JPH0873520A - Production of coagulated particle from polymer latex - Google Patents

Production of coagulated particle from polymer latex

Info

Publication number
JPH0873520A
JPH0873520A JP23236694A JP23236694A JPH0873520A JP H0873520 A JPH0873520 A JP H0873520A JP 23236694 A JP23236694 A JP 23236694A JP 23236694 A JP23236694 A JP 23236694A JP H0873520 A JPH0873520 A JP H0873520A
Authority
JP
Japan
Prior art keywords
latex
particles
coagulated
particle size
coagulated particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23236694A
Other languages
Japanese (ja)
Inventor
Koji Ono
耕司 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP23236694A priority Critical patent/JPH0873520A/en
Publication of JPH0873520A publication Critical patent/JPH0873520A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE: To obtain substantially spherical coagulated particles having a sharp particle size distribution without using any coagulant, thus greatly reducing the amount of a washing soln. CONSTITUTION: A process for producing coagulated particles from a polymer latex is provided wherein the dielectric constant around the latex basic particles contained in a latex obtd. by emulsion polymn. is adjusted to 10-70 at the temp. of coagulating by using an aq. soln. of an org. solvent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高分子ラテックスより
凝固粒子を製造する方法に関し、更に詳しくは、凝固剤
を使用せずにラテックスを凝固させ、粒度分布がシャー
プで、ほぼ球形の凝固粒子を得るとともに、洗浄液量を
低減し得る凝固粒子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing coagulated particles from a polymer latex, more specifically, coagulating latex without using a coagulant, which has a sharp particle size distribution and substantially spherical coagulated particles. And a method for producing coagulated particles capable of reducing the amount of cleaning liquid.

【0002】[0002]

【従来の技術】一般に乳化重合法により製造された高分
子ラテックスから粉末状重合体を回収するにあたって
は、ラテックス中に無機塩類、酸類等の凝固剤水溶液を
添加し、または逆に凝固剤水溶液中にラテックスを投入
し液相中で凝固させ、熱処理等の操作によりスラリー状
にした後、脱水工程、乾燥工程を経て粉末状重合体を回
収している。この際、形成されるラテックスの凝固体は
形状が不定形であり粒径の調整が困難であるため、凝固
体の粒度分布が広くなり微粉の発生量が多くなる傾向が
ある。その結果、微粉の飛散に基づく樹脂の損失、目詰
まりによる工程上のトラブルの頻発、粉塵発生による作
業環境の悪化、粉塵爆発による危険性の増大等の問題点
が生じている。また、脱水性、乾燥性、流動性、耐ブロ
ッキング性等が悪いため、高価な脱水、乾燥設備を必要
とする。
2. Description of the Related Art Generally, when recovering a powdery polymer from a polymer latex produced by an emulsion polymerization method, an aqueous solution of a coagulant such as an inorganic salt or an acid is added to the latex, or vice versa. The latex is charged into the above to coagulate in a liquid phase, and after being made into a slurry by an operation such as heat treatment, a powdery polymer is recovered through a dehydration step and a drying step. At this time, the coagulated body of the latex to be formed has an indefinite shape and it is difficult to adjust the particle size. Therefore, the particle size distribution of the coagulated body tends to be broad and the amount of fine powder generated tends to increase. As a result, there are problems such as loss of resin due to scattering of fine powder, frequent process troubles due to clogging, deterioration of working environment due to dust generation, and increased risk of dust explosion. Further, since the dehydration property, drying property, fluidity, blocking resistance and the like are poor, expensive dehydration and drying equipment is required.

【0003】また乳化重合法では重合時に乳化剤を用い
ており、凝固時に用いられる凝固剤と共に、残存すれば
製品品質を著しく低下させる場合があるため、乳化剤、
凝固剤の洗浄が不可欠となり多量の洗浄液が必要であ
る。近年では、この洗浄液の排出による環境破壊が大き
な問題となっている。
In the emulsion polymerization method, an emulsifier is used at the time of polymerization, and if it remains together with the coagulant used at the time of coagulation, the product quality may be significantly deteriorated.
Cleaning of the coagulant is indispensable and a large amount of cleaning liquid is required. In recent years, environmental damage due to the discharge of the cleaning liquid has become a serious problem.

【0004】これらの問題を解決するため、これまで種
々の方法が提案されている。例えばラテックスを凝固性
雰囲気中へ噴霧して球状凝固粒子として回収する方法
や、水相に分散した有機溶剤中へ凝固粒子を吸収し、溶
剤の除去と凝固粒子の固化をすることで球状凝固粒子を
回収する方法等が提案されている。前者の方法では50
0μm以上の粒子の製造や軟化温度が80℃以上である
高耐熱性高分子の製造に関しては工業的には困難である
し、また後者の方法では溶剤の除去、夾雑物の除去の困
難さに加え、高分子の種類によっては利用できる有機溶
剤がないなど、コスト面、品質面、適用範囲、粒子特性
等の問題が提起されている。
In order to solve these problems, various methods have been proposed so far. For example, a method of collecting latex as spherical coagulated particles by spraying into a coagulating atmosphere, or absorbing coagulated particles in an organic solvent dispersed in an aqueous phase, removing the solvent and solidifying the coagulated particles to form spherical coagulated particles. A method of recovering the waste has been proposed. 50 in the former method
It is industrially difficult to produce particles of 0 μm or more and a high heat-resistant polymer having a softening temperature of 80 ° C. or more, and the latter method makes it difficult to remove solvents and contaminants. In addition, depending on the type of polymer, there are problems such as cost, quality, range of application, and particle characteristics, such as no usable organic solvent.

【0005】一方では、ラテックスを直接乾燥するスプ
レー乾燥や真空造粒乾燥があり、数多くの装置上の工夫
が試されている。しかし、これらの方法ではラテックス
中の夾雑物の除去が困難であること、大きい粒子を製造
するには設備が大型化するのに加え、低濃度のラテック
スでは大量の熱エネルギーが必要であることから処理費
がかかるなど、品質面、コスト面での制約が大きくなっ
ている。また従来の方法における共通の課題として、夾
雑物の除去、また夾雑物除去のために使用した洗浄液排
出による環境問題が依然未解決のままである。
On the other hand, there are spray drying for directly drying the latex and vacuum granulation drying, and many device ideas have been tried. However, it is difficult to remove impurities in the latex by these methods, large equipment is required for producing large particles, and a large amount of heat energy is required for low-concentration latex. There are significant restrictions in terms of quality and cost, such as processing costs. Further, as a common problem in the conventional methods, the environmental problem due to the removal of impurities and the discharge of the cleaning liquid used for removing the impurities remains unsolved.

【0006】[0006]

【発明が解決しようとする課題】本発明は高分子ラテッ
クスより凝固粒子を製造する方法において、微粉の発生
量を減少させ、その結果、凝固粒子の粒度分布がシャー
プになり、且つ粒径の調整が可能で、更に洗浄液量を低
減させ得る方法を提供する。
DISCLOSURE OF THE INVENTION The present invention is a method for producing coagulated particles from polymer latex, which reduces the amount of fine powder generated, resulting in a sharp particle size distribution of coagulated particles and adjustment of the particle size. And a method capable of further reducing the amount of cleaning liquid.

【0007】[0007]

【課題を解決するための手段】本発明者らは乳化重合法
で得られた高分子ラテックスの凝固操作において、任意
の攪拌下でラテックス粒子周辺の比誘電率を、有機溶剤
の水溶液を用いて調整しラテックス粒子間反発力を低下
させることにより、凝固剤を用いることなく、粒度分布
のシャープさを表す指標であるロジンラムラー式の傾き
が2以上であるシャープな粒度分布を持つほぼ球形の凝
固粒子を形成できることを見いだした。更に、凝固時の
攪拌レイノルズ数を操作することにより凝固粒子の粒径
が調整可能であることを見いだした。
Means for Solving the Problems In the coagulation operation of a polymer latex obtained by an emulsion polymerization method, the present inventors have used an aqueous solution of an organic solvent to determine the relative dielectric constant around the latex particles under arbitrary stirring. By adjusting the repulsive force between latex particles to reduce the repulsive force between latex particles, a substantially spherical coagulated particle having a sharp particle size distribution with a slope of 2 or more of the Rosin-Rammler formula, which is an index showing the sharpness of the particle size distribution, without using a coagulant. I found that I can form. Further, it was found that the particle size of the solidified particles can be adjusted by manipulating the stirring Reynolds number during solidification.

【0008】即ち、本発明の第1は、乳化重合法で得ら
れたラテックス液に含まれるラテックス基本粒子周辺の
比誘電率を、有機溶剤の水溶液を用いて凝固時の温度下
で10〜70に調整することを特徴とする、高分子ラテ
ックスより凝固粒子を製造する方法を、
That is, the first aspect of the present invention is that the relative dielectric constant around the latex basic particles contained in the latex liquid obtained by the emulsion polymerization method is 10 to 70 at a temperature at the time of coagulation using an aqueous solution of an organic solvent. A method for producing coagulated particles from a polymer latex, which is characterized in that

【0009】本発明の第2は、上記の方法において、攪
拌レイノルズ数を1000〜10000の範囲内で操作
することにより凝固粒子の粒径をコントロールすること
を特徴とする、高分子ラテックスより凝固粒子を製造す
る方法を、それぞれ内容とするものである。
The second aspect of the present invention is that in the above method, the particle size of the coagulated particles is controlled by operating the stirring Reynolds number within the range of 1,000 to 10,000, and the coagulated particles are made from polymer latex. The method for producing the above is respectively described.

【0010】以下に本発明を更に詳細に説明する。本発
明に用いる高分子ラテックスは、特に限定されないが、
例えば、スチレン、モノクロロスチレン、ジクロロスチ
レン、α−メチルスチレン等のビニル芳香族、アクリロ
ニトリル、メタクリロニトリル等のビニルシアン化物、
メチルアクリレート、エチルアクリレート、ブチルアク
リレート等のアクリルエステル、メチルメタクリレー
ト、エチルメタクリレート、ブチルメタクリレート等の
メタクリルエステル、塩化ビニル、臭化ビニル、弗化ビ
ニル等のハロゲン化ビニル、塩化ビニリデン、臭化ビニ
リデン等のハロゲン化ビニリデン、アクリル酸、メタク
リル酸、イタコン酸、マレイン酸、酢酸ビニル、エチレ
ン、プロピレン、ブチレン、ブタジエン、イソプレン、
クロロプレン、アリルメタクリレート、ジアリルフタレ
ート、トリアリルシアヌレート、モノエチレングリコー
ルジメタクリレート、テトラエチレングリコールジメタ
クリレート、ジビニルベンゼン、グリシジルメタクリレ
ート等の架橋モノマーが挙げられ、それらのホモ重合
体、共重合体またはそれら重合体のラテックスの混合物
にも適用できる。
The present invention will be described in more detail below. The polymer latex used in the present invention is not particularly limited,
For example, vinyl aromatic such as styrene, monochlorostyrene, dichlorostyrene and α-methylstyrene, vinyl cyanide such as acrylonitrile and methacrylonitrile,
Acrylic esters such as methyl acrylate, ethyl acrylate and butyl acrylate, methacrylic esters such as methyl methacrylate, ethyl methacrylate and butyl methacrylate, vinyl halides such as vinyl chloride, vinyl bromide and vinyl fluoride, vinylidene chloride and vinylidene bromide. Vinylidene halide, acrylic acid, methacrylic acid, itaconic acid, maleic acid, vinyl acetate, ethylene, propylene, butylene, butadiene, isoprene,
Examples include cross-linking monomers such as chloroprene, allyl methacrylate, diallyl phthalate, triallyl cyanurate, monoethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, divinylbenzene, and glycidyl methacrylate, and their homopolymers, copolymers or their polymers. It can also be applied to a mixture of coalesced latices.

【0011】この場合、重合時に用いた乳化剤が有機溶
媒の水溶液に溶解するものである場合は、凝固時に乳化
剤の洗浄効果がある上に、本凝固法では凝固剤を使用し
ないため、洗浄工程での洗浄液量が減少でき排水量が低
減できるので極めて好都合である。なお、高分子ラテッ
クスの固形分濃度は20〜50重量%が好ましい。固形
分が20重量%未満では凝固粒子製造時に微粉が発生し
やすくなり、50重量%を越えるとラテックスの安定性
が悪くなる傾向がある。本発明に用いる水溶性の有機溶
剤は、特に限定されないが、例えば、メタノール、エタ
ノール、n−プロパノール、イソプロパノール、n−ブ
タノール、イソブタノール、2−ブタノール、t−ブタ
ノール等のアルコール類、プロピレンオキシド、ジオキ
サン、トリオキサン、フルフラール等のアセタール類、
アセトン、メチルアセトン、メチルエチルケトン等のケ
トン類、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エ
チル等のエステル類、エチレングリコール、エチレング
リコールモノメチルエーテルアセテート、エチレングリ
コールモノエチルエーテル等の多価アルコール類、ギ
酸、酢酸、プロピオン酸等の脂肪酸類、フェノール、ク
レゾール等のフェノール類、ニトロベンゼン、ジエチル
アミン、トリエチルアミン等の窒素化合物が挙げられ、
これらは単独あるいは2種以上の混合物で使用すること
ができる。なお、比誘電率を調整した有機溶剤の水溶液
に樹脂が溶解してはならない。
In this case, when the emulsifier used in the polymerization is soluble in an aqueous solution of an organic solvent, it has a washing effect on the emulsifier during coagulation and, in the coagulation method, no coagulant is used. This is extremely convenient because the amount of cleaning liquid can be reduced and the amount of drainage can be reduced. The solid content concentration of the polymer latex is preferably 20 to 50% by weight. If the solid content is less than 20% by weight, fine powder tends to be generated during the production of coagulated particles, and if it exceeds 50% by weight, the stability of the latex tends to deteriorate. The water-soluble organic solvent used in the present invention is not particularly limited, but for example, alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, 2-butanol, t-butanol, propylene oxide, Acetals such as dioxane, trioxane and furfural,
Acetone, methylacetone, ketones such as methylethylketone, methyl formate, ethyl formate, methyl acetate, esters such as ethyl acetate, ethylene glycol, ethylene glycol monomethyl ether acetate, polyhydric alcohols such as ethylene glycol monoethyl ether, formic acid, Acetic acid, fatty acids such as propionic acid, phenol, phenols such as cresol, nitrogen compounds such as nitrobenzene, diethylamine and triethylamine,
These can be used alone or as a mixture of two or more kinds. The resin should not be dissolved in an aqueous solution of an organic solvent whose relative dielectric constant is adjusted.

【0012】本発明において、ラテックス粒子周辺の比
誘電率は、凝固時の温度下で10〜70、好ましくは2
0〜60に調整される。比誘電率が10より低くなる
と、凝集速度が速すぎ粒子が成長するという現象が見ら
れず、粒子形状が不定形になり微粉の発生量が多くな
る。逆に比誘電率が70より高くなると、凝集速度が遅
すぎ凝固粒子の形成に時間がかかりすぎ生産性が低下す
る。
In the present invention, the relative dielectric constant around the latex particles is 10 to 70, preferably 2 at the temperature during solidification.
It is adjusted to 0-60. When the relative dielectric constant is lower than 10, the phenomenon that the aggregation speed is too fast and particles grow is not seen, and the particle shape becomes irregular and the amount of fine powder generated increases. On the other hand, when the relative dielectric constant is higher than 70, the aggregation speed is too slow and it takes too long to form the solidified particles, so that the productivity is lowered.

【0013】次に、比誘電率の測定方法を説明する。比
誘電率は水溶液の電気容量を測定し、その測定値から算
出する。電気容量を測定する電極には金メッキを施した
真鍮性の二重円筒管を用い、外部電極と内部電極の間に
有機溶剤の水溶液を仕込み、LCRメーターを使用し交
流電流により水溶液の電気容量を測定する。本発明にお
いて、凝固温度は0〜120℃が好ましく、温度により
比誘電率が変化するので調整が必要である。
Next, a method for measuring the relative dielectric constant will be described. The relative dielectric constant is calculated from the measured value by measuring the electric capacity of the aqueous solution. A gold-plated brass double cylindrical tube is used as an electrode for measuring the electric capacity, an aqueous solution of an organic solvent is charged between the external electrode and the internal electrode, and the electric capacity of the aqueous solution is measured by an alternating current using an LCR meter. taking measurement. In the present invention, the solidification temperature is preferably 0 to 120 ° C., and the relative dielectric constant changes depending on the temperature, so that adjustment is necessary.

【0014】本発明において、有機溶剤の水溶液中にお
ける粒子濃度は、好ましくは2〜10重量%、更に好ま
しくは4〜8重量%の条件下で凝固操作を行う。粒子濃
度が2重量%より低くなると、粒子同士の衝突回数が減
少することにより凝固体の形成に時間がかかる。逆に粒
子濃度が10重量%より高くなると、凝固初期に起こる
粘度の上昇により攪拌を均一に加えることができず凝固
体の粒度分布がブロードになる。本発明において、攪拌
レイノルズ数を操作することにより、凝固粒子の粒径を
コントロールすることができる。攪拌レイノルズ数は1
000〜10000の範囲で操作するのが好ましい。攪
拌レイノルズ数が1000未満では凝固粒子の粒径を揃
えることが難しく、粒度分布がブロードになり、100
00を越えると微粉しか製造できず各工程での操作性の
低下、作業環境の悪化を引き起こす原因となる。
In the present invention, the coagulation operation is performed under the condition that the particle concentration in the aqueous solution of the organic solvent is preferably 2 to 10% by weight, more preferably 4 to 8% by weight. If the particle concentration is lower than 2% by weight, the number of collisions between particles is reduced and thus it takes time to form a solidified body. On the other hand, if the particle concentration is higher than 10% by weight, the increase in the viscosity that occurs at the initial stage of solidification makes it impossible to uniformly add stirring, and the particle size distribution of the solidified product becomes broad. In the present invention, the particle size of the solidified particles can be controlled by manipulating the stirring Reynolds number. Stirring Reynolds number is 1
It is preferable to operate in the range of 000 to 10,000. If the stirring Reynolds number is less than 1000, it is difficult to make the particle sizes of the solidified particles uniform, and the particle size distribution becomes broad, and
If it exceeds 00, only fine powder can be produced, which causes deterioration of operability in each step and deterioration of working environment.

【0015】[0015]

【実施例】以下実施例により本発明を更に詳細に説明す
るが、本発明はかかる実施例のみに限定されるものでは
ない。 実施例1 ラテックス粒子周辺の比誘電率が24.6(75℃)に
なるようにイソプロパノール水溶液を調整し、内径75
mmφの円筒形の凝固槽内に300cm3 仕込んだ。同温に
昇温したアクリロニトリルと塩化ビニルを共重合させた
ラテックス(乳化剤としてラウリル硫酸ナトリウムを使
用)であって、アクリロニトリル50重量%、塩化ビニ
ル50重量%よりなり、軟化点が90℃で固形分濃度3
1重量%のラテックスを、攪拌羽根として角度付き4枚
プロペラ(2段)を使用し攪拌レイノルズ数5470の
攪拌下にある上記のイソプロパノール水溶液中に粒子濃
度6重量%になるように投入し、30分攪拌を行った。
以上の条件によりラテックスを凝固し、平均粒径93μ
m、ロジンラムラー式の傾き4.5である、図1に示す
粒度分布を持ち、図5の顕微鏡写真に示す概ね球形の凝
固粒子を得た。なお、乳化剤は、仕込み乳化剤量の6
3.6%が凝固粒子の外部に除去されていた。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. Example 1 An isopropanol aqueous solution was adjusted so that the relative dielectric constant around the latex particles was 24.6 (75 ° C.), and the inner diameter was 75.
300 cm 3 was charged in a cylindrical coagulation tank of mmφ. A latex obtained by copolymerizing acrylonitrile and vinyl chloride heated to the same temperature (using sodium lauryl sulfate as an emulsifier), which comprises 50% by weight of acrylonitrile and 50% by weight of vinyl chloride and has a softening point of 90 ° C. and a solid content of 90 ° C. Concentration 3
1% by weight of latex was added to the above isopropanol aqueous solution under stirring with a stirring Reynolds number of 5470 using an angled 4-blade propeller (2 stages) as a stirring blade so that the particle concentration would be 6% by weight. It was stirred for a minute.
The latex was coagulated under the above conditions, and the average particle size was 93μ.
m and a Rosin-Rammler slope of 4.5, the particle size distribution shown in FIG. 1 and substantially spherical coagulated particles shown in the micrograph of FIG. 5 were obtained. In addition, the emulsifier is 6 times the amount of the charged emulsifier.
3.6% was removed outside the solidified particles.

【0016】実施例2 次の各条件を変更した他は、実施例1と同様にして凝固
粒子を得た。即ち、比誘電率が51.1(30℃)にな
るようにt−ブタノール水溶液を調整し凝固槽に仕込
み、同温に昇温したメチルメタクリレート、ブチルアク
リレートを共重合させたラテックス(乳化剤としてオレ
イン酸カリウムを使用)であって、メチルメタクリレー
ト30重量%、ブチルアクリレート70重量%よりな
り、軟化点が65℃であり固形分濃度32重量%のラテ
ックスを、攪拌レイノルズ数8200の攪拌下にある上
記のt−ブタノール水溶液中に粒子濃度6重量%になる
ように投入した。以上の条件によりラテックスを凝固
し、平均粒径400μm、ロジンラムラー式の傾き5.
1である、図2に示す粒度分布を持ち、図6の顕微鏡写
真に示す概ね球形の凝固粒子を得た。なお、乳化剤は、
仕込み乳化剤量の56.3%が凝固粒子の外部に除去さ
れていた。
Example 2 Coagulated particles were obtained in the same manner as in Example 1 except that the following conditions were changed. That is, a latex prepared by adjusting an aqueous t-butanol solution to a relative dielectric constant of 51.1 (30 ° C.), charging it in a coagulation tank, and copolymerizing methyl methacrylate and butyl acrylate heated to the same temperature (olein as an emulsifier). (A potassium acidate is used), which comprises 30% by weight of methyl methacrylate and 70% by weight of butyl acrylate, has a softening point of 65 ° C. and a solid content concentration of 32% by weight, and is subjected to stirring with stirring Reynolds number 8200. Was added to the t-butanol aqueous solution so that the particle concentration would be 6% by weight. 4. The latex was coagulated under the above conditions, the average particle size was 400 μm, and the slope of the Rosin-Rammler formula was 5.
2 was obtained, and the substantially spherical solidified particles shown in the micrograph of FIG. 6 were obtained. The emulsifier is
56.3% of the charged emulsifier amount was removed to the outside of the coagulated particles.

【0017】実施例3 次の各条件を変更した他は、実施例1と同様にして凝固
粒子を得た。即ち、比誘電率が60.5(30℃)にな
るようにn−プロパノール水溶液を調整し凝固槽に仕込
み、同温に昇温したメチルメタクリレート、ブタジエ
ン、スチレンを共重合させたラテックス(乳化剤として
オレイン酸カリウムを使用)であって、メチルメタクリ
レート10重量%、ブタジエン60重量%、スチレン3
0重量%よりなり、軟化点が50℃であり固形分濃度3
0重量%のラテックスを、攪拌レイノルズ数8200の
攪拌下にある上記のn−プロパノール水溶液中に粒子濃
度6重量%になるように投入した。以上の条件によりラ
テックスを凝固し、平均粒径175μm、ロジンラムラ
ー式の傾き3.2である、図3に示す粒度分布を持ち、
図7の顕微鏡写真に示す概ね球形の凝固粒子を得た。な
お、乳化剤は、仕込み乳化剤量の65.9%が凝固粒子
の外部に除去されていた。
Example 3 Coagulated particles were obtained in the same manner as in Example 1 except that the following conditions were changed. That is, a latex prepared by adjusting an n-propanol aqueous solution so as to have a relative dielectric constant of 60.5 (30 ° C.), charging it in a coagulation tank, and copolymerizing methyl methacrylate, butadiene, and styrene heated to the same temperature (as an emulsifier, Potassium oleate), which is 10% by weight of methyl methacrylate, 60% by weight of butadiene, and 3 of styrene.
0% by weight, softening point of 50 ° C, solid content of 3
0% by weight of latex was added to the above-mentioned aqueous solution of n-propanol under stirring with Reynolds number of 8200 so as to have a particle concentration of 6% by weight. The latex is coagulated under the above conditions, and has a particle size distribution shown in FIG. 3, which has an average particle size of 175 μm and a Rosin-Rammler slope of 3.2.
The substantially spherical solidified particles shown in the micrograph of FIG. 7 were obtained. As for the emulsifier, 65.9% of the charged emulsifier was removed to the outside of the coagulated particles.

【0018】実施例4 次の各条件を変更した他は、実施例1と同様にして凝固
粒子を得た。即ち、比誘電率が23.8(70℃)にな
るようにエタノール水溶液を調整し凝固槽に仕込み、同
温に昇温した実施例1と同様のラテックスを攪拌レイノ
ルズ数2730、4100、5470、6830、82
00のそれぞれの攪拌下にある上記のエタノール水溶液
中に粒子濃度6.2重量%になるように投入した。以上
の条件によりラテックスを凝固し、各攪拌条件により、
それぞれ図4に示すような粒径の異なるシャープな粒度
分布を持つ凝固粒子を得た。
Example 4 Coagulated particles were obtained in the same manner as in Example 1 except that the following conditions were changed. That is, an aqueous ethanol solution was adjusted so that the relative dielectric constant was 23.8 (70 ° C.), the mixture was charged in a coagulation tank, and the same latex as in Example 1 heated to the same temperature was stirred and Reynolds number 2730, 4100, 5470, 6830, 82
Into each of the above-mentioned ethanol aqueous solutions of No. 00 under stirring, they were added so as to have a particle concentration of 6.2% by weight. The latex is coagulated under the above conditions, and by each stirring condition,
Coagulated particles having sharp particle size distributions having different particle sizes as shown in FIG. 4 were obtained.

【0019】比較例1 次の条件を変更した他は、実施例1と同様にして凝固体
を得た。即ち、比誘電率が8.4(85℃)になるよう
にt−ブタノール水溶液を調整し凝固槽に仕込み、同温
に昇温した実施例1と同様のラテックスを攪拌下にある
上記のt−ブタノールの水溶液中に投入した。以上の条
件によりラテックスを凝固したところ、非常にブロード
な粒度分布を持ち、形状が不定形である凝固体を得た。
Comparative Example 1 A coagulated product was obtained in the same manner as in Example 1 except that the following conditions were changed. That is, t-butanol aqueous solution was adjusted so that the relative dielectric constant was 8.4 (85 ° C.), the t-butanol aqueous solution was charged into the coagulation tank, and the same latex as in Example 1 heated to the same temperature was stirred under the above t. Thrown into an aqueous solution of butanol. When the latex was coagulated under the above conditions, a coagulum having a very broad particle size distribution and an irregular shape was obtained.

【0020】比較例2 次の条件を変更した他は、実施例1と同様に実施した。
即ち、比誘電率が72.6(20℃)になるようにエタ
ノール水溶液を調整し凝固槽に仕込み、同温に昇温した
実施例1と同様のラテックスを攪拌下にある上記のエタ
ノール水溶液中に投入した。以上の条件によりラテック
スを凝固したところ、1時間経過しても凝固粒子の形成
は見られず、ラテックスは分散したままの状態であっ
た。
Comparative Example 2 The procedure of Example 1 was repeated except that the following conditions were changed.
That is, an aqueous ethanol solution was adjusted so that the relative dielectric constant was 72.6 (20 ° C.), charged into a coagulation tank, and the same latex as in Example 1 heated to the same temperature was stirred in the above aqueous ethanol solution. I put it in. When the latex was coagulated under the above conditions, formation of coagulated particles was not observed even after 1 hour, and the latex remained in a dispersed state.

【0021】[0021]

【発明の効果】叙上のとおり、本発明によれば、ほぼ球
形で、シャープな粒度分布を有する凝固粒子を得ること
ができ、また粒径をコントロールして所望の粒径の凝固
粒子を得ることができる。かくして、微粉の発生が抑え
られ、製造工程での操作性、工程安定性、作業環境の向
上に貢献するものである。更に、凝固の際に乳化剤を洗
浄できるとともに、凝固剤を使用しないため、洗浄工程
における洗浄液量を減少させることができるので、排水
量が少なくてすみ環境を汚染したり破壊したりする虞れ
が小さい。
As described above, according to the present invention, it is possible to obtain coagulated particles having a substantially spherical shape and a sharp particle size distribution, and controlling the particle size to obtain coagulated particles having a desired particle size. be able to. Thus, generation of fine powder is suppressed, which contributes to improvement of operability in the manufacturing process, process stability, and working environment. Furthermore, since the emulsifier can be washed during coagulation and the coagulant is not used, the amount of cleaning liquid in the cleaning step can be reduced, so the amount of drainage is small and there is little risk of contaminating or destroying the environment. .

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で得られた凝固粒子の粒度分布を示す
グラフである。
FIG. 1 is a graph showing a particle size distribution of coagulated particles obtained in Example 1.

【図2】実施例2で得られた凝固粒子の粒度分布を示す
グラフである。
FIG. 2 is a graph showing the particle size distribution of coagulated particles obtained in Example 2.

【図3】実施例3で得られた凝固粒子の粒度分布を示す
グラフである。
FIG. 3 is a graph showing a particle size distribution of coagulated particles obtained in Example 3.

【図4】実施例4で得られた凝固粒子の粒度分布を示す
グラフである。
FIG. 4 is a graph showing a particle size distribution of coagulated particles obtained in Example 4.

【図5】実施例1で得られた凝固粒子の粒子構造を示す
顕微鏡写真である。
5 is a micrograph showing the particle structure of the solidified particles obtained in Example 1. FIG.

【図6】実施例2で得られた凝固粒子の粒子構造を示す
顕微鏡写真である。
6 is a micrograph showing the particle structure of the solidified particles obtained in Example 2. FIG.

【図7】実施例3で得られた凝固粒子の粒子構造を示す
顕微鏡写真である。
7 is a micrograph showing the particle structure of the solidified particles obtained in Example 3. FIG.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年1月5日[Submission date] January 5, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図5[Name of item to be corrected] Figure 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図5】 [Figure 5]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図6[Name of item to be corrected] Figure 6

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図6】 [Figure 6]

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図7[Name of item to be corrected] Figure 7

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図7】 [Figure 7]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 乳化重合法で得られたラテックス液に含
まれるラテックス基本粒子周辺の比誘電率を、有機溶剤
の水溶液を用いて凝固時の温度下で10〜70の範囲内
に調整することによりラテックスを凝固させることを特
徴とする、高分子ラテックスより凝固粒子を製造する方
法。
1. The relative dielectric constant around the latex basic particles contained in the latex liquid obtained by the emulsion polymerization method is adjusted within the range of 10 to 70 at a temperature during coagulation using an aqueous solution of an organic solvent. A method for producing coagulated particles from a polymer latex, which comprises coagulating the latex by means of:
【請求項2】 請求項1記載の方法において、攪拌レイ
ノルズ数を1000〜10000の範囲内で操作するこ
とにより凝固粒子の粒径をコントロールすることを特徴
とする、高分子ラテックスより凝固粒子を製造する方
法。
2. The method according to claim 1, wherein the particle size of the coagulated particles is controlled by operating the stirring Reynolds number in the range of 1,000 to 10,000 to produce coagulated particles from polymer latex. how to.
JP23236694A 1994-08-31 1994-08-31 Production of coagulated particle from polymer latex Withdrawn JPH0873520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23236694A JPH0873520A (en) 1994-08-31 1994-08-31 Production of coagulated particle from polymer latex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23236694A JPH0873520A (en) 1994-08-31 1994-08-31 Production of coagulated particle from polymer latex

Publications (1)

Publication Number Publication Date
JPH0873520A true JPH0873520A (en) 1996-03-19

Family

ID=16938097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23236694A Withdrawn JPH0873520A (en) 1994-08-31 1994-08-31 Production of coagulated particle from polymer latex

Country Status (1)

Country Link
JP (1) JPH0873520A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031245A1 (en) 2011-08-29 2013-03-07 ハイモ株式会社 Pulverulent hydrophilic polymer, method for producing same, and flocculation treatment agent using same
JP2020084079A (en) * 2018-11-28 2020-06-04 Toyo Tire株式会社 Manufacturing method of rubber-like polymer
WO2023210819A1 (en) * 2022-04-28 2023-11-02 ダイキン工業株式会社 Method for producing fluoropolymer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031245A1 (en) 2011-08-29 2013-03-07 ハイモ株式会社 Pulverulent hydrophilic polymer, method for producing same, and flocculation treatment agent using same
JP2020084079A (en) * 2018-11-28 2020-06-04 Toyo Tire株式会社 Manufacturing method of rubber-like polymer
WO2023210819A1 (en) * 2022-04-28 2023-11-02 ダイキン工業株式会社 Method for producing fluoropolymer

Similar Documents

Publication Publication Date Title
JP5010465B2 (en) Method for producing coagulated latex particles
JP5185534B2 (en) Method for producing coagulated latex particles
EP0084837B1 (en) Flocculation of latex particles and production of thermoplastic resin
EP1908792B1 (en) Process for production of coagulated latex particles
JPWO2006092897A1 (en) Method for producing coagulated latex particles
US20070219294A1 (en) Method for manufacturing coagulated particles from latex prepared by emulsion polymerization
US10392477B2 (en) Method for manufacturing coagulated particles from latex prepared by emulsion polymerization, aggregates from latex prepared by emulsion polymerization, and coagulated particles from latex prepared by emulsion polymerization
JPH0873520A (en) Production of coagulated particle from polymer latex
JP4042724B2 (en) Fluoropolymer aggregate and method for producing the same
JP3453759B2 (en) Method for producing polytetrafluoroethylene molding powder
JP5498402B2 (en) Method for producing polyvinyl alcohol resin
JPH0240086B2 (en) NETSUKASOSEIJUSHINOSEIZOHOHO
JPH11300121A (en) Solid liquid separation method of fluorine-containing polymer particle
JPH0459010B2 (en)
JP2004143267A (en) Method for producing resin particle
KR20020057419A (en) Multi-stage process for continuous coagulation
JPH0959390A (en) Spherical polymer particle and its production
WO2005007709A1 (en) Fluoropolymer aggregate and method for producing same
JP2897490B2 (en) Method for producing ethylenically unsaturated nitrile-conjugated diene copolymer rubber
JP3947234B2 (en) Manufacturing method of vinyl chloride resin for paste processing
JPH07268017A (en) Production of thermoplastic polymer powder
JP2559833B2 (en) Continuous production method of powdery and granular polymer and method of controlling particle size of the polymer
JPH06298839A (en) Method for coagulating unsaturated nitrile-conjugated diene copolymer rubber
JPS58176218A (en) Coagulation of latex
JPH0580936B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011106