JPH0875521A - Oscillatory measuring instrument - Google Patents

Oscillatory measuring instrument

Info

Publication number
JPH0875521A
JPH0875521A JP21566394A JP21566394A JPH0875521A JP H0875521 A JPH0875521 A JP H0875521A JP 21566394 A JP21566394 A JP 21566394A JP 21566394 A JP21566394 A JP 21566394A JP H0875521 A JPH0875521 A JP H0875521A
Authority
JP
Japan
Prior art keywords
vibration
measuring
measuring tube
resonance frequency
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21566394A
Other languages
Japanese (ja)
Inventor
Hironobu Yao
博信 矢尾
Hiroyuki Yoshimura
弘幸 吉村
Masato Takahashi
正人 高橋
Michihiko Tsuruoka
亨彦 鶴岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP21566394A priority Critical patent/JPH0875521A/en
Priority to EP95114040A priority patent/EP0701107B1/en
Priority to DE69515576T priority patent/DE69515576T2/en
Priority to US08/525,466 priority patent/US5728952A/en
Publication of JPH0875521A publication Critical patent/JPH0875521A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE: To realize a highly accurate measurement of mass flow rate or density by making correctable the effect of axial force (stress) of a measuring pipe. CONSTITUTION: The accuracy is enhanced by correcting the phase difference determined at a phase difference operating section 92, respectively, with outputs from a frequency ratio operating section 91 and a temperature operating section 93 while taking account of the fact that the phase difference or the time difference between output signals from oscillation sensors 6a, 6b representative of the mass flow rate or density of fluid is a function of the temperature and the axial force of a measuring pipe and the axial force is a function of the ratio of two resonance frequencies of the measuring pipe.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、加振される少なくと
も1本の測定管を有し、この測定管内を流れる流体の質
量流量にもとづき発生するコリオリ力を利用して質量流
量を測定する質量流量計、または上記測定管内の流体の
密度変化に応じて変化する測定管の共振周波数の変化に
より流体密度を測定する振動式の密度計、もしくは両方
の機能を持つ振動型測定器、特に流体温度,周囲温度や
軸力(応力)によって変化する測定値を補正することが
可能な振動型測定器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mass for measuring a mass flow rate by using Coriolis force generated based on a mass flow rate of a fluid flowing in the measurement tube, which has at least one vibrating measurement tube. A flow meter, a vibrating density meter that measures the fluid density by changing the resonance frequency of the measuring tube that changes according to the density change of the fluid in the measuring tube, or a vibrating measuring instrument that has both functions, especially the fluid temperature. The present invention relates to a vibration-type measuring instrument that can correct measured values that change due to ambient temperature and axial force (stress).

【0002】[0002]

【従来の技術】図3は直管式質量流量計の従来例を示す
構成図である。検出部1は1本の直管状測定管2と、こ
の測定管2の振動の節部a,bを固定する左右の固定材
3a,3bと、固定材3a,3bの振動を互いにキャン
セルするよう、ネジ止めまたは溶接等の手段により固定
材3a,3bに固定されたり、または固定材3a,3b
と一体的に成形された支持部4aおよび4b(4aのみ
図示)と、アダプタ7aによりそれぞれ支持部4a,4
bに固定されたコイルと測定管2の中央部に固定された
マグネットにより構成され、測定管2をその共振周波数
で振動させる(加振する)振動発生器5とを有してい
る。
2. Description of the Related Art FIG. 3 is a block diagram showing a conventional example of a straight pipe type mass flow meter. The detection unit 1 cancels the vibrations of one straight tubular measuring pipe 2, the left and right fixing members 3a and 3b for fixing the vibration nodes a and b of the measuring pipe 2, and the fixing members 3a and 3b. , Fixed to the fixing members 3a, 3b by means such as screwing or welding, or the fixing members 3a, 3b
And supporting portions 4a and 4b (only 4a is shown) integrally molded with the supporting portions 4a and 4b, respectively.
It has a coil fixed to b and a magnet fixed to the center of the measuring tube 2, and has a vibration generator 5 that vibrates (excites) the measuring tube 2 at its resonance frequency.

【0003】検出部1はさらに、振動発生器5と同じく
アダプタ7b,7cにより支持部4a,4bに固定され
たコイルに対し、測定管2上の振動発生器5を中心とす
るほぼ対称な位置にそれぞれ固定されたマグネットによ
り構成され、測定管2の振動を検出する速度検出センサ
(または変位センサ,加速度センサ)6a,6bと、速
度検出センサ6aからの出力を受けてその信号振幅が一
定となるよう、振動発生器5に対して駆動信号を出力す
る駆動回路8と、速度検出センサ6a,6bからの信号
の位相差(時間差)にもとづき質量流量信号Qmを出力
する信号処理回路9とから構成されている。
The detection unit 1 further has a substantially symmetrical position about the vibration generator 5 on the measuring tube 2 with respect to the coil fixed to the support units 4a and 4b by the adapters 7b and 7c like the vibration generator 5. Speed detection sensors (or displacement sensors, acceleration sensors) 6a and 6b for detecting the vibration of the measuring tube 2 and a signal amplitude that is constant when receiving the output from the speed detection sensor 6a. As described above, the drive circuit 8 that outputs a drive signal to the vibration generator 5 and the signal processing circuit 9 that outputs the mass flow rate signal Qm based on the phase difference (time difference) of the signals from the speed detection sensors 6a and 6b. It is configured.

【0004】ここで、以上の如く構成された検出部1に
おいて、流体の流量がゼロの場合について考える。すな
わち、測定管2は速度検出センサ6a、振動発生器5お
よび駆動回路8により、その共振周波数で加振されてい
る。また、速度検出センサ6a,6bは測定管2の中央
部に対して対称な位置に取り付けられているため、これ
らのセンサ6a,6bからは互いに位相差のない同じ振
幅の信号が得られる。
Now, let us consider a case where the flow rate of the fluid is zero in the detecting section 1 constructed as described above. That is, the measuring tube 2 is vibrated at its resonance frequency by the speed detection sensor 6a, the vibration generator 5, and the drive circuit 8. Further, since the speed detection sensors 6a and 6b are mounted at symmetrical positions with respect to the central portion of the measuring tube 2, the sensors 6a and 6b can obtain signals having the same amplitude but no phase difference.

【0005】これに対し、流れが生じて振動する測定管
2内を流体が流れると、測定管2の節aから測定管2の
中央部に向かうに従い、図4に示されるように振動方向
の速度成分が増加するため、測定管2内を流れる流体に
は振動方向に測定管2から正の加速度が作用する。した
がって、その反作用として測定管2には流体から反力が
作用するため、図5に示されるように測定管2の節aか
ら測定管2の中央部では、振動の位相が遅れる方向に変
形する。また、測定管2の中央部から節bに向かうに従
い、振動方向の速度成分は減少するため、測定管2内を
流れる流体には振動方向に測定管2から負の加速度が作
用する。したがって、その反作用として測定管2には流
体からの反力が作用し、図5のように測定管2の中央部
から節bでは振動の位相が進む方向の変形力を受ける。
On the other hand, when a fluid flows in the measuring tube 2 where a flow is generated and vibrates, as shown in FIG. 4, the direction of vibration increases from the node a of the measuring tube 2 toward the center of the measuring tube 2. Since the velocity component increases, a positive acceleration acts on the fluid flowing in the measuring pipe 2 from the measuring pipe 2 in the vibration direction. Therefore, as a reaction thereof, a reaction force acts from the fluid on the measuring tube 2, and as shown in FIG. 5, in the central portion of the measuring tube 2 from the node a of the measuring tube 2, the vibration phase is deformed in a direction in which the phase of the vibration is delayed. . Further, since the velocity component in the vibration direction decreases from the central portion of the measurement pipe 2 toward the node b, a negative acceleration from the measurement pipe 2 acts on the fluid flowing in the measurement pipe 2 in the vibration direction. Therefore, as a reaction thereof, a reaction force from the fluid acts on the measurement pipe 2, and as shown in FIG. 5, the deformation force in the direction in which the phase of vibration advances from the central portion of the measurement pipe 2 to the node b.

【0006】以下、変形を数式を用いて説明する。い
ま、変位センサ6aの変位は、共振による測定管の横振
動の変位から、 Ya=η(a)sinωn t …(1) と表わされる。 η(a):測定管の長手方向の位置aにおける振幅を表
わす関数 ωn :測定管の共振周波数
The transformation will be described below by using mathematical expressions. Now, the displacement of the displacement sensor 6a is expressed as Ya = η (a) sinω n t (1) from the displacement of the lateral vibration of the measuring pipe due to resonance. η (a): Function that represents the amplitude at the position a in the longitudinal direction of the measuring tube ω n : Resonant frequency of the measuring tube

【0007】また、変位センサ6aにおける流体からの
反力による測定管のたわみ形状は、下記(2)式とな
る。 ya=−2L3 Qmωn ηc(a)cosωn t/EI …(2) L :測定管の長さ E :測定管のヤング率 I :測定管の断面2次モーメント Qm :測定管内を流れる流体の質量流量 ηc(a):測定管の長手方向の位置aにおける流体か
らの反力による測定管の変形振幅を与える関数
The deflection shape of the measuring tube due to the reaction force from the fluid in the displacement sensor 6a is given by the following equation (2). ya = -2L 3 Qmω n ηc ( a) cosω n t / EI ... (2) L: length E of the measuring tube: Young's modulus of the measuring tube I: second moment Qm of the measuring tube: fluid flows through a measuring tube Mass flow rate of ηc (a): Function that gives the deformation amplitude of the measuring pipe due to the reaction force from the fluid at the position a in the longitudinal direction of the measuring pipe

【0008】実際の測定管のたわみ形状は(1)式の共
振による測定管のたわみに、(2)式の測定管の変形が
重畳して振動する。つまり、測定管のたわみ形状は
(1),(2)式を合成して(3)式のようになる。 ξa=Ya+ya=Asin(ωn t−α) …(3) ここに、 A=[η(a)2 +{2L3 Qmωn ηc(a)/EI}2 1/2 …(4) α=2L3 Qmωn ηc(a)/EIη(a) …(5)
In the actual bending shape of the measuring pipe, the deformation of the measuring pipe of the formula (2) is superimposed on the bending of the measuring pipe due to the resonance of the formula (1) and vibrates. That is, the deflection shape of the measuring tube is expressed by the formula (3) by combining the formulas (1) and (2). ξa = Ya + ya = Asin ( ω n t-α) ... (3) Here, A = [η (a) 2 + {2L 3 Qmω n ηc (a) / EI} 2] 1/2 ... (4) α = 2L 3 Qmω n ηc (a) / EIη (a) (5)

【0009】変位センサ6bにおける測定管の横振動の
変位は、これが測定管の中央部に関し変位センサ6aと
対称な位置に取り付けられているため、変位センサ6a
の変位と同じになる。すなわち、 Yb=Ya=η(a)sinωn t …(6) また、変位センサ6bにおける流体からの測定管への反
力は、変位センサ6aにおける流体からの反力と大きさ
は同じで方向は反対であるから、 yb=−ya=2L3 Qmωn ηc(a)cosωn t/EI …(7) となる。
The displacement of the lateral vibration of the measuring pipe in the displacement sensor 6b is attached at a position symmetrical to the displacement sensor 6a with respect to the central portion of the measuring pipe.
Becomes the same as the displacement of. That is, Yb = Ya = η (a) sinω n t (6) Further, the reaction force from the fluid in the displacement sensor 6b to the measuring pipe has the same magnitude as the reaction force from the fluid in the displacement sensor 6a and the direction. since the opposite, the yb = -ya = 2L 3 Qmω n ηc (a) cosω n t / EI ... (7).

【0010】したがって、変位センサ6bにおける測定
管のたわみ形状は、 ξb=Ya−ya=Asin(ωn t+α) …(8) となる。上記(3),(8)式より、変位センサ6a,
6bの信号間には2αの位相差があることが分かり、こ
の位相差2αは(5)式より質量流量Qmに比例するこ
とが分かる。よって、変位センサ6a,6bの信号間の
時間差は、 Δt=2α/ωn =2L3 Qmηc(a)/EIη(a) …(9) となる。
Accordingly, the deflection shape of the measuring tube in the displacement sensor 6b is, ξb = Ya-ya = Asin (ω n t + α) ... a (8). From the equations (3) and (8), the displacement sensor 6a,
It can be seen that there is a phase difference of 2α between the signals of 6b, and this phase difference 2α is found to be proportional to the mass flow rate Qm from equation (5). Therefore, the time difference between the signals of the displacement sensors 6a and 6b is Δt = 2α / ω n = 2L 3 Qmηc (a) / EIη (a) (9).

【0011】また、測定管の共振周波数は次の(10)
式で与えられる。 ωn =λ2 /L2 ・(EI/ρ)1/2 …(10) λ:測定管の境界条件と振動モードで決定される定数 ρ:測定管と測定管内の流体を含めた線密度 ところで、測定管の温度が変化すると、(5)または
(9)式より、ヤング率Eの温度依存性から、質量流量
Qmが一定でもセンサ出力信号の位相差や時間差が変化
することが分かる。同様にして、測定流体に密度変化が
ない場合でも、(10)式の共振周波数ωn も変化する
ことが分かる。
Further, the resonance frequency of the measuring tube is (10)
Given by the formula. ω n = λ 2 / L 2 · (EI / ρ) 1/2 (10) λ: Constant determined by the boundary condition of the measuring tube and the vibration mode ρ: Linear density including the measuring tube and the fluid in the measuring tube By the way, when the temperature of the measuring tube changes, it can be understood from the equation (5) or (9) that the phase difference and the time difference of the sensor output signal change from the temperature dependence of the Young's modulus E even if the mass flow rate Qm is constant. Similarly, it can be seen that the resonance frequency ω n of the equation (10) also changes even when the density of the measurement fluid does not change.

【0012】これまでは、測定管に作用する軸力(応
力)の影響を無視したが、軸力の影響を考慮すると、測
定管の振幅を示す定数ηは測定管の位置だけでなく軸力
Tの関数ともなることから、先の(1)式は次の(1
1)式のようになる。 Ya=η(a,T)sinωn t …(11) したがって、先の(5)式,(9)式は下記の(1
2),(13)式のようになる。 α=2L3 Qmωn ηc(a,T)/EIη(a,T) …(12) Δt=2α/ωn =2L3 Qmηc(a,T)/EIη(a,T) …(13)
Up to now, the influence of the axial force (stress) acting on the measuring pipe is neglected. However, considering the influence of the axial force, the constant η indicating the amplitude of the measuring pipe is not only the position of the measuring pipe but also the axial force. Since it is also a function of T, the above equation (1) is
It becomes like the formula 1). Ya = η (a, T) sinω n t (11) Therefore, the above equations (5) and (9) are
It becomes like the formulas (2) and (13). α = 2L 3 Qmω n ηc (a, T) / EIη (a, T) (12) Δt = 2α / ω n = 2L 3 Qmηc (a, T) / EIη (a, T) (13)

【0013】すなわち、質量流量に比例して発生する位
相差や時間差は、測定管に作用する軸力によっても変化
することが分かる。このときの測定管の共振周波数ωn
は、 ωn =λn (T)2 /L2 ・(EI/ρ)1/2 …(14) となり、測定管の共振周波数ωn も測定管に作用してい
る軸力の関数となっている。
That is, it is understood that the phase difference and the time difference generated in proportion to the mass flow rate also change depending on the axial force acting on the measuring tube. Resonance frequency ω n of the measuring tube at this time
Is ω n = λ n (T) 2 / L 2 · (EI / ρ) 1/2 (14), and the resonance frequency ω n of the measuring tube is also a function of the axial force acting on the measuring tube. ing.

【0014】一般的に、測定管を振動させ、測定管内を
流れる流体の質量流量にもとづいて発生するコリオリ力
を利用して質量流量を測定する質量流量計では、測定流
体の温度変化や周囲温度の変化によって測定管の温度が
変化した場合、測定管のヤング率の温度依存性により測
定管の剛性が変化し、コリオリ力に対する対する感度が
変化して流量測定値が変化する。また、直管状の測定管
を有するコリオリ式の質量流量計の場合、上述のように
温度などの変化による測定管や支持部の膨張,収縮によ
って測定管に作用する軸力が変化し、この軸力の変化に
て質量流量の感度が変化することになる。
Generally, in a mass flow meter which vibrates a measuring pipe and uses the Coriolis force generated based on the mass flow rate of the fluid flowing in the measuring pipe to measure the mass flow rate, the temperature change of the measured fluid and the ambient temperature are measured. When the temperature of the measuring tube changes due to the change of, the rigidity of the measuring tube changes due to the temperature dependence of the Young's modulus of the measuring tube, the sensitivity to Coriolis force changes, and the flow rate measurement value changes. Further, in the case of a Coriolis mass flowmeter having a straight tubular measuring tube, the axial force acting on the measuring tube changes due to the expansion and contraction of the measuring tube and the supporting part due to the change in temperature as described above, and this axis The change in force will change the sensitivity of the mass flow rate.

【0015】また、振動式の密度計においても同様に、
測定流体の温度変化や周囲温度の変化によって測定管の
温度が変化すると、測定管のヤング率の温度依存性によ
り共振周波数が変化し、測定誤差が発生する。特に、直
管状の測定管を有するものでは、測定管に作用する軸力
の変化に伴って共振周波数が変化するため、測定値に誤
差が生じるわけである。
Similarly, in a vibration type density meter,
When the temperature of the measuring tube changes due to the temperature change of the measuring fluid or the ambient temperature, the resonance frequency changes due to the temperature dependence of the Young's modulus of the measuring tube, causing a measurement error. Particularly, in the case of having a straight tube-shaped measuring tube, the resonance frequency changes with the change of the axial force acting on the measuring tube, so that an error occurs in the measured value.

【0016】以上のように、温度環境の変化に伴って質
量流量計の感度や測定値に変動が生じた場合の補正方式
としては、例えば特公平5−69452号公報,特開平
6−94501号公報に示すものなどがある。前者によ
れば、2つの温度センサを支持部と実質的に測定管の温
度に等しい位置に、それぞれ取り付け、この2つの温度
センサからの信号を補正回路に導くとともに、2つの振
動センサから導かれた流量信号も同様に補正回路に入力
して、補正を実施するようにしている。
As described above, as a correction method when the sensitivity or the measured value of the mass flowmeter fluctuates due to the change of the temperature environment, for example, Japanese Patent Publication No. 5-69452 and Japanese Patent Laid-Open No. 6-94501. There are those shown in the official gazette. According to the former, the two temperature sensors are mounted at positions substantially equal to the temperature of the support portion and the measuring tube, and the signals from the two temperature sensors are guided to the correction circuit and the two vibration sensors. Similarly, the flow rate signal is also input to the correction circuit to perform the correction.

【0017】一方、後者では、流量測定値を測定管の温
度に対応して補正するため、測定管の温度を検出する温
度センサと、測定値を測定管の長さおよび応力に依存し
て補正するための長さ変化センサ(例えばストレインゲ
ージなどのひずみゲージ)とを設け、それぞれの信号を
補正回路に導いて補正するようにしている。
On the other hand, in the latter, since the flow rate measurement value is corrected according to the temperature of the measuring pipe, the temperature sensor for detecting the temperature of the measuring pipe and the measured value are corrected depending on the length and stress of the measuring pipe. A length change sensor (for example, a strain gauge such as a strain gauge) is provided to guide each signal to a correction circuit for correction.

【0018】[0018]

【発明が解決しようとする課題】前者のように、測定管
と支持部の温度測定を行ない、ヤング率の変化に伴う変
化と、間接的に測定管の軸力を推定する場合、温度安定
時でも流体の温度と環境温度の差により、各部での温度
勾配が異なる場合がある。また、流体温度や環境温度が
変化する過渡的な状態においては、各部の温度勾配は当
然安定しない。したがって、上記のような各状態におい
ては測定管や支持部の平均温度を評価できる温度の測定
位置が常に変化するため、或る特定位置の温度測定では
正確な測定値の補正ができない場合が生じる。
As in the former case, when the temperature of the measuring tube and the supporting portion is measured and the change due to the change of the Young's modulus and the axial force of the measuring tube are indirectly estimated, when the temperature is stable. However, the temperature gradient in each part may differ due to the difference between the fluid temperature and the environmental temperature. Further, in a transient state in which the fluid temperature and the environmental temperature change, the temperature gradient of each part is naturally not stable. Therefore, in each of the above-mentioned states, the temperature measurement position at which the average temperature of the measurement pipe and the support portion can be evaluated is constantly changing, so that it may not be possible to accurately correct the measurement value by measuring the temperature at a specific position. .

【0019】一方、後者のように直接測定管の歪みを測
定するものでは、前者の方式に比べ歪みを直接測定して
いることから、正確な補正が可能となる点で優れている
が、測定管に直接ストレインゲージ等を取り付ける必要
があるため、測定管の振動特性に悪影響を及ぼし、測定
の安定性に問題が生じる。このような影響を避けるた
め、発明者は質量体を測定管の両側に取り付け、その外
側にストレインゲージを貼り付ける構成を提案してい
る。このとき、測定管の振動を安定化するため、質量体
の質量を測定管に対して充分に大きくする必要があり、
質量計が大型化し重くなるという別の問題が発生する。
On the other hand, in the latter case in which the strain of the measuring tube is directly measured, the strain is directly measured as compared with the former method, so that it is excellent in that accurate correction can be performed. Since it is necessary to directly attach a strain gauge or the like to the pipe, this adversely affects the vibration characteristics of the measuring pipe and causes a problem in measurement stability. In order to avoid such an influence, the inventor has proposed a configuration in which the mass body is attached to both sides of the measuring tube and the strain gauge is attached to the outside thereof. At this time, in order to stabilize the vibration of the measuring tube, it is necessary to make the mass of the mass body sufficiently large with respect to the measuring tube.
Another problem occurs that the mass meter becomes large and heavy.

【0020】また、支持部にストレインゲージを貼り付
ける別の構成も提案しているが、測定管を安定に振動さ
せるには、支持部の剛性を充分に大きくする必要がある
ため、測定管の断面積は支持部の断面積に比較してかな
り小さく、支持部に発生する歪みは測定管の歪みに比べ
てかなり小さくなるため、支持部の歪みから測定管の歪
みを推定する方式は、誤差が大きくなるという問題が生
じる。さらに長さ変化スロットを設け、測定管の長さを
測定する実施例も開示されているが、構造が複雑でコス
トアップになるという問題もある。したがって、この発
明の課題は測定精度の向上を、特に構造を複雑化するこ
となく安価に実現可能とすることにある。
Another structure has been proposed in which a strain gauge is attached to the supporting portion. However, in order to vibrate the measuring tube stably, the rigidity of the supporting portion needs to be sufficiently large. Since the cross-sectional area is much smaller than the cross-sectional area of the support part and the strain generated in the support part is much smaller than the strain of the measuring pipe, the method of estimating the strain of the measuring pipe from the strain of the supporting part is an error. Becomes large. Further, an example in which a length changing slot is provided to measure the length of the measuring tube is also disclosed, but there is a problem that the structure is complicated and the cost is increased. Therefore, an object of the present invention is to improve the measurement accuracy at low cost without complicating the structure.

【0021】[0021]

【課題を解決するための手段】このような課題を解決す
るため、請求項1の発明では、加振される少なくとも1
本の直管状測定管内を流れる流体の質量流量または密度
の少なくとも一方の測定が可能な振動型測定器におい
て、前記測定管の第1振動モードの共振周波数と第2振
動モードの共振周波数との比を求め、これらの共振周波
数比にもとづき測定値の補正を行なうことを特徴として
いる。
In order to solve such a problem, in the invention of claim 1, at least one vibration is applied.
In a vibration type measuring instrument capable of measuring at least one of a mass flow rate and a density of a fluid flowing in a straight measuring tube of a book, a ratio of a resonance frequency of a first vibration mode and a resonance frequency of a second vibration mode of the measuring tube. Is obtained, and the measured value is corrected based on these resonance frequency ratios.

【0022】また、請求項2の発明では、加振される少
なくとも1本の直管状測定管内を流れる流体の質量流量
または密度の少なくとも一方の測定が可能な振動型測定
器において、前記測定管を支持する支持部と、測定管を
加振する振動発生器と、測定管の中央に対してほぼ対称
な位置に配置され、測定管の振動を検出する第1,第2
の振動センサと、測定管の温度を測定する温度センサ
と、前記第1,第2振動センサの少なくとも一方の出力
から、測定管の第1振動モードの共振周波数と第2振動
モードの共振周波数との比を求め、この共振周波数比に
もとづき測定値の補正を行なう信号処理手段とを設けた
ことを特徴としている。
Further, in the invention of claim 2, in the vibration type measuring device capable of measuring at least one of the mass flow rate and the density of the fluid flowing in the at least one straight tubular measuring pipe to be vibrated, the measuring pipe is provided. A support part that supports the vibration, a vibration generator that vibrates the measurement pipe, and first and second vibration detection devices that are arranged at positions substantially symmetrical with respect to the center of the measurement pipe.
Of the vibration sensor, the temperature sensor for measuring the temperature of the measuring pipe, and the output of at least one of the first and second vibration sensors, the resonance frequency of the first vibration mode and the resonance frequency of the second vibration mode of the measurement pipe. And a signal processing means for correcting the measured value based on the resonance frequency ratio.

【0023】上記請求項1または2の発明では、前記第
1振動モードが測定管振動の基本モードであり、前記第
2振動モードが測定管振動の2次モードであることがで
き(請求項3の発明)、あるいは、前記第1振動モード
が測定管振動の基本モードであり、前記第2振動モード
が測定管振動の3次モードであることができる(請求項
4の発明)。
In the invention of claim 1 or 2, the first vibration mode may be a fundamental mode of vibration of the measuring tube, and the second vibration mode may be a secondary mode of vibration of the measuring tube (claim 3). Invention), or the first vibration mode may be a basic mode of measurement pipe vibration, and the second vibration mode may be a third mode of measurement pipe vibration (invention of claim 4).

【0024】[0024]

【作用】先の(14)式からも明らかなように、測定管
の共振周波数は軸力(応力)Tの変化に伴って変化す
る。境界条件と振動モードによって定まるλn (T)の
軸力変化に伴う変化量は、各振動モード毎に異なるた
め、各振動モードの共振周波数比は作用する軸力の変化
に伴って変化する。測定管に作用する軸力が変化した場
合の基本モード共振周波数と2次モード共振周波数との
比、または基本モード共振周波数と3次モード共振周波
数との比について、図2(イ),(ロ)に示す。これら
の図からも明らかなように、各モード間の共振周波数比
はほぼ直線的に変化し、これは任意のモード間の共振周
波数比についても成立する。
As is clear from the above equation (14), the resonance frequency of the measuring tube changes with the change of the axial force (stress) T. Since the amount of change in λ n (T) determined by the boundary condition and the vibration mode due to the change in the axial force differs for each vibration mode, the resonance frequency ratio of each vibration mode changes according to the change in the acting axial force. The ratio between the fundamental mode resonance frequency and the secondary mode resonance frequency or the ratio between the fundamental mode resonance frequency and the tertiary mode resonance frequency when the axial force acting on the measuring tube changes is shown in FIG. ). As is clear from these figures, the resonance frequency ratio between the modes changes almost linearly, and this holds even for the resonance frequency ratio between arbitrary modes.

【0025】このことは、各モード間の共振周波数比を
測定することにより、測定管に作用する軸力を知ること
ができることを示している。そこで、この発明では、測
定管に作用する軸力の変化に伴う流量測定感度の変化
を、共振周波数比に応じて補正することで、正確な測定
を可能とする。なお、密度測定値についても同様に、共
振周波数比に応じて補正する。
This means that the axial force acting on the measuring tube can be known by measuring the resonance frequency ratio between the modes. Therefore, in the present invention, the change in the flow rate measurement sensitivity due to the change in the axial force acting on the measuring pipe is corrected according to the resonance frequency ratio, thereby enabling accurate measurement. The density measurement value is similarly corrected according to the resonance frequency ratio.

【0026】[0026]

【実施例】図1はこの発明の実施例を説明するための構
成図である。同図からも明らかなように、この実施例の
特徴は検出部1に温度センサ10を付加した点、また、
信号処理回路9に周波数比演算部91,温度演算部93
および補正演算部94などを付加した点にあり、その他
は図3に示すものと同様である。したがって、ここでは
これらの相違点を中心に説明する。
1 is a block diagram for explaining an embodiment of the present invention. As is clear from the figure, the feature of this embodiment is that the temperature sensor 10 is added to the detection unit 1, and
The signal processing circuit 9 includes a frequency ratio calculator 91 and a temperature calculator 93.
And a correction calculation unit 94 is added, and the other points are the same as those shown in FIG. Therefore, these differences will be mainly described here.

【0027】先の(5),(9)式または(12),
(13)式に示すように、質量流量に比例して発生する
速度センサ6a,6bからの出力信号の位相差または時
間差が、ヤング率Eおよび軸力Tの関数であることか
ら、まず、温度センサ10からの出力を、温度演算部9
3で温度信号に変換する。次に、速度センサ6aからの
出力である共振周波数を周波数比演算部91に導き、検
出部1の構成と現在の駆動条件とから決まる共振周波数
比を演算する。
The above equations (5) and (9) or (12),
As shown in the equation (13), the phase difference or time difference between the output signals from the speed sensors 6a and 6b, which is generated in proportion to the mass flow rate, is a function of the Young's modulus E and the axial force T. The output from the sensor 10 is used as the temperature calculation unit 9
Convert to a temperature signal at 3. Next, the resonance frequency output from the speed sensor 6a is guided to the frequency ratio calculation unit 91, and the resonance frequency ratio determined by the configuration of the detection unit 1 and the current driving condition is calculated.

【0028】補正演算部94は周波数比演算部91,位
相差演算部92,温度演算部93および速度センサ6a
からの出力を受け、位相差演算部92からの位相差信号
を、ここでは速度センサ6aから得られる測定管の共振
周波数によって補正し、時間差信号に変換する。この時
間差信号は、補正演算部94で温度演算部93からの温
度信号と、周波数比演算部91からの共振周波数比信号
による測定管の軸力変化にともなう感度補正信号とによ
って補正が行なわれる。
The correction calculator 94 is a frequency ratio calculator 91, a phase difference calculator 92, a temperature calculator 93 and a speed sensor 6a.
The phase difference signal from the phase difference calculator 92 is corrected by the resonance frequency of the measuring tube obtained from the speed sensor 6a, and converted into a time difference signal. This time difference signal is corrected by the correction calculation unit 94 by the temperature signal from the temperature calculation unit 93 and the sensitivity correction signal due to the change in the axial force of the measuring tube due to the resonance frequency ratio signal from the frequency ratio calculation unit 91.

【0029】なお、上記では、補正演算部94に速度セ
ンサ6aからの出力を導入するようにしたが、速度セン
サ6bからの出力も導入するようにしても良い。また、
密度計における密度測定値についても上記と同様に、温
度と共振周波数比に応じた補正が行なわれることになる
のはいうまでもない。
In the above description, the output from the speed sensor 6a is introduced into the correction calculation unit 94, but the output from the speed sensor 6b may be introduced. Also,
It goes without saying that the density measurement value in the densitometer is also corrected in accordance with the temperature and the resonance frequency ratio in the same manner as above.

【0030】[0030]

【発明の効果】この発明によれば、例えば基本モード共
振周波数と高次モード共振周波数との比(一般には任意
の2つのモード共振周波数比)を求め、測定管に作用す
る軸力変化にともなう感度変化の補正を、温度補正に加
えて行なうようにしたので、検出部の構成を特に複雑化
せず、かつ振動型測定器の安定性を損なうこともなく、
さらには過渡的な温度変化時にも正確な測定が可能にな
る、などの利点がもたらされる。
According to the present invention, for example, the ratio of the fundamental mode resonance frequency to the higher mode resonance frequency (generally, the ratio of two arbitrary mode resonance frequencies) is obtained, and the axial force acting on the measuring tube is changed. Since the sensitivity change is corrected in addition to the temperature correction, the structure of the detection unit is not particularly complicated, and the stability of the vibration measuring instrument is not impaired.
Further, there are advantages such as that accurate measurement can be performed even when the temperature changes transiently.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】測定管の軸力と共振周波数比との関係例を説明
するための特性図である。
FIG. 2 is a characteristic diagram for explaining an example of a relationship between an axial force of a measuring tube and a resonance frequency ratio.

【図3】従来例を示す構成図である。FIG. 3 is a configuration diagram showing a conventional example.

【図4】流体に作用する加速度を説明するための説明図
である。
FIG. 4 is an explanatory diagram for explaining acceleration acting on a fluid.

【図5】測定管に作用する流体反力の影響を説明するた
めの説明図である。
FIG. 5 is an explanatory diagram for explaining an influence of a fluid reaction force acting on the measuring pipe.

【符号の説明】[Explanation of symbols]

1…検出部、2…測定管、3a,3b…固定材、4a,
4b…支持部、5…振動発生器、6a,6b…速度検出
センサ、7a,7b,7c…アダプタ、8…駆動回路、
9…信号処理回路、10…温度センサ。
DESCRIPTION OF SYMBOLS 1 ... Detection part, 2 ... Measuring tube, 3a, 3b ... Fixing material, 4a,
4b ... Support part, 5 ... Vibration generator, 6a, 6b ... Speed detection sensor, 7a, 7b, 7c ... Adapter, 8 ... Drive circuit,
9 ... Signal processing circuit, 10 ... Temperature sensor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鶴岡 亨彦 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshihiko Tsuruoka 1-1, Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 加振される少なくとも1本の直管状測定
管内を流れる流体の質量流量または密度の少なくとも一
方の測定が可能な振動型測定器において、 前記測定管の第1振動モードの共振周波数と第2振動モ
ードの共振周波数との比を求め、これらの共振周波数比
にもとづき測定値の補正を行なうことを特徴とする振動
型測定器。
1. A vibration measuring instrument capable of measuring at least one of a mass flow rate and a density of a fluid flowing in at least one straight tubular measuring pipe to be excited, wherein a resonance frequency of the measuring pipe in a first vibration mode. And a resonance frequency of the second vibration mode, and a measured value is corrected based on these resonance frequency ratios.
【請求項2】 加振される少なくとも1本の直管状測定
管内を流れる流体の質量流量または密度の少なくとも一
方の測定が可能な振動型測定器において、 前記測定管を支持する支持部と、測定管を加振する振動
発生器と、測定管の中央に対してほぼ対称な位置に配置
され、測定管の振動を検出する第1,第2の振動センサ
と、測定管の温度を測定する温度センサと、前記第1,
第2振動センサの少なくとも一方の出力から、測定管の
第1振動モードの共振周波数と第2振動モードの共振周
波数との比を求め、この共振周波数比にもとづき測定値
の補正を行なう信号処理手段とを設けたことを特徴とす
る振動型測定器。
2. A vibration type measuring instrument capable of measuring at least one of a mass flow rate and a density of a fluid flowing in at least one straight tubular measuring tube to be vibrated, the supporting part supporting the measuring tube, and the measuring part. A vibration generator that vibrates the pipe, first and second vibration sensors that are arranged at positions substantially symmetrical with respect to the center of the measurement pipe and that detect vibration of the measurement pipe, and a temperature that measures the temperature of the measurement pipe. A sensor and the first,
A signal processing means for obtaining a ratio between the resonance frequency of the first vibration mode and the resonance frequency of the second vibration mode of the measuring tube from the output of at least one of the second vibration sensors and correcting the measured value based on the resonance frequency ratio. A vibration type measuring instrument characterized in that and are provided.
【請求項3】 前記第1振動モードが測定管振動の基本
モードであり、前記第2振動モードが測定管振動の2次
モードであることを特徴とする請求項1または2に記載
の振動型測定器。
3. The vibration type according to claim 1, wherein the first vibration mode is a fundamental mode of vibration of the measuring tube, and the second vibration mode is a secondary mode of vibration of the measuring tube. Measuring instrument.
【請求項4】 前記第1振動モードが測定管振動の基本
モードであり、前記第2振動モードが測定管振動の3次
モードであることを特徴とする請求項1または2に記載
の振動型測定器。
4. The vibration type according to claim 1, wherein the first vibration mode is a fundamental mode of vibration of the measuring tube, and the second vibration mode is a third mode of vibration of the measuring tube. Measuring instrument.
JP21566394A 1994-09-09 1994-09-09 Oscillatory measuring instrument Pending JPH0875521A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP21566394A JPH0875521A (en) 1994-09-09 1994-09-09 Oscillatory measuring instrument
EP95114040A EP0701107B1 (en) 1994-09-09 1995-09-07 Vibration measuring instrument
DE69515576T DE69515576T2 (en) 1994-09-09 1995-09-07 Vibration measuring device
US08/525,466 US5728952A (en) 1994-09-09 1995-09-08 Vibration measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21566394A JPH0875521A (en) 1994-09-09 1994-09-09 Oscillatory measuring instrument

Publications (1)

Publication Number Publication Date
JPH0875521A true JPH0875521A (en) 1996-03-22

Family

ID=16676120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21566394A Pending JPH0875521A (en) 1994-09-09 1994-09-09 Oscillatory measuring instrument

Country Status (1)

Country Link
JP (1) JPH0875521A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101011809B1 (en) * 2003-09-29 2011-02-07 마이크로 모우션, 인코포레이티드 Diagnostic apparatus and methods for a coriolis flow meter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101011809B1 (en) * 2003-09-29 2011-02-07 마이크로 모우션, 인코포레이티드 Diagnostic apparatus and methods for a coriolis flow meter

Similar Documents

Publication Publication Date Title
US5728952A (en) Vibration measuring instrument
JP3565588B2 (en) Vibration type measuring instrument
US5831178A (en) Vibration type measuring instrument
US5069075A (en) Mass flow meter working on the coriolis principle
US5796010A (en) Coriolis mass flowmeter
JP3058074B2 (en) Vibration type measuring instrument
JP5222996B2 (en) Double pick-off vibratory flow meter
JP3265859B2 (en) Mass flow meter
JP2850556B2 (en) Coriolis mass flowmeter
JP3327325B2 (en) Coriolis mass flowmeter
JPH0875521A (en) Oscillatory measuring instrument
JP2966355B2 (en) Coriolis flow meter
JP2966356B2 (en) Mass flow meter converter
JP3058094B2 (en) Mass flow meter
WO2007007424A1 (en) Coriolis flow rate meter with flow tube of double loop structure
JPH0712612A (en) Coliolis type massflowmeter
JP3278037B2 (en) Vibration type measuring instrument
JPH08193864A (en) Coriolis mass flowmeter
JPH0526709A (en) Coriolis mass flowmeter
JP3757559B2 (en) Coriolis mass flow meter
JP3262193B2 (en) Vibration type measuring instrument
JPH0650784A (en) Mass flowmeter
JPH0783718A (en) Coriolis mass flowmeter
JP3937220B2 (en) Coriolis mass flow meter
US20010049971A1 (en) Coriolis flowmeter