container, place it in a vacuum container, and depressurize the inside of the vacuum container. To do. At this time, the object is put in such a manner that the injection port for the injection liquid is located near the bottom of the container. Then, the injection liquid is introduced into the container from the outside of the vacuum container, and the injection liquid is poured into the container until the injection port is sufficiently immersed. Then, a dry gas is introduced into the vacuum container to return the pressure in the vacuum container to atmospheric pressure, and the pressure of the atmosphere surrounding the injectate contained in the container (= atmospheric pressure).
And the pressure in the space where the injection liquid should be injected are used to inject the injection liquid into the space (JP-A-64-57).
No. 590, page 2, lower left column, line 4 to page 3, upper left column, line 9).

【0033】なお、不活性液体の注入に際しては、注入
方法の種類を問わず、当該不活性液体を加熱してその流
動性を高めてもよい。また、不活性液体の注入後に行わ
れる注入口の封止についても、大気中で行うよりは窒素
ガス雰囲気、アルゴンガス雰囲気等の不活性ガス雰囲気
中で行うほうがより好ましい。注入口の封止は、ハウジ
ング材を基板に固着させる際に使用するものとして例示
した前記の接着剤あるいは前記の樹脂により注入口を塞
ぐことにより行うことができる。
At the time of injecting the inert liquid, the fluidity may be increased by heating the inert liquid regardless of the injection method. In addition, the sealing of the injection port performed after injecting the inert liquid is more preferably performed in an inert gas atmosphere such as a nitrogen gas atmosphere or an argon gas atmosphere than in the air. The injection port can be sealed by closing the injection port with the above-mentioned adhesive agent or the above-exemplified resin used for fixing the housing material to the substrate.

【0034】上述のようにして有機EL素子の外周に溶
存酸素濃度が1ppm以下の不活性液体層を設けること
により、目的とする本発明の封止を行うことができる。
また同時に、目的とする本発明の有機EL素子を得るこ
とができる。本発明の方法で封止の対象となる有機EL
素子の素子構成は特に限定されるものではなく、種々の
素子構成の有機EL素子を対象とすることができる。し
たがって、本発明の有機EL素子の素子構成も種々の構
成をとる。
By providing the inert liquid layer having a dissolved oxygen concentration of 1 ppm or less on the outer periphery of the organic EL element as described above, the intended sealing of the present invention can be performed.
At the same time, the target organic EL device of the present invention can be obtained. Organic EL to be sealed by the method of the present invention
The element configuration of the element is not particularly limited, and it is possible to target organic EL elements having various element configurations. Therefore, the device configuration of the organic EL device of the present invention also takes various configurations.

【0035】有機EL素子の素子構成の具体例として
は、(1)陰極/発光層/正孔輸送層/陽極、(2)陰
極/電子注入層/発光層/正孔輸送層/陽極、(3)陰
極/接着層/発光層/正孔輸送層/陽極、(4)陰極/
発光層/陽極、等が挙げられる。ここで、前記の発光層
は、通常、1種または複数種の有機発光材料により形成
されるが、有機発光材料と正孔輸送材料および/または
電子注入材料との混合物により形成される場合もある。
また、陰極と発光層の間または電子注入層と発光層との
間に接着層を設ける場合もある。さらに、上述した層構
成の素子の外周に当該素子を覆うようにして素子への水
分の侵入を防止するための樹脂製保護層が設けられる場
合もある。
Specific examples of the device constitution of the organic EL device include (1) cathode / light emitting layer / hole transport layer / anode, (2) cathode / electron injection layer / light emitting layer / hole transport layer / anode, ( 3) cathode / adhesive layer / light emitting layer / hole transport layer / anode, (4) cathode /
Examples include a light emitting layer / anode. Here, the light emitting layer is usually formed of one or more kinds of organic light emitting materials, but may be formed of a mixture of an organic light emitting material and a hole transporting material and / or an electron injecting material. .
An adhesive layer may be provided between the cathode and the light emitting layer or between the electron injection layer and the light emitting layer. Further, a resin protective layer may be provided on the outer periphery of the element having the above-described layer structure so as to cover the element and prevent moisture from entering the element.

【0036】これらの有機EL素子は、通常、陽極およ
び陰極を含めた各層を基板上に順次積層することで形成
されるが、基板を使用しない場合もある。基板上に形成
された有機EL素子では、基板側を光の取り出し面(発
光面)とする場合には、基板の直上に陽極がくるように
して各層が順次積層される。この場合の基板は少なくと
も有機EL素子からの発光(EL光)に対して高い透過
性を与える物質からなり、具体的には透明ガラス、透明
プラスチック、石英等からなる板状物やシート状物、あ
るいはフィルム状物が利用される。基板側を光の取り出
し面(発光面)としない場合には、有機EL素子からの
発光の透過性を考慮する必要はない。
These organic EL elements are usually formed by sequentially laminating each layer including an anode and a cathode on a substrate, but there are cases where the substrate is not used. In the organic EL element formed on the substrate, when the substrate side is the light extraction surface (light emitting surface), the respective layers are sequentially laminated so that the anode is directly above the substrate. In this case, the substrate is made of at least a substance that gives high transparency to light emitted from an organic EL element (EL light), and specifically, a plate-like or sheet-like object made of transparent glass, transparent plastic, quartz, or the like, Alternatively, a film-like material is used. When the substrate side is not used as the light extraction surface (light emitting surface), it is not necessary to consider the transmittance of light emitted from the organic EL element.

【0037】陽極、陰極、発光層、正孔輸送層、電子注
入層、接着層、保護層の材料としては、それぞれ従来公
知の材料を用いることができる。例えば、陽極材料とし
ては仕事関数が大きい(4eV以上)金属、合金、電気
伝導性化合物、またはこれらの混合物が好ましく用いら
れる。具体例としてはAu等の金属や、CuI,IT
O,SnO2 ,ZnO等の誘電性透明材料等が挙げられ
る。特にITOが、生産性、制御性の点から好ましい。
As the materials for the anode, the cathode, the light emitting layer, the hole transport layer, the electron injection layer, the adhesive layer and the protective layer, conventionally known materials can be used. For example, as the anode material, a metal, an alloy, an electrically conductive compound, or a mixture thereof having a large work function (4 eV or more) is preferably used. Specific examples include metals such as Au, CuI, and IT.
Examples include dielectric transparent materials such as O, SnO 2 , and ZnO. In particular, ITO is preferable in terms of productivity and controllability.

【0038】また、陰極材料としては仕事関数の小さい
(4eV以下)金属、合金、電気伝導性化合物、または
これらの混合物等が好ましく用いられる。具体例として
はナトリウム、ナトリウム−カリウム合金、マグネシウ
ム、リチウム、マグネシウムと銀との合金または混合金
属、Al/AlO2 、インジウム、希土類金属等が挙げ
られる。陽極および陰極のいずれにおいても、そのシー
ト抵抗は数百Ω/□以下が好ましい。なお、陽極材料お
よび陰極材料を選択する際に基準とする仕事関数の大き
さは4eVに限定されるものではない。
Further, as the cathode material, a metal, an alloy, an electrically conductive compound, or a mixture thereof having a small work function (4 eV or less) is preferably used. Specific examples include sodium, sodium-potassium alloys, magnesium, lithium, alloys or mixed metals of magnesium and silver, Al / AlO 2 , indium, rare earth metals and the like. The sheet resistance of both the anode and the cathode is preferably several hundreds Ω / □ or less. Note that the size of the work function used as a reference when selecting the anode material and the cathode material is not limited to 4 eV.

【0039】発光層の材料(有機発光材料)の具体例と
しては、ベンゾチアゾール系、ベンゾイミダゾール系、
ベンゾオキサゾール系等の系の蛍光増白剤や、金属キレ
ート化オキシノイド化合物、スチリルベンゼン系化合
物、ジスチリルピラジン誘導体、芳香族ジメチリジン化
合物等が挙げられる。
Specific examples of the material of the light emitting layer (organic light emitting material) include benzothiazole type, benzimidazole type,
Examples include benzoxazole-based fluorescent whitening agents, metal chelated oxinoid compounds, styrylbenzene-based compounds, distyrylpyrazine derivatives, aromatic dimethylidene compounds, and the like.

【0040】正孔輸送層の材料(正孔輸送材料)の具体
例としては、トリアゾール誘導体、オキサジアゾール誘
導体、イミダゾール誘導体、ポリアリールアルカン誘導
体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレン
ジアミン誘導体、アリールアミン誘導体、アミノ置換カ
ルコン誘導体、オキサゾール誘導体、スチリルアントラ
セン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、
スチルベン誘導体、シラザン誘導体、ポリシラン系化合
物、アニリン系共重合体、チオフェンオリゴマー等の特
定の導電性高分子オリゴマー等が挙げられる。
Specific examples of the material of the hole transport layer (hole transport material) include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives. , Amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives,
Specific conductive polymer oligomers such as stilbene derivatives, silazane derivatives, polysilane compounds, aniline copolymers, thiophene oligomers, etc. may be mentioned.

【0041】電子注入層の材料(電子注入材料)の具体
例としては、ニトロ置換フルオレノン誘導体、アントラ
キノジメタン誘導体、ジフェニルキノン誘導体、チオピ
ランジオキシド誘導体、ナフタレンペリレン等の複素環
テトラカルボン酸無水物、カルボジイミド、フレオレニ
リデンメタン誘導体、アントラキノジメタン誘導体、ア
ントロン誘導体、オキサジアゾール誘導体、8−キノリ
ノール誘導体、その他特定の電子伝達性化合物等が挙げ
られる。
Specific examples of the material for the electron injection layer (electron injection material) include heterocyclic tetracarboxylic acid anhydrides such as nitro-substituted fluorenone derivatives, anthraquinodimethane derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, and naphthaleneperylene. Compounds, carbodiimides, fluorenylidene methane derivatives, anthraquinodimethane derivatives, anthrone derivatives, oxadiazole derivatives, 8-quinolinol derivatives, and other specific electron transfer compounds.

【0042】接着層の材料の具体例としては、8−キノ
リノールまたはその誘導体の金属錯体、例えばトリス
(8−キノリノール)アルミニウム、ビス(8−キノリ
ノール)マグネシウム、ビス(ベンゾ−8−キノリノー
ル)亜鉛、ビス(2−メチル−8−キノリラート)アル
ミニウムオキシド、トリス(8−キノリノール)インジ
ウム、トリス(5−メチル−8−キノリノール)アルミ
ニウム、8−キノリノールリチウム、トリス(5−クロ
ロ−8−キノリノール)ガリウム、ビス(5−クロロ−
8−キノリノール)カルシウム、トリス(5,7−ジク
ロル−8−キノリノール)アルミニウム、トリス(5,
7−ジブロモ−8−ヒドロキシキノリノール)アルミニ
ウム、ビス(8−キノリノール)ベリリウム、ビス(2
−メチル−8−キノリノール)ベリリウム、ビス(8−
キノリノール)亜鉛、ビス(2−メチル−8−キノリノ
ール)亜鉛、ビス(8−キノリノール)スズ、トリス
(7−プロピル−8−キノリノール)アルミニウム等が
挙げられる。
Specific examples of the material for the adhesive layer include metal complexes of 8-quinolinol or its derivatives such as tris (8-quinolinol) aluminum, bis (8-quinolinol) magnesium, bis (benzo-8-quinolinol) zinc, and the like. Bis (2-methyl-8-quinolinolate) aluminum oxide, tris (8-quinolinol) indium, tris (5-methyl-8-quinolinol) aluminum, 8-quinolinol lithium, tris (5-chloro-8-quinolinol) gallium, Bis (5-chloro-
8-quinolinol) calcium, tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,5
7-dibromo-8-hydroxyquinolinol) aluminum, bis (8-quinolinol) beryllium, bis (2
-Methyl-8-quinolinol) beryllium, bis (8-
Examples include quinolinol) zinc, bis (2-methyl-8-quinolinol) zinc, bis (8-quinolinol) tin, tris (7-propyl-8-quinolinol) aluminum, and the like.

【0043】そして、保護層の材料の具体例としては、
テトラフルオロエチレンと少なくとも1種のコモノマー
とを含むモノマー混合物を共重合させて得られる共重合
体、共重合主鎖に環状構造を有する含フッ素共重合体、
ポリエチレン、ポリプロピレン、ポリメチルメタクリレ
ート、ポリイミド、ポリユリア、ポリテトラフルオロエ
チレン、ポリクロロトリフルオロエチレン、ポリジクロ
ロジフルオロエチレン、クロロトリフルオロエチレンと
ジクロロジフルオロエチレンとの共重合体、吸水率1%
以上の吸水性物質および吸水率0.1%以下の防湿性物
質等が挙げられる。
Then, as a specific example of the material of the protective layer,
A copolymer obtained by copolymerizing a monomer mixture containing tetrafluoroethylene and at least one comonomer, a fluorine-containing copolymer having a cyclic structure in the copolymer main chain,
Polyethylene, polypropylene, polymethylmethacrylate, polyimide, polyurea, polytetrafluoroethylene, polychlorotrifluoroethylene, polydichlorodifluoroethylene, copolymer of chlorotrifluoroethylene and dichlorodifluoroethylene, water absorption 1%
The water-absorbing substance and the moisture-proof substance having a water absorption rate of 0.1% or less can be used.

【0044】また、封止対象の有機EL素子を構成する
各層(陽極および陰極を含む)の形成方法についても特
に限定されるものではない。陽極、陰極、発光層、正孔
輸送層、電子注入層、接着層の形成方法としては、例え
ば真空蒸着法、スピンコート法、キャスト法、スパッタ
リング法、LB法等を適用することができるが、発光層
についてはスパッタリング法以外の方法(真空蒸着法、
スピンコート法、キャスト法、LB法等)を適用するこ
とが好ましい。発光層は、特に分子堆積膜であることが
好ましい。ここで分子堆積膜とは、気相状態の材料化合
物から沈着され形成された薄膜や、溶液状態または液相
状態の材料化合物から固化され形成された膜のことであ
り、通常この分子堆積膜は、LB法により形成された薄
膜(分子累積膜)とは凝集構造、高次構造の相違や、そ
れに起因する機能的な相違により区分することができ
る。スピンコート法等により発光層を形成する場合に
は、樹脂等の結着剤と材料化合物とを溶剤に溶かすこと
により溶液を調製する。発光層の膜厚については特に制
限はなく、状況に応じて適宜選択することができるが、
通常5nm〜5μmの範囲内が好ましい。
The method for forming each layer (including the anode and the cathode) constituting the organic EL element to be sealed is not particularly limited. As a method for forming the anode, the cathode, the light emitting layer, the hole transport layer, the electron injection layer, and the adhesive layer, for example, a vacuum vapor deposition method, a spin coating method, a casting method, a sputtering method, an LB method or the like can be applied. For the light emitting layer, a method other than the sputtering method (vacuum vapor deposition method,
It is preferable to apply a spin coating method, a casting method, an LB method or the like). The light emitting layer is preferably a molecular deposition film. Here, the molecular deposition film is a thin film formed by depositing a material compound in a vapor phase state, or a film formed by solidifying a material compound in a solution state or a liquid phase state. , A thin film (molecular cumulative film) formed by the LB method can be classified according to a difference in agglomeration structure, a higher-order structure, or a functional difference due to the difference. When the light emitting layer is formed by spin coating or the like, a solution is prepared by dissolving a binder such as a resin and a material compound in a solvent. The thickness of the light emitting layer is not particularly limited and can be appropriately selected depending on the situation.
Usually, the range of 5 nm to 5 μm is preferable.

【0045】また、保護層については真空蒸着法、スピ
ンコート法、スパッタリング法、キャスト法、MBE
(分子線エピタキシ)法、クラスターイオンビーム法、
イオンプレーティング法、プラズマ重合法(高周波励起
イオンプレーティング法)、反応性スパッタリング法、
プラズマCVD法、レーザーCVD法、熱CVD法、ガ
スソースCVD法等を適用することができる。
For the protective layer, a vacuum deposition method, a spin coating method, a sputtering method, a casting method, MBE
(Molecular beam epitaxy) method, cluster ion beam method,
Ion plating method, plasma polymerization method (high frequency excitation ion plating method), reactive sputtering method,
A plasma CVD method, a laser CVD method, a thermal CVD method, a gas source CVD method, or the like can be applied.

【0046】各層の形成方法は、使用する材料に応じて
適宜変更可能である。有機EL素子を構成する各層の形
成にあたって真空蒸着法を用いれば、この真空蒸着法だ
けによって封止対象の有機EL素子を形成することがで
きるため、設備の簡略化や生産時間の短縮を図るうえで
有利である。
The method of forming each layer can be appropriately changed depending on the material used. If a vacuum vapor deposition method is used to form each layer constituting the organic EL element, the organic EL element to be sealed can be formed only by this vacuum vapor deposition method, and therefore, the facility can be simplified and the production time can be shortened. Is advantageous.

【0047】上述した封止対象の有機EL素子の外周に
前述した不活性液体層を設けることにより封止してなる
本発明の有機EL素子では、前記の不活性液体層の存在
によりダークスポットの発生やダークスポットの成長が
強く抑制されるので、素子寿命が長い。
In the organic EL element of the present invention which is sealed by providing the above-mentioned inert liquid layer on the outer periphery of the above-mentioned organic EL element to be sealed, the presence of the above-mentioned inert liquid layer causes dark spots to appear. Since the generation and the growth of dark spots are strongly suppressed, the device life is long.

【0048】[0048]

【実施例】以下、本発明の実施例を比較例と対比しなが
ら説明するが、各実施例および各比較例で封止の対象と
して用いた有機EL素子の製造方法を予め説明してお
く。封止対象の有機EL素子を作製するにあたっては、
まず、25mm×75mm×1.1mmのガラス基板上
に膜厚100nmのITO膜を蒸着法により成膜したも
のを透明支持基板として用意した。この基板の光透過率
を島津製作所社製のUV−3100PCで測定したとこ
ろ、400〜600nmの波長域で約80%であった。
この基板をイソプロピルアルコール中で5分間、次いで
純水中で5分間、それぞれ超音波洗浄し、さらに、
(株)サムコインターナショナル研究所製の装置用いて
UVオゾン洗浄を10分間行った。
EXAMPLES Hereinafter, examples of the present invention will be described in comparison with comparative examples. A method for manufacturing an organic EL element used as a sealing target in each example and each comparative example will be described in advance. When manufacturing the organic EL element to be sealed,
First, a transparent support substrate was prepared by depositing an ITO film having a film thickness of 100 nm on a glass substrate of 25 mm × 75 mm × 1.1 mm by a vapor deposition method. When the light transmittance of this substrate was measured by UV-3100PC manufactured by Shimadzu Corporation, it was about 80% in the wavelength range of 400 to 600 nm.
The substrate is ultrasonically cleaned in isopropyl alcohol for 5 minutes and then in pure water for 5 minutes, and further,
UV ozone cleaning was performed for 10 minutes using an apparatus manufactured by Samco International Laboratories Inc.

【0049】次に、この基板を市販の蒸着装置(日本真
空技術(株)製)の基板ホルダーに固定する一方で、モ
リブデン製の抵抗加熱ボートにN,N′−ビス(3−メ
チルフェニル−N,N′−ジフェニル[1,1′−ビフ
ェニル]−4,4′−ジアミン(以下、TPDと略記す
る)を200mg入れ、また、違うモリブデン製の抵抗
加熱ボートに4,4′−ビス(2,2′−ジフェニルビ
ニル)ビフェニル(以下、DPVBiと略記する)を2
00mg入れた後、真空槽を1×10-4Paまで減圧し
た。
Next, while fixing this substrate to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Nippon Vacuum Technology Co., Ltd.), N, N'-bis (3-methylphenyl-) was placed in a resistance heating boat made of molybdenum. 200 mg of N, N'-diphenyl [1,1'-biphenyl] -4,4'-diamine (hereinafter abbreviated as TPD) was put, and 4,4'-bis (was added to a different molybdenum resistance heating boat. 2,2′-diphenylvinyl) biphenyl (hereinafter abbreviated as DPVBi)
After adding 00 mg, the pressure in the vacuum chamber was reduced to 1 × 10 −4 Pa.

【0050】この後、TPD入りの前記ボートを215
〜220℃まで加熱し、TPDを蒸着速度0.1〜0.
3nm/sで前記ITO膜上に蒸着させて、膜厚60n
mの正孔輸送層を形成した。このときの基板温度は室温
であった。これを真空槽より取り出すことなく、正孔輸
送層の成膜に引き続きDPVBi入りの前記ボートを2
40℃まで加熱し、DPVBiを蒸着速度0.1〜0.
3nm/sで前記正孔輸送層上に蒸着させて、膜厚40
nmの発光層を形成した。このときの基板温度も室温で
あった。
After that, the boat with TPD is set to 215
~ 220 ° C, TPD deposition rate 0.1 ~ 0.
A film thickness of 60 n is obtained by vapor deposition on the ITO film at 3 nm / s.
m hole-transporting layer was formed. At this time, the substrate temperature was room temperature. Without removing this from the vacuum chamber, the hole transport layer was formed and then the boat containing DPVBi
It is heated to 40 ° C. and DPVBi is deposited at a deposition rate of 0.1 to 0.
A film thickness of 40 nm is obtained by vapor deposition on the hole transport layer at 3 nm / s.
nm emission layer was formed. The substrate temperature at this time was also room temperature.

【0051】これを真空槽より取出し、上記発光層の上
にステンレススチール製のマスクを設置し、再び基板ホ
ルダーに固定した。次いで、モリブデン製ボートにトリ
ス(8−キノリノール)アルミニウム(以下、Alq3
と略記する)を200mg入れ、また、違うモリブデン
製ボートにマグネシウムリボン1gを入れ、さらに、タ
ングステン製バスケットに銀ワイヤー500mgを入れ
て、これらのボートを真空槽に装着した。
This was taken out of the vacuum chamber, a stainless steel mask was placed on the light emitting layer, and it was fixed again to the substrate holder. Then, tris (8-quinolinol) aluminum (hereinafter referred to as Alq 3
200 mg, and 1 g of magnesium ribbon in a different molybdenum boat, 500 mg of silver wire in a tungsten basket, and these boats were mounted in a vacuum chamber.

【0052】次に、真空槽を1×10-4Paまで減圧し
てからAlq3 入りの前記ボートを230℃まで加熱
し、Alq3 を蒸着速度0.01〜0.03nm/sで
前記発光層上に蒸着させて、膜厚20nmの接着層を形
成した。さらに、銀を蒸着速度0.1nm/sで前記接
着層上に蒸着させると同時に、マグネシウムを蒸着速度
1.4nm/sで前記接着層上に蒸着させて、マグネシ
ウムと銀の混合金属からなる膜厚150nmの対向電極
を形成した。この対向電極の反射率を島津製作所社製の
UV−3100PCで測定したところ、400〜600
nmの波長域で80%であった。
Next, the pressure in the vacuum chamber was reduced to 1 × 10 -4 Pa, and the boat containing Alq 3 was heated to 230 ° C. to emit Alq 3 at a vapor deposition rate of 0.01 to 0.03 nm / s. An adhesive layer having a thickness of 20 nm was formed by vapor deposition on the layer. Further, silver is vapor-deposited on the adhesive layer at a vapor deposition rate of 0.1 nm / s, and at the same time, magnesium is vapor-deposited on the adhesive layer at a vapor deposition rate of 1.4 nm / s to form a film of a mixed metal of magnesium and silver. A counter electrode having a thickness of 150 nm was formed. When the reflectance of this counter electrode was measured by UV-3100PC manufactured by Shimadzu Corporation, it was 400 to 600.
It was 80% in the wavelength range of nm.

【0053】上述のようにして対向電極まで形成するこ
とにより、目的とする封止対象の有機EL素子が得られ
た。この有機EL素子は、ガラス基板の一主表面上に陽
極としてのITO膜、正孔輸送層としてのTPD層、発
光層としてのDPVBi層、接着層としてのAlq
3 層、および対向電極としてのマグネシウム−銀混合金
属層が順次積層されてなるものである。ITO膜の一部
とマグネシウム−銀混合金属層の一部はそれぞれ電極取
り出し用の電極線を兼ねており、発光層の平面視上の大
きさは6mm×10mmである。
By forming the counter electrode as described above, the intended organic EL element to be sealed was obtained. In this organic EL device, an ITO film as an anode, a TPD layer as a hole transport layer, a DPVBi layer as a light emitting layer, and an Alq as an adhesive layer are formed on one main surface of a glass substrate.
Three layers and a magnesium-silver mixed metal layer as a counter electrode are sequentially laminated. Part of the ITO film and part of the magnesium-silver mixed metal layer also serve as electrode wires for extracting electrodes, and the size of the light emitting layer in plan view is 6 mm × 10 mm.

【0054】実施例1 (1)溶存酸素濃度が1ppm以下の不活性液体の調製 まず、溶存酸素濃度を調整する前の不活性液体としてパ
ーフルオロポリエーテル(ダイキン工業株式会社製のデ
ムナムS−20(商品名;25℃における蒸気圧10-6
Torr,25℃における動粘度53cSt))を用意し、
このデムナムS−20の適当量を真空コック付きガラス
製試料容器に入れ、この試料容器と拡散ポンプ付き真空
ポンプ(日本真空技術(株)製のULVAC VPC−
050)とをフランジを用いて接続した。次に、上記の
試料容器に入ったデムナムS−20中にポリテトラフル
オロカーボン(テフロン)製の沸石を挿入し、常温にて
撹拌しながら当該試料容器内を10-4Torrにまで真空引
きして、発泡がなくなるまで約30分間、常温真空脱気
法により溶存酸素を排出した。
Example 1 (1) Preparation of an inert liquid having a dissolved oxygen concentration of 1 ppm or less First, as an inert liquid before adjusting the dissolved oxygen concentration, perfluoropolyether (Demnum S-20 manufactured by Daikin Industries, Ltd.) was used. (Product name: vapor pressure at 25 ° C 10 -6
Torr, kinematic viscosity at 25 ° C. 53 cSt)) is prepared,
An appropriate amount of this Demnum S-20 was placed in a glass sample container with a vacuum cock, and this sample container and a vacuum pump with a diffusion pump (ULVAC VPC-manufactured by Nippon Vacuum Technology Co., Ltd.)
050) and was connected using a flange. Next, insert a zeolite made of polytetrafluorocarbon (Teflon) into the Demnum S-20 contained in the sample container, and evacuate the sample container to 10 -4 Torr while stirring at room temperature. Then, dissolved oxygen was discharged by a vacuum degassing method at room temperature for about 30 minutes until foaming disappeared.

【0055】このようにして調製された不活性液体の溶
存酸素濃度は0.05ppmであり、当該不活性液体中
の水分量は5ppmであった。なお、溶存酸素濃度の測
定にはセントラル科学株式会社製のSUD−1(測定装
置の商品名)を使用し、雰囲気を窒素ガスで置換したグ
ローブボックス中で前記の装置のセンサー部分に不活性
液体を50ミリリットル/分の一定流量で流し、約20
秒後、表示数値が安定した後に測定値を読み取った。ま
た、不活性液体中の水分量の測定は、カールフィッシャ
ー滴定法により行った。
The dissolved oxygen concentration of the thus prepared inert liquid was 0.05 ppm, and the water content in the inert liquid was 5 ppm. In addition, SUD-1 (trade name of measuring device) manufactured by Central Science Co., Ltd. was used for measuring the dissolved oxygen concentration, and an inert liquid was used for the sensor part of the device in a glove box whose atmosphere was replaced with nitrogen gas. At a constant flow rate of 50 ml / min for about 20
After a second, the measured value was read after the displayed numerical value became stable. Further, the water content in the inert liquid was measured by the Karl Fischer titration method.

【0056】(2)封止 まず、ガラス製のキャップ型ハウジング材(豊和産業社
製の座グリ基板)を用意した。このハウジング材は、内
寸が13mm×13mm×1mmの凹部を1個有し、そ
の外寸は15mm×15mm×1.8mmである。ま
た、このハウジング材の凹部の底には不活性液体を注入
するための注入口が設けられている。次に、封止対象の
有機EL素子が前記の凹部内に納まるようにして、前記
の有機EL素子が形成されているガラス基板と上記のハ
ウジング材とをエポキシ樹脂系接着剤(チバガイギー社
製のアラルダイトAR−R30)により貼り合わせた。
このとき、有機EL素子はハウジング材の凹部と基板と
によって形成された空間内に在り、有機EL素子とハウ
ジング材とは非接触の状態にある。
(2) Sealing First, a cap-type housing material made of glass (a spot facing substrate manufactured by Howa Sangyo Co., Ltd.) was prepared. This housing material has one recess having an inner dimension of 13 mm × 13 mm × 1 mm, and the outer dimension thereof is 15 mm × 15 mm × 1.8 mm. Further, an injection port for injecting an inert liquid is provided at the bottom of the recess of the housing material. Next, the glass substrate on which the organic EL element is formed and the housing material are covered with an epoxy resin adhesive (made by Ciba-Geigy Co., Ltd.) so that the organic EL element to be sealed is housed in the recess. It was pasted by Araldite AR-R30).
At this time, the organic EL element is in the space formed by the recess of the housing material and the substrate, and the organic EL element and the housing material are not in contact with each other.

【0057】3時間放置して接着剤を固化させた後、真
空デシケータを用いて真空乾燥した。真空乾燥後のもの
を雰囲気を窒素ガスで置換したグローブボックス内に移
し、このグローブボックス中で、ハウジング材に設けら
れている注入口から上記(1)で調製した不活性液体を
注入して、ハウジング材の凹部と基板とによって形成さ
れている空間内に前記の不活性液体を充填した。不活性
液体の充填後、前記のグローブボックス内において前記
の注入口をエポキシ系接着剤(チバガイギー社製のアラ
ルダイトAR−R30)により塞ぎ、接着剤が固化する
まで3時間ほどグローブボックス中に放置した。
After being left for 3 hours to solidify the adhesive, it was vacuum dried using a vacuum desiccator. After vacuum drying, the atmosphere was transferred into a glove box whose atmosphere was replaced with nitrogen gas, and the inert liquid prepared in (1) above was injected from the inlet provided in the housing material in the glove box, The inert liquid was filled in the space formed by the recess of the housing material and the substrate. After the inert liquid was filled, the injection port was closed with an epoxy adhesive (Araldite AR-R30 manufactured by Ciba-Geigy) in the glove box and left in the glove box for about 3 hours until the adhesive solidified. .

【0058】ハウジング材の凹部と基板とによって形成
されている空間内に上記(1)で調製した不活性液体を
充填したことにより封止対象の有機EL素子の外周には
不活性液体層が形成され、これにより目的とする封止が
なされた。また同時に、目的とする有機EL素子が得ら
れた。この有機EL素子(封止されたもの)の断面の概
略を図1に示す。図1に示したように、上で得られた本
発明の有機EL素子1は、封止対象の有機EL素子10
の外周に上記(1)で調製した不活性液体からなる不活
性液体層20を設けてなる。封止対象の有機EL素子1
0はガラス基板11上に陽極としてのITO膜12、正
孔輸送層としてのTPD層13、発光層としてのDPV
Bi層14、接着層としてのAlq3 層15、および対
向電極(陰極)としてのマグネシウム−銀混合金属層1
6を順次積層したものである。そして、ITO膜12の
一部12aとマグネシウム−銀混合金属層16の一部1
6aはそれぞれ電極取り出し用の電極線となっている。
この有機EL素子10は、ガラス基板11上にエポキシ
樹脂系17によって固着されたハウジング材18の凹部
と前記のガラス基板11とによって形成された空間内に
在り、この空間内には上記(1)で調製した不活性液体
が充填されている。その結果として、有機EL素子1の
外周には不活性液体層20が形成されている。不活性液
体は、ハウジング材18に設けられていた注入口19か
ら注入されたものであり、前記の注入口19は不活性液
体の注入後にエポキシ樹脂系接着剤17aにより封止さ
れている。
By filling the inert liquid prepared in (1) above into the space formed by the recess of the housing material and the substrate, an inert liquid layer is formed on the outer periphery of the organic EL element to be sealed. Then, the intended sealing was performed. At the same time, the target organic EL device was obtained. A schematic cross section of this organic EL element (sealed) is shown in FIG. As shown in FIG. 1, the organic EL element 1 of the present invention obtained above is an organic EL element 10 to be sealed.
An inert liquid layer 20 made of the inert liquid prepared in the above (1) is provided on the outer circumference of. Organic EL element 1 to be sealed
Reference numeral 0 represents an ITO film 12 as an anode, a TPD layer 13 as a hole transport layer, and a DPV as a light emitting layer on a glass substrate 11.
Bi layer 14, Alq 3 layer 15 as an adhesive layer, and magnesium-silver mixed metal layer 1 as a counter electrode (cathode)
6 is sequentially laminated. Then, a part 12 a of the ITO film 12 and a part 1 of the magnesium-silver mixed metal layer 16
6a is an electrode wire for taking out an electrode.
This organic EL element 10 is present in the space formed by the concave portion of the housing material 18 fixed to the glass substrate 11 by the epoxy resin system 17 and the glass substrate 11, and in this space, the above (1) It is filled with the inert liquid prepared in. As a result, the inert liquid layer 20 is formed on the outer periphery of the organic EL element 1. The inert liquid is injected through the injection port 19 provided in the housing material 18, and the injection port 19 is sealed with the epoxy resin adhesive 17a after the injection of the inert liquid.

【0059】(3)評価 上記(2)で得られた有機EL素子(封止されたもの)
に当該有機EL素子の2つの電極線を介して直流定電流
電源を接続し、25℃、大気圧下で初期輝度が100c
d/m2 になるように通電した。このときの電流値は
0.56mA、電圧値は9Vであった。なお、輝度の測
定はミノルタカメラ社製の色彩色差計(商品名CS−1
00)を用いて行った。上記の通電に引き続いて発光面
の拡大写真(倍率10倍)を撮影し、この写真から発光
面の平面視上の面積に対するダークスポットの平面視上
の総面積の比(以下、無発光面積比という)を求めたと
ころ、0.43%であった。また、ある1つのダークス
ポットの直径を求めたところ18.4μmであった。
(3) Evaluation Organic EL device obtained in (2) above (sealed)
A DC constant current power supply is connected to the organic EL device via two electrode wires of the organic EL device, and the initial brightness is 100 c at 25 ° C. under atmospheric pressure.
Electricity was applied so that the pressure would be d / m 2 . At this time, the current value was 0.56 mA and the voltage value was 9V. The brightness is measured by a color difference meter (trade name CS-1 manufactured by Minolta Camera Co., Ltd.).
00). Subsequent to the above energization, an enlarged photograph of the light emitting surface (magnification: 10 times) was taken, and from this photograph, the ratio of the total area of the dark spot in plan view to the area of the light emitting surface in plan view (hereinafter, the non-light emitting area ratio It was 0.43%. Further, the diameter of a certain dark spot was determined to be 18.4 μm.

【0060】次に、通電開始から139時間後に上記と
同一手法で無発光面積比を求めたところ0.51%であ
り、初期の値から殆ど変化していないことが確認され
た。また、上記のものと同じダークスポットの直径を求
めたところ20.1μmであり、初期の直径から殆ど変
化していないことが確認された。ダークスポットの成長
速度を1時間当たりの直径増大値と定義すると、本実施
例1の場合は(20.1−18.4)/139=1.2
2×10-2μm/時間となる。この値は、後述する比較
例での値に比べて極めて小さい。これらのことから、上
記(1)で調製した不活性液体からなる不活性液体層
は、ダークスポットの成長を強く抑制していることがわ
かる。
Next, after 139 hours from the start of energization, the non-light-emission area ratio was calculated by the same method as above, and it was 0.51%. It was confirmed that there was almost no change from the initial value. Further, the diameter of the same dark spot as the above was calculated and found to be 20.1 μm, which was confirmed to be almost unchanged from the initial diameter. If the growth rate of dark spots is defined as the diameter increase value per hour, in the case of Example 1, (20.1-18.4) /139=1.2.
2 × 10 −2 μm / hour. This value is extremely smaller than the value in the comparative example described later. From these, it can be seen that the inert liquid layer made of the inert liquid prepared in (1) above strongly suppresses the growth of dark spots.

【0061】実施例2 まず、溶存酸素濃度を調整する前の不活性液体としてパ
ーフルオロポリエーテル(モンテカチーニ社製のフォン
ブリンZ03(商品名;25℃における蒸気圧10-4To
rr,25℃における動粘度30cSt))を用いた以外
は実施例1(1)と同条件で常温真空脱気を行って、溶
存酸素濃度が0.1ppm、水分量が5ppmである不
活性液体を調製した。次に、この不活性液体により封止
対象の有機EL素子の外周に不活性液体層を形成した以
外は実施例1と同条件で、目的とする封止を行った。ま
た同時に、目的とする有機EL素子(封止されたもの)
を得た。
Example 2 First, as the inert liquid before adjusting the dissolved oxygen concentration, perfluoropolyether (Fomblin Z03 manufactured by Montecatini Co. (trade name; vapor pressure at 25 ° C. 10 −4 To
rr, kinematic viscosity at 25 ° C. 30 cSt)) was used, and vacuum degassing was carried out at room temperature under the same conditions as in Example 1 (1) to obtain an inert liquid having a dissolved oxygen concentration of 0.1 ppm and a water content of 5 ppm. Was prepared. Next, target sealing was performed under the same conditions as in Example 1 except that an inert liquid layer was formed on the outer periphery of the organic EL element to be sealed with this inert liquid. At the same time, the target organic EL element (sealed)
I got

【0062】この有機EL素子に実施例1と同条件で通
電し、初期の無発光面積比と、ある1つのダークスポッ
トの初期の直径とを実施例1と同一手法で求めたとこ
ろ、無発光面積比は0.43%、ダークスポットの直径
は18.4μmであった。また、通電開始から152時
間後の無発光面積比と前記のものと同じダークスポット
の直径を実施例1と同一手法で求めたところ、無発光面
積比は0.59%、ダークスポットの直径は19.1μ
mであった。そして、ダークスポットの成長速度は4.
61×10-3μm/時間であった。この値は、後述する
比較例での値に比べて極めて小さい。これらのことか
ら、本実施例2で調製した不活性液体からなる不活性液
体層は、ダークスポットの成長を強く抑制していること
がわかる。
The organic EL device was energized under the same conditions as in Example 1, and the initial non-emission area ratio and the initial diameter of a certain dark spot were determined by the same method as in Example 1. The area ratio was 0.43%, and the diameter of the dark spot was 18.4 μm. Further, when the non-emission area ratio 152 hours after the start of energization and the same dark spot diameter as the above were obtained by the same method as in Example 1, the non-emission area ratio was 0.59%, and the dark spot diameter was 19.1μ
It was m. And the growth rate of dark spots is 4.
It was 61 × 10 −3 μm / hour. This value is extremely smaller than the value in the comparative example described later. From these, it can be seen that the inert liquid layer made of the inert liquid prepared in Example 2 strongly suppressed the growth of dark spots.

【0063】比較例1 まず、溶存酸素濃度を調整する前の不活性液体としてパ
ーフルオロアミン(住友スリーエム社製のフロリナート
FC−70(商品名;25℃における蒸気圧0.1Tor
r))を用いた以外は実施例1(1)と同条件で常温真
空脱気を行ったところ、前記の不活性液体の25℃にお
ける蒸気圧が10-2Torrより高いことから十分な脱気が
なされず、調製された不活性液体の溶存酸素濃度は本発
明の限定範囲外の2ppmであった。また、この不活性
液体の水分量は20ppmであった。次に、この不活性
液体により封止対象の有機EL素子の外周に不活性液体
層を形成した以外は実施例1と同条件で封止を行い、封
止された有機EL素子を得た。
Comparative Example 1 First, as an inert liquid before adjusting the dissolved oxygen concentration, perfluoroamine (Fluorinate FC-70 manufactured by Sumitomo 3M Ltd. (trade name; vapor pressure 0.1 Tor at 25 ° C.) was used.
r)) was used and vacuum degassing was carried out at room temperature under the same conditions as in Example 1 (1). As a result, the vapor pressure of the above-mentioned inert liquid at 25 ° C was higher than 10 -2 Torr. The dissolved oxygen concentration of the prepared inert liquid was 2 ppm, which was outside the limit range of the present invention. The water content of this inert liquid was 20 ppm. Next, sealing was performed under the same conditions as in Example 1 except that an inert liquid layer was formed on the outer periphery of the organic EL element to be sealed with this inert liquid to obtain a sealed organic EL element.

【0064】この有機EL素子に実施例1と同条件で通
電し、初期の無発光面積比と、ある1つのダークスポッ
トの初期の直径とを実施例1と同一手法で求めたとこ
ろ、無発光面積比は0.45%、ダークスポットの直径
は18.3μmであった。また、通電開始から124時
間後の無発光面積比と前記のものと同じダークスポット
の直径を実施例1と同一手法で求めたところ、無発光面
積比は3.9%、ダークスポットの直径は45.7μm
であった。そして、ダークスポットの成長速度は2.2
1×10-1μm/時間であった。この値は、実施例1お
よび実施例2での値に比べて極めて大きい。
The organic EL device was energized under the same conditions as in Example 1, and the initial non-emission area ratio and the initial diameter of a certain dark spot were determined by the same method as in Example 1. The area ratio was 0.45%, and the diameter of the dark spot was 18.3 μm. Further, when the non-emission area ratio 124 hours after the start of energization and the same dark spot diameter as the above were obtained by the same method as in Example 1, the non-emission area ratio was 3.9%, and the dark spot diameter was 45.7 μm
Met. And the growth rate of dark spots is 2.2
It was 1 × 10 −1 μm / hour. This value is extremely larger than the values in Example 1 and Example 2.

【0065】比較例2 まず、溶存酸素濃度を調整する前の不活性液体としてパ
ーフルオロアミン(住友スリーエム社製のフロリナート
FC−43(商品名;25℃における蒸気圧1.3Tor
r))を用いた以外は実施例1(1)と同条件で常温真
空脱気を行ったところ、前記の不活性液体の25℃にお
ける蒸気圧が10-2Torrより高いことから十分な脱気が
なされず、調製された不活性液体の溶存酸素濃度は本発
明の限定範囲外の10ppmであった。また、この不活
性液体の水分量は50ppmであった。次に、この不活
性液体により封止対象の有機EL素子の外周に不活性液
体層を形成した以外は実施例1と同条件で封止を行い、
封止された有機EL素子を得た。
Comparative Example 2 First, as an inert liquid before adjusting the dissolved oxygen concentration, perfluoroamine (Fluorinate FC-43 manufactured by Sumitomo 3M Ltd. (trade name; vapor pressure 1.3 Tor at 25 ° C.) was used.
r)) was used and vacuum degassing was carried out at room temperature under the same conditions as in Example 1 (1). As a result, the vapor pressure of the above-mentioned inert liquid at 25 ° C was higher than 10 -2 Torr. The dissolved oxygen concentration of the prepared inert liquid was 10 ppm, which was outside the limit range of the present invention. The water content of this inert liquid was 50 ppm. Next, sealing was performed under the same conditions as in Example 1 except that an inert liquid layer was formed on the outer periphery of the organic EL element to be sealed with this inert liquid,
A sealed organic EL device was obtained.

【0066】この有機EL素子に実施例1と同条件で通
電し、初期の無発光面積比と、ある1つのダークスポッ
トの初期の直径とを実施例1と同一手法で求めたとこ
ろ、無発光面積比は0.42%、ダークスポットの直径
は18.5μmであった。また、通電開始から136時
間後の無発光面積比と前記のものと同じダークスポット
の直径を実施例1と同一手法で求めたところ、無発光面
積比は12.3%、ダークスポットの直径は121.9
μmであった。そして、ダークスポットの成長速度は
7.60×10-1μm/時間であった。この値は、実施
例1および実施例2での値に比べて極めて大きい。
Electric current was applied to this organic EL device under the same conditions as in Example 1, and the initial non-emission area ratio and the initial diameter of a certain dark spot were determined by the same method as in Example 1. The area ratio was 0.42%, and the diameter of the dark spot was 18.5 μm. Further, the non-light emitting area ratio after 136 hours from the start of energization and the diameter of the same dark spot as those described above were determined by the same method as in Example 1, and the non light emitting area ratio was 12.3% and the diameter of the dark spot was 121.9
was μm. The growth rate of dark spots was 7.60 × 10 −1 μm / hour. This value is extremely larger than the values in Example 1 and Example 2.

【0067】比較例3 不活性液体として、実施例1で用いたパーフルオロポリ
エーテル(ダイキン工業株式会社製のデムナムS−20
(商品名))を真空脱気せずにそのまま用い、この不活
性液体により封止対象の有機EL素子の外周に不活性液
体層を形成した以外は実施例1と同条件で封止を行い、
封止された有機EL素子を得た。なお、上記の不活性液
体の溶存酸素濃度は本発明の限定範囲外の8.0ppm
であった。
Comparative Example 3 As an inert liquid, the perfluoropolyether used in Example 1 (Demnum S-20 manufactured by Daikin Industries, Ltd.
(Brand name) is used as it is without vacuum deaeration, and sealing is performed under the same conditions as in Example 1 except that an inert liquid layer is formed on the outer periphery of the organic EL element to be sealed by this inert liquid. ,
A sealed organic EL device was obtained. The dissolved oxygen concentration of the above inert liquid is 8.0 ppm, which is outside the range of the present invention.
Met.

【0068】この有機EL素子に実施例1と同条件で通
電し、初期の無発光面積比と、ある1つのダークスポッ
トの初期の直径とを実施例1と同一手法で求めたとこ
ろ、無発光面積比は0.46%、ダークスポットの直径
は18.8μmであった。また、通電開始から115時
間後の無発光面積比と前記のものと同じダークスポット
の直径を実施例1と同一手法で求めたところ、無発光面
積比は12.4%、ダークスポットの直径は82.5μ
mであった。そして、ダークスポットの成長速度は5.
55×10-1μm/時間であった。この値は、実施例1
および実施例2での値に比べて極めて大きい。
The organic EL device was energized under the same conditions as in Example 1, and the initial non-emission area ratio and the initial diameter of a certain dark spot were determined by the same method as in Example 1. The area ratio was 0.46%, and the diameter of the dark spot was 18.8 μm. Further, when the non-emission area ratio 115 hours after the start of energization and the diameter of the same dark spot as those described above were determined by the same method as in Example 1, the non-emission area ratio was 12.4%, and the diameter of the dark spot was 82.5μ
It was m. And the growth rate of dark spots is 5.
It was 55 × 10 −1 μm / hour. This value is
And is extremely larger than the value in Example 2.

【0069】[0069]

【発明の効果】以上説明したように、本発明の方法によ
れば有機EL素子におけるダークスポットの成長を強く
抑制することができる。したがって、本発明を実施する
ことにより素子寿命の長い有機EL素子を提供すること
が可能になる。
As described above, according to the method of the present invention, the growth of dark spots in the organic EL device can be strongly suppressed. Therefore, by implementing the present invention, it becomes possible to provide an organic EL element having a long element life.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で得た有機EL素子(封止されたも
の)の断面の概略図である。
FIG. 1 is a schematic view of a cross section of an organic EL element (sealed) obtained in Example 1.

【符号の説明】[Explanation of symbols]

1 本発明の有機EL素子 10 封止対象の有機EL素子 11 ガラス基板 17,17a エポキシ樹脂系接着剤 18 ハウジング材 19 注入口 20 不活性液体層 1 Organic EL Element of the Present Invention 10 Organic EL Element to be Sealed 11 Glass Substrate 17, 17a Epoxy Resin Adhesive 18 Housing Material 19 Inlet 20 Inert Liquid Layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 陽極と陰極とが少なくとも発光層を介し
て積層されてる有機EL素子の外周に、溶存酸素濃度が
1ppm以下の不活性液体層を設けることを特徴とする
有機EL素子の封止方法。
1. A sealing of an organic EL element, characterized in that an inert liquid layer having a dissolved oxygen concentration of 1 ppm or less is provided on the outer periphery of the organic EL element in which an anode and a cathode are laminated at least with a light emitting layer interposed therebetween. Method.
【請求項2】 不活性液体に含まれている水分が10p
pm以下である、請求項1に記載の方法。
2. The water content of the inert liquid is 10 p
The method according to claim 1, which is pm or less.
【請求項3】 不活性液体が、25℃における蒸気圧が
10-2Torr以下の液状フッ素化炭素である、請求項1ま
たは請求項2に記載の方法。
3. The method according to claim 1, wherein the inert liquid is liquid fluorinated carbon having a vapor pressure at 25 ° C. of 10 −2 Torr or less.
【請求項4】 基板上に形成されている有機EL素子の
外側に、前記有機EL素子との間に空隙を形成しつつ前
記基板と共同して前記有機EL素子を覆うハウジング材
を設け、前記基板と前記ハウジング材とによって形成さ
れた空間内に不活性液体を充填することにより不活性液
体層を形成する、請求項1〜請求項3のいずれか1項に
記載の方法。
4. A housing member is provided outside the organic EL element formed on the substrate to cover the organic EL element in cooperation with the substrate while forming a gap between the organic EL element and the organic EL element, The method according to any one of claims 1 to 3, wherein the inert liquid layer is formed by filling an inert liquid in the space formed by the substrate and the housing material.
【請求項5】 請求項1〜請求項4のいずれか1項に記
載の方法により封止されていることを特徴とする有機E
L素子。
5. An organic E, which is sealed by the method according to any one of claims 1 to 4.
L element.
JP21471894A 1994-09-08 1994-09-08 Method for sealing organic EL element and organic EL element Expired - Lifetime JP3254335B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP21471894A JP3254335B2 (en) 1994-09-08 1994-09-08 Method for sealing organic EL element and organic EL element
DE69524429T DE69524429T2 (en) 1994-09-08 1995-09-05 METHOD FOR SEALING AN ORGANIC ELECTROLUMINESCENT ELEMENT AND ORGANIC ELECTROLUMINESCENT ELEMENT
PCT/JP1995/001764 WO1996008122A1 (en) 1994-09-08 1995-09-05 Method for sealing organic el element and organic el element
EP95930701A EP0781075B1 (en) 1994-09-08 1995-09-05 Method for sealing organic el element and organic el element
US08/793,932 US5962962A (en) 1994-09-08 1995-09-05 Method of encapsulating organic electroluminescence device and organic electroluminescence device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21471894A JP3254335B2 (en) 1994-09-08 1994-09-08 Method for sealing organic EL element and organic EL element

Publications (2)

Publication Number Publication Date
JPH0878159A true JPH0878159A (en) 1996-03-22
JP3254335B2 JP3254335B2 (en) 2002-02-04

Family

ID=16660478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21471894A Expired - Lifetime JP3254335B2 (en) 1994-09-08 1994-09-08 Method for sealing organic EL element and organic EL element

Country Status (1)

Country Link
JP (1) JP3254335B2 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6380687B1 (en) 1999-06-28 2002-04-30 Semiconductor Energy Laboratory Co., Ltd. EL display device and electric device
US6384818B1 (en) 1996-09-27 2002-05-07 Semiconductor Energy Laboratory Co., Ltd. Electrooptical device and method of fabricating the same
US6420200B1 (en) 1999-06-28 2002-07-16 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing an electro-optical device
US6440877B1 (en) 1999-06-28 2002-08-27 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing an electro-optical device
US6452341B1 (en) 1999-06-21 2002-09-17 Semiconductor Energy Laboratory Co., Ltd. EL display device, driving method thereof, and electronic equipment provided with the EL display device
US6528824B2 (en) 2000-06-29 2003-03-04 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US6583557B2 (en) 2000-04-26 2003-06-24 Canon Kabushiki Kaisha Organic luminescent element
US6587086B1 (en) 1999-10-26 2003-07-01 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
JP2003229282A (en) * 2003-01-09 2003-08-15 Idemitsu Kosan Co Ltd Organic active el light emitting device
US6611108B2 (en) 2000-04-26 2003-08-26 Semiconductor Energy Laboratory Co., Ltd. Electronic device and driving method thereof
US6689492B1 (en) 1999-06-04 2004-02-10 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and electronic device
US6730966B2 (en) 1999-11-30 2004-05-04 Semiconductor Energy Laboratory Co., Ltd. EL display using a semiconductor thin film transistor
US6739931B2 (en) 2000-09-18 2004-05-25 Semiconductor Energy Laboratory Co., Ltd. Display device and method of fabricating the display device
US6774574B1 (en) 1999-06-23 2004-08-10 Semiconductor Energy Laboratory Co., Ltd. EL display device and electronic device
US6809482B2 (en) 2001-06-01 2004-10-26 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of driving the same
US6847341B2 (en) 2000-04-19 2005-01-25 Semiconductor Energy Laboratory Co., Ltd. Electronic device and method of driving the same
US6995753B2 (en) 2000-06-06 2006-02-07 Semiconductor Energy Laboratory Co., Ltd. Display device and method of manufacturing the same
US7053890B2 (en) 2000-06-22 2006-05-30 Semiconductor Energy Laboratory Co., Ltd. Display device
US7068246B2 (en) 2000-06-12 2006-06-27 Semiconductor Energy Laboratory Co., Ltd. Light emitting module and method of driving the same, and optical sensor
US7115434B2 (en) 1999-10-13 2006-10-03 Semiconductor Energy Laboratory Co., Ltd. Method for precisely forming light emitting layers in a semiconductor device
US7126161B2 (en) 1998-10-13 2006-10-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having El layer and sealing material
US7142781B2 (en) 2000-04-17 2006-11-28 Semiconductor Energy Laboratory Co., Ltd. Self-luminous device and electric machine using the same
US7173586B2 (en) 2003-03-26 2007-02-06 Semiconductor Energy Laboratory Co., Ltd. Element substrate and a light emitting device
US7189999B2 (en) 2000-08-18 2007-03-13 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device with coating film on portions of substrates and sealing member
US7403179B2 (en) 1999-10-21 2008-07-22 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US7402945B2 (en) 2002-03-07 2008-07-22 Semiconductor Energy Laboratory Co., Ltd. Light emitting apparatus and method of fabricating the same
US7408534B2 (en) 1998-06-17 2008-08-05 Semiconductor Energy Laboratory Co., Ltd. Reflective type semiconductor display device
US7688290B2 (en) 2000-01-17 2010-03-30 Semiconductor Energy Laboratory Co., Ltd. Display system and electrical appliance
EP2256718A2 (en) 1999-11-29 2010-12-01 Semiconductor Energy Laboratory Co, Ltd. El display device and electronic apparatus
US8884301B2 (en) 1999-10-12 2014-11-11 Semiconductor Energy Laboratory Co., Ltd. EL display device and a method of manufacturing the same
US8890172B2 (en) 1999-06-04 2014-11-18 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing an electro-optical device
US9123854B2 (en) 1999-06-04 2015-09-01 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and electronic device

Cited By (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6384818B1 (en) 1996-09-27 2002-05-07 Semiconductor Energy Laboratory Co., Ltd. Electrooptical device and method of fabricating the same
US6765562B2 (en) 1996-09-27 2004-07-20 Semiconductor Energy Laboratory Co., Ltd. Electrooptical device and method of fabricating the same
US7268777B2 (en) 1996-09-27 2007-09-11 Semiconductor Energy Laboratory Co., Ltd. Electrooptical device and method of fabricating the same
US7408534B2 (en) 1998-06-17 2008-08-05 Semiconductor Energy Laboratory Co., Ltd. Reflective type semiconductor display device
US8421114B2 (en) 1998-10-13 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Active matrix electroluminescent device within resin sealed housing
US8148743B2 (en) 1998-10-13 2012-04-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including semiconductor circuit made from semiconductor element and manufacturing method thereof
US7126161B2 (en) 1998-10-13 2006-10-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having El layer and sealing material
US7629624B2 (en) 1998-10-13 2009-12-08 Semiconductor Energy Laboratory Co., Ltd. Active matrix EL device with sealing structure housing the device and the peripheral driving circuits
US8969906B2 (en) 1998-10-13 2015-03-03 Semiconductor Energy Laboratory Co., Ltd. Active matrix electroluminescent device within resin sealed housing
US7449725B2 (en) 1998-10-13 2008-11-11 Semiconductor Energy Laboratory Co., Ltd. Active matrix EL device with sealing structure housing the device
US8987988B2 (en) 1999-06-04 2015-03-24 Semiconductor Energy Laboratory Co., Ltd. Display device
US6689492B1 (en) 1999-06-04 2004-02-10 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and electronic device
US9123854B2 (en) 1999-06-04 2015-09-01 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and electronic device
US9368680B2 (en) 1999-06-04 2016-06-14 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and electronic device
EP2296443A2 (en) 1999-06-04 2011-03-16 Semiconductor Energy Laboratory Co, Ltd. Electro-optical device with an insulating layer
US9178177B2 (en) 1999-06-04 2015-11-03 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and electronic device
US9293726B2 (en) 1999-06-04 2016-03-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing an electro-optical device
US8890172B2 (en) 1999-06-04 2014-11-18 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing an electro-optical device
US8941565B2 (en) 1999-06-21 2015-01-27 Semiconductor Energy Laboratory Co., Ltd. EL display device, driving method thereof, and electronic equipment provided with the EL display device
US7821200B2 (en) 1999-06-21 2010-10-26 Semiconductor Energy Laboratory Co., Ltd. EL display device, driving method thereof, and electronic equipment provided with the EL display device
US7466293B2 (en) 1999-06-21 2008-12-16 Semiconductor Energy Laboratory Co., Ltd. EL display device, driving method thereof, and electronic equipment provided with the EL display device
US7312572B2 (en) 1999-06-21 2007-12-25 Semiconductor Energy Laboratory Co., Ltd. EL display device, driving method thereof, and electronic equipment provided with the EL display device
US9659524B2 (en) 1999-06-21 2017-05-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device including substrate having cavity, and method for fabricating the light-emitting device
US6844683B2 (en) 1999-06-21 2005-01-18 Semiconductor Energy Laboratory Co., Ltd. EL display device, driving method thereof, and electronic equipment provided with the EL display device
US6452341B1 (en) 1999-06-21 2002-09-17 Semiconductor Energy Laboratory Co., Ltd. EL display device, driving method thereof, and electronic equipment provided with the EL display device
US6777887B2 (en) 1999-06-23 2004-08-17 Semiconductor Energy Laboratory Co., Ltd. EL display device and electronic device
EP2372682A2 (en) 1999-06-23 2011-10-05 Semiconductor Energy Laboratory Co, Ltd. Active matrix EL display device
US7982222B2 (en) 1999-06-23 2011-07-19 Semiconductor Energy Laboratory Co., Ltd. EL display device and electronic device
US7358531B2 (en) 1999-06-23 2008-04-15 Semiconductor Energy Laboratory Co., Ltd. EL display device and electronic device
US6774574B1 (en) 1999-06-23 2004-08-10 Semiconductor Energy Laboratory Co., Ltd. EL display device and electronic device
US6872672B2 (en) 1999-06-28 2005-03-29 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing an electro-optical device
US6440877B1 (en) 1999-06-28 2002-08-27 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing an electro-optical device
US6774573B2 (en) 1999-06-28 2004-08-10 Semiconductor Energy Laboratory Co., Ltd. EL display device and electronic device
US6380687B1 (en) 1999-06-28 2002-04-30 Semiconductor Energy Laboratory Co., Ltd. EL display device and electric device
US6552496B2 (en) 1999-06-28 2003-04-22 Semiconductor Energy Laboratory Co., Ltd. EL display device and electronic device
US7256422B2 (en) 1999-06-28 2007-08-14 Semiconductor Energy Laboratory Co., Ltd. EL display device and electronic device
US6958251B2 (en) 1999-06-28 2005-10-25 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device using a printing method
US6420200B1 (en) 1999-06-28 2002-07-16 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing an electro-optical device
US7342251B2 (en) 1999-06-28 2008-03-11 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing an electro-optical device
EP2262031A2 (en) 1999-06-28 2010-12-15 Semiconductor Energy Laboratory Co., Ltd. Light emitting display device
US7548027B2 (en) 1999-06-28 2009-06-16 Semiconductor Energy Laboratory Co., Ltd. EL display device and electronic device
US8884301B2 (en) 1999-10-12 2014-11-11 Semiconductor Energy Laboratory Co., Ltd. EL display device and a method of manufacturing the same
US7115434B2 (en) 1999-10-13 2006-10-03 Semiconductor Energy Laboratory Co., Ltd. Method for precisely forming light emitting layers in a semiconductor device
US7403179B2 (en) 1999-10-21 2008-07-22 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US6587086B1 (en) 1999-10-26 2003-07-01 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US7239083B2 (en) 1999-10-26 2007-07-03 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device with active matrix type EL display
US7986094B2 (en) 1999-10-26 2011-07-26 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device with active matrix EL display
US9391132B2 (en) 1999-10-26 2016-07-12 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US8933624B2 (en) 1999-10-26 2015-01-13 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
EP2256718A2 (en) 1999-11-29 2010-12-01 Semiconductor Energy Laboratory Co, Ltd. El display device and electronic apparatus
US6982462B2 (en) 1999-11-30 2006-01-03 Semiconductor Energy Laboratory Co., Ltd. Light emitting display device using multi-gate thin film transistor
US7525119B2 (en) 1999-11-30 2009-04-28 Semiconductor Energy Laboratory Co., Ltd. Light emitting display device using thin film transistors and electro-luminescence element
US8017948B2 (en) 1999-11-30 2011-09-13 Semiconductor Energy Laboratory Co., Ltd. Electric device
US6730966B2 (en) 1999-11-30 2004-05-04 Semiconductor Energy Laboratory Co., Ltd. EL display using a semiconductor thin film transistor
US8890149B2 (en) 1999-11-30 2014-11-18 Semiconductor Energy Laboratory Co., Ltd. Electro-luminescence display device
US8253662B2 (en) 2000-01-17 2012-08-28 Semiconductor Energy Laboratory Co., Ltd. Display system and electrical appliance
US9087476B2 (en) 2000-01-17 2015-07-21 Semiconductor Energy Laboratory Co., Ltd. Display system and electrical appliance
US7688290B2 (en) 2000-01-17 2010-03-30 Semiconductor Energy Laboratory Co., Ltd. Display system and electrical appliance
US10522076B2 (en) 2000-01-17 2019-12-31 Semiconductor Energy Laboratory Co., Ltd. Display system and electrical appliance
US10467961B2 (en) 2000-01-17 2019-11-05 Semiconductor Energy Laboratory Co., Ltd. Display system and electrical appliance
US9368089B2 (en) 2000-01-17 2016-06-14 Semiconductor Energy Laboratory Co., Ltd. Display system and electrical appliance
US7142781B2 (en) 2000-04-17 2006-11-28 Semiconductor Energy Laboratory Co., Ltd. Self-luminous device and electric machine using the same
US6847341B2 (en) 2000-04-19 2005-01-25 Semiconductor Energy Laboratory Co., Ltd. Electronic device and method of driving the same
US9443461B2 (en) 2000-04-19 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Electronic device and method of driving the same
US7567227B2 (en) 2000-04-19 2009-07-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device and method of driving the same
US7557780B2 (en) 2000-04-26 2009-07-07 Semiconductor Energy Laboratory Co., Ltd. Electronic device and driving method thereof
US7113155B2 (en) 2000-04-26 2006-09-26 Semiconductor Energy Laboratory Co., Ltd. Electronic device with a source region and a drain region of a reset transistor and driving method thereof
US8514151B2 (en) 2000-04-26 2013-08-20 Semiconductor Energy Laboratory Co., Ltd. Electronic device and driving method thereof
US6611108B2 (en) 2000-04-26 2003-08-26 Semiconductor Energy Laboratory Co., Ltd. Electronic device and driving method thereof
US6583557B2 (en) 2000-04-26 2003-06-24 Canon Kabushiki Kaisha Organic luminescent element
US6995753B2 (en) 2000-06-06 2006-02-07 Semiconductor Energy Laboratory Co., Ltd. Display device and method of manufacturing the same
US7830370B2 (en) 2000-06-06 2010-11-09 Semiconductor Energy Laboratory Co., Ltd. Display device and method of manufacturing the same
US7515125B2 (en) 2000-06-12 2009-04-07 Semiconductor Energy Laboratory Co., Ltd. Light emitting module and method of driving the same, and optical sensor
US7068246B2 (en) 2000-06-12 2006-06-27 Semiconductor Energy Laboratory Co., Ltd. Light emitting module and method of driving the same, and optical sensor
US7053890B2 (en) 2000-06-22 2006-05-30 Semiconductor Energy Laboratory Co., Ltd. Display device
US6528824B2 (en) 2000-06-29 2003-03-04 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US7189999B2 (en) 2000-08-18 2007-03-13 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device with coating film on portions of substrates and sealing member
US8497516B2 (en) 2000-08-18 2013-07-30 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and display device
US8106407B2 (en) 2000-08-18 2012-01-31 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and display device
US10236331B2 (en) 2000-08-18 2019-03-19 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and display device
US9768239B2 (en) 2000-08-18 2017-09-19 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and display device
US9263697B2 (en) 2000-08-18 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and display device
US7453089B2 (en) 2000-08-18 2008-11-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and display device
US8735899B2 (en) 2000-08-18 2014-05-27 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and display device
US9263503B2 (en) 2000-09-18 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Display device and method of fabricating the display device
US6739931B2 (en) 2000-09-18 2004-05-25 Semiconductor Energy Laboratory Co., Ltd. Display device and method of fabricating the display device
US7459849B2 (en) 2000-09-18 2008-12-02 Semiconductor Energy Laboratory Co., Ltd. Display device and method of fabricating the display device
US8421352B2 (en) 2000-09-18 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US8044588B2 (en) 2000-09-18 2011-10-25 Semiconductor Energy Laboratory Co., Ltd. Display device and method of fabricating the display device
US7514868B2 (en) 2000-09-18 2009-04-07 Semiconductor Energy Laboratory Co., Ltd. Display device and method of fabricating the display device
US6995511B2 (en) 2000-09-18 2006-02-07 Semiconductor Energy Laboratory Co., Ltd. Display device and method of fabricating the display device
US6809482B2 (en) 2001-06-01 2004-10-26 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of driving the same
US8968822B2 (en) 2002-03-07 2015-03-03 Semiconductor Energy Laboratory Co., Ltd. Light emitting apparatus and method of fabricating the same
US10170724B2 (en) 2002-03-07 2019-01-01 Semiconductor Energy Laboratory Co., Ltd. Light emitting apparatus and method of fabricating the same
US7402945B2 (en) 2002-03-07 2008-07-22 Semiconductor Energy Laboratory Co., Ltd. Light emitting apparatus and method of fabricating the same
US11005062B2 (en) 2002-03-07 2021-05-11 Semiconductor Energy Laboratory Co., Ltd. Light emitting apparatus and method of fabricating the same
JP2003229282A (en) * 2003-01-09 2003-08-15 Idemitsu Kosan Co Ltd Organic active el light emitting device
US7714818B2 (en) 2003-03-26 2010-05-11 Semiconductor Energy Laboratory Co., Ltd. Element substrate and a light emitting device
US7173586B2 (en) 2003-03-26 2007-02-06 Semiconductor Energy Laboratory Co., Ltd. Element substrate and a light emitting device

Also Published As

Publication number Publication date
JP3254335B2 (en) 2002-02-04

Similar Documents

Publication Publication Date Title
JP3254335B2 (en) Method for sealing organic EL element and organic EL element
US5962962A (en) Method of encapsulating organic electroluminescence device and organic electroluminescence device
US6660409B1 (en) Electronic device and process for producing the same
JP3942017B2 (en) Light emitting element
US6617052B2 (en) Organic EL element and method of manufacturing the same
JP4932925B2 (en) Light emitting device
US7258768B2 (en) Method of fabricating an EL display device, and apparatus for forming a thin film
JP2813499B2 (en) Organic EL device
JP3578417B2 (en) Organic EL device
JP2813495B2 (en) Organic EL element sealing method
JP3935886B2 (en) Organic electroluminescence device
JP3963712B2 (en) Organic EL element structure
JP3795556B2 (en) Organic EL element sealing method and organic EL element
KR20050017169A (en) Organic electroluminescent display device using anode surface reforming layer
JP2002367780A (en) Organic el device and manufacturing method therefor
JPH09132774A (en) Organic thin-film luminescent element
JP3640512B2 (en) Vapor deposition method and organic electroluminescence device manufacturing method
JP2001085157A (en) Electronic device and manufacturing method thereof
JPH08213171A (en) Manufacture of polychromatic electroluminescent device
JP4443872B2 (en) Electroluminescent device, light emitting device, electric appliance
JP4527089B2 (en) Electroluminescent device and light emitting device using the electroluminescent device
JP4119084B2 (en) Method for manufacturing light emitting device
US7663303B2 (en) Organic electroluminescent device and display apparatus using the same
JP2003297550A (en) Light-emitting element and display device and lighting apparatus using the same
JP4112799B2 (en) Light emitting device and manufacturing method thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 12

EXPY Cancellation because of completion of term