JPH087344B2 - Liquid crystal electro-optical device manufacturing method - Google Patents

Liquid crystal electro-optical device manufacturing method

Info

Publication number
JPH087344B2
JPH087344B2 JP62257899A JP25789987A JPH087344B2 JP H087344 B2 JPH087344 B2 JP H087344B2 JP 62257899 A JP62257899 A JP 62257899A JP 25789987 A JP25789987 A JP 25789987A JP H087344 B2 JPH087344 B2 JP H087344B2
Authority
JP
Japan
Prior art keywords
liquid crystal
cell
crystal material
optical device
crystal cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62257899A
Other languages
Japanese (ja)
Other versions
JPH01100514A (en
Inventor
俊夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP62257899A priority Critical patent/JPH087344B2/en
Priority to EP19880309073 priority patent/EP0310403B1/en
Priority to US07/254,096 priority patent/US4917473A/en
Priority to EP88116958A priority patent/EP0312028B1/en
Priority to DE88116958T priority patent/DE3883341T2/en
Publication of JPH01100514A publication Critical patent/JPH01100514A/en
Priority to US07/704,022 priority patent/US5193019A/en
Publication of JPH087344B2 publication Critical patent/JPH087344B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、パーソナルコンピュータやワードプロセッ
サ等の平面型表示装置として用いられる液晶電気光学装
置作製方法に関するものである。
The present invention relates to a liquid crystal electro-optical device manufacturing method used as a flat-panel display device such as a personal computer and a word processor.

〔従来の技術〕[Conventional technology]

パーソナルコンピュータ、ワードプロセッサ等の平面
型表示装置には、液晶電気光学装置が多く用いられてい
る。これら液晶電気光学装置は、TN型の液晶材料を用い
ていた。
Liquid crystal electro-optical devices are often used for flat-panel display devices such as personal computers and word processors. These liquid crystal electro-optical devices used a TN type liquid crystal material.

最近、ネマティック相以外にもスメクチックA相、カ
イラルスメクチックC相を用いた液晶電気光学装置が開
発されている。このスメクチック相を用いたパネルの場
合、パネルに外部より加わる衝撃による分子配向乱れ、
または層構造の乱れ等が発生する。また、表示方式とし
て複屈折モードを用いた場合、不均一セル厚による色ム
ラ等の問題が発生する。これらの対策のために、上下ガ
ラス基板をセル内部で、なんらかの方法で接着させる方
法が注目を浴び、実用化が進められている。
Recently, liquid crystal electro-optical devices using a smectic A phase and a chiral smectic C phase in addition to the nematic phase have been developed. In the case of a panel using this smectic phase, the molecular orientation disorder due to the impact applied to the panel from the outside,
Or, the layer structure is disturbed. Further, when the birefringence mode is used as the display method, a problem such as color unevenness due to the nonuniform cell thickness occurs. For these measures, a method of adhering the upper and lower glass substrates inside the cell by some method has attracted attention and is being put into practical use.

第1図は液晶セルの断面構造を示す図である。 FIG. 1 is a diagram showing a sectional structure of a liquid crystal cell.

第1図において、(1)は偏光板、(2)は基板、
(3)は透明電極、(4)は配向処理層、(5)は液
晶、(6)はセル外周シール、(7)は偏光板、(8)
は内部接着用樹脂、(9)はギャップ制御用スペーサで
ある。
In FIG. 1, (1) is a polarizing plate, (2) is a substrate,
(3) is a transparent electrode, (4) is an alignment treatment layer, (5) is a liquid crystal, (6) is a cell outer peripheral seal, (7) is a polarizing plate, (8).
Is an internal adhesive resin, and (9) is a gap control spacer.

偏光板(1)、(7)の偏光軸のなす角は、表示モー
ドの種類等により異なるが、通常、互いに垂直となるよ
うに設けられている。また、配向処理層(4)は、絶縁
性被膜上に水平配向処理を施したもので、外周シールに
よる注入口と水平配向処理方向配置は、任意のものが通
常用いられている。
The angles formed by the polarization axes of the polarizing plates (1) and (7) differ depending on the type of display mode and the like, but they are usually provided so as to be perpendicular to each other. The orientation treatment layer (4) is obtained by subjecting an insulating film to a horizontal orientation treatment, and an injection port and a horizontal orientation treatment direction arrangement by an outer peripheral seal are generally arbitrary.

このように液晶表示素子を作製するには、必ずこのセ
ルに液晶を注入することが必要となる。
In order to manufacture a liquid crystal display element in this way, it is necessary to inject liquid crystal into this cell without fail.

この液晶注入法において、従来用いられた方法は、液
晶材料と液晶セルを真空チャンバ内に設置し、真空チャ
ンバ内を真空に排気した後、液晶セルの注入口付近に液
晶材料を接触させた後、チャンバ内を徐々に大気圧に戻
して、セル内の圧力とチャンバ内の圧力との差により、
液晶材料をセル内に注入するものであった。このとき液
晶材料は、粘性の低い状態、または流動性のある状態に
なるように液晶セルの液晶材料を適当に加熱し、接触さ
せて、充填させた後、すぐに取り出していた。
In this liquid crystal injection method, a conventionally used method is to install a liquid crystal material and a liquid crystal cell in a vacuum chamber, evacuate the vacuum chamber to a vacuum, and then contact the liquid crystal material near the injection port of the liquid crystal cell. , The chamber is gradually returned to atmospheric pressure, and the difference between the pressure in the cell and the pressure in the chamber causes
The liquid crystal material was injected into the cell. At this time, the liquid crystal material was taken out immediately after the liquid crystal material of the liquid crystal cell was appropriately heated, brought into contact with and filled with the liquid crystal material so that it had a low viscosity or a fluid state.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、このような従来の方法では、液晶の温
度変化に対応する体積変化により、セル内部に液晶の充
填されない局所が発生し、製品として歩留りを下げてい
た。
However, in such a conventional method, the volume change corresponding to the temperature change of the liquid crystal causes a local area where the liquid crystal is not filled inside the cell, which lowers the yield as a product.

本発明は、セル内部をなんらかの方法で接着して、セ
ルに液晶を充填した後に、液晶の温度変化に対応する体
積変化による未充填部分の発生を防止する液晶電気光学
装置作製方法を提供することを目的とする。
The present invention provides a method for manufacturing a liquid crystal electro-optical device which prevents the occurrence of an unfilled portion due to a volume change corresponding to a temperature change of liquid crystal after the inside of the cell is bonded by some method and the liquid crystal is filled in the cell. With the goal.

〔課題を解決するための手段〕[Means for solving the problem]

前記目的を達成するために、本発明の液晶電気光学装
置作製方法は、減圧注入法にて、液晶材料を液晶セルに
注入する際に、液晶セルの液晶配向制御方向に対して垂
直方向に設けられた液晶注入口より液晶材料を注入する
もので、減圧容器内に入れて、液晶セルの内部を減圧状
態に排気すると共に、液晶材料を注入し易い温度にする
工程と、液晶セルにおける液晶注入口を液晶材料で塞ぐ
工程と、減圧容器内を減圧状態から大気圧に戻すことに
より、液晶材料を液晶注入口から液晶セルの内部に注入
する工程と、前記液晶セルを前記温度から使用温度以下
にまで冷却しながら前記液晶材料を注入する工程とを有
することを特徴とする。
In order to achieve the above-mentioned object, a method for manufacturing a liquid crystal electro-optical device according to the present invention is to provide a liquid crystal material in a direction perpendicular to a liquid crystal alignment control direction of the liquid crystal cell when the liquid crystal material is injected into the liquid crystal cell by a reduced pressure injection method. The liquid crystal material is injected through the liquid crystal injection port, which is placed in a decompression container, the inside of the liquid crystal cell is evacuated to a decompressed state, and the temperature is adjusted so that the liquid crystal material can be easily injected. The step of closing the inlet with a liquid crystal material, the step of injecting the liquid crystal material into the inside of the liquid crystal cell from the liquid crystal inlet by returning the inside of the decompression container from the decompressed state to the atmospheric pressure, And a step of injecting the liquid crystal material while cooling to 1.

また、本発明の液晶電気光学装置作製方法における液
晶材料は、スメクチック液晶相を有することを特徴とす
る。
Further, the liquid crystal material in the liquid crystal electro-optical device manufacturing method of the invention is characterized by having a smectic liquid crystal phase.

〔実 施 例〕〔Example〕

以下に実施例により本発明の方法を説明する。 The method of the present invention will be described below with reference to examples.

第2図(A)、(B)は本発明の液晶セルの配向制御
方向と液晶材料の注入方向との関係を説明するための図
である。
FIGS. 2A and 2B are views for explaining the relationship between the orientation control direction of the liquid crystal cell of the present invention and the injection direction of the liquid crystal material.

第2図(A)、(B)において、内部接着用樹脂(1
2)とギャップ制御用スペーサ(13)と周囲が封止され
た一定の間隔を持つガラス基板(9)、(10)により形
成された空間の周囲へ、封止部(11)の水平配向処理方
向(液晶分子長軸が向く方向)と垂直方向に、少なくと
も一か所に設けられた液晶注入口(14)より液晶材料を
注入する。
In FIG. 2 (A) and (B), the internal adhesive resin (1
2), a gap control spacer (13), and a horizontal orientation treatment of the sealing part (11) around the space formed by the glass substrate (9) and (10) with a fixed gap around the periphery. A liquid crystal material is injected through a liquid crystal injection port (14) provided at least at one position in a direction perpendicular to the direction (direction in which the long axis of the liquid crystal molecule faces).

前述のように形成された液晶セルを、気密性の減圧容
器内に設け、当該減圧容器内を排気し、液晶注入口(1
4)を液晶材料で塞ぐ。この後、減圧容器内の圧力を大
気圧になるように徐々に戻すことにより、液晶容器内に
液晶材料が注入される。この後、液晶セルを予め等方性
液体、または粘性の低い状態の温度にした恒温槽に移
し、液晶セルを均一に徐冷する。その時の徐冷スピード
は、液晶材料と液晶注入口(14)の大きさにより違う。
液晶材料は、使用温度より低温にし、適当温度で液晶注
入口(14)を封止し、液晶を液晶セルに注入する工程を
終了する。
The liquid crystal cell formed as described above is provided in an airtight decompression container, the interior of the decompression container is evacuated, and the liquid crystal inlet (1
Block 4) with liquid crystal material. Then, the liquid crystal material is injected into the liquid crystal container by gradually returning the pressure in the decompression container to atmospheric pressure. After that, the liquid crystal cell is transferred to an isotropic liquid or a thermostatic bath whose temperature is low in advance, and the liquid crystal cell is annealed uniformly. The slow cooling speed at that time depends on the size of the liquid crystal material and the liquid crystal inlet (14).
The temperature of the liquid crystal material is lower than the operating temperature, the liquid crystal injection port (14) is sealed at an appropriate temperature, and the step of injecting the liquid crystal into the liquid crystal cell is completed.

他の実施例においては、公知の真空液晶注入装置を使
用した。第2図に示すように、液晶セルは、ガラス等の
絶縁性透光性基板(9)、(10)上に形成された透明電
極(15)、および配向処理層(16)を内側に対抗させて
ギャップ制御用スペーサ(13)で支持し、内部接着用樹
脂(12)でセル内部を固定し、周囲を封止部(11)で封
止し、水平配向処理方向(液晶分子長軸が向く方向)と
垂直方向に数カ所の液晶注入口(14)を設けるようにガ
ラス基板(9)、(10)を張り合わせた。
In another example, a known vacuum liquid crystal injection device was used. As shown in FIG. 2, the liquid crystal cell has an insulating translucent substrate (9) such as glass (9), a transparent electrode (15) formed on (10), and an alignment treatment layer (16) facing inside. Then, it is supported by the gap control spacer (13), the inside of the cell is fixed by the internal adhesive resin (12), and the periphery is sealed by the sealing part (11). The glass substrates (9) and (10) were attached to each other so that several liquid crystal injection ports (14) were provided in the vertical direction (toward the facing direction).

このような構造を持つ液晶セルを液晶注入装置内に入
れ、液晶注入装置内を減圧状態とする。この減圧状態
は、6×10-2torrとした。この後、液晶材料をディスペ
ンサーにより滴下して液晶注入口(14)を塞いだ。この
際、液晶材料の流動性を増すためにネマティック相、ま
たはアイソトロピック相領域付近まで温度を上げた。
The liquid crystal cell having such a structure is put in the liquid crystal injecting device to reduce the pressure in the liquid crystal injecting device. This reduced pressure state was set to 6 × 10 -2 torr. Then, the liquid crystal material was dropped by a dispenser to close the liquid crystal injection port (14). At this time, the temperature was raised to near the nematic phase or isotropic phase region in order to increase the fluidity of the liquid crystal material.

次に、減圧容器内の圧力を大気圧まで、ゆっくり戻し
ていき、液晶注入口(14)より液晶材料をセル内に注入
した。
Next, the pressure in the decompression container was slowly returned to atmospheric pressure, and the liquid crystal material was injected into the cell through the liquid crystal injection port (14).

その後、液晶セルを予めアイソトロピック相、または
ネマティック相の温度に調整した恒温槽に移し、セルを
面的に均一に徐冷する。本実施例では−5度C/hrの速度
で行った。これを0度Cになった時に紫外線硬化エポキ
シ接着剤によりその液晶注入口(14)を封止し、周囲に
付着した液晶材料を除去した液晶セルを完成させた。
Then, the liquid crystal cell is transferred to a constant temperature bath previously adjusted to the temperature of the isotropic phase or the nematic phase, and the cell is gradually and uniformly cooled in a plane. In this example, the process was performed at a speed of -5 degrees C / hr. When the temperature reached 0 ° C., the liquid crystal injection port (14) was sealed with an ultraviolet curing epoxy adhesive to complete the liquid crystal cell in which the liquid crystal material attached to the periphery was removed.

第3図は本発明の液晶セルの配向制御方向と液晶材料
の注入方向との関係を説明するための図である。
FIG. 3 is a diagram for explaining the relationship between the orientation control direction of the liquid crystal cell of the present invention and the injection direction of the liquid crystal material.

また、液晶セルの構造は、たとえば、第3図のような
構造でも本発明方法は適用できる。
The method of the present invention can also be applied to the structure of the liquid crystal cell, for example, as shown in FIG.

すなわち、第3図に示す実施例では、液晶セルの液晶
配向制御方向に対して垂直方向で、かつ両側に液晶注入
口を設けている。このような構成とすることで、液晶材
料の注入速度をあげている。
That is, in the embodiment shown in FIG. 3, liquid crystal injection ports are provided on both sides in a direction perpendicular to the liquid crystal alignment control direction of the liquid crystal cell. With such a structure, the injection speed of the liquid crystal material is increased.

〔発明の効果〕〔The invention's effect〕

本発明によれば、液晶セル内部を何らかの方法で接着
し、液晶中口を水平配向処理方向(液晶分子長軸が向く
方向)と垂直方向に少なくとも1か所に設けられた液晶
セルにスメクチック液晶材料を注入する際に、液晶の温
度に対応して体積が変化することによって発生する未充
填個所をなくすことができるものである。
According to the present invention, the inside of the liquid crystal cell is bonded by some method, and the smectic liquid crystal is attached to the liquid crystal cell provided in at least one position in the vertical direction with respect to the horizontal alignment treatment direction (direction in which the long axis of the liquid crystal molecule is oriented). It is possible to eliminate an unfilled portion which is generated when the material is injected and the volume changes according to the temperature of the liquid crystal.

本発明によれば、液晶セルに未充填個所がなくなるた
め、液晶材料の厚さが均一な液晶セルを提供でき、セル
厚の不均一による色ムラの発生を抑えることができた。
According to the present invention, since there is no unfilled portion in the liquid crystal cell, it is possible to provide a liquid crystal cell in which the thickness of the liquid crystal material is uniform, and it is possible to suppress the occurrence of color unevenness due to the nonuniform cell thickness.

【図面の簡単な説明】[Brief description of drawings]

第1図は液晶セルの断面構造を示す図である。 第2図(A)および(B)は本発明の液晶セルの配向制
御方向と液晶材料の注入方向との関係を説明するための
図である。 第3図は本発明の液晶セルの配向制御方向と液晶材料の
注入方向との関係を説明するための図である。 1……偏光板 2……基板 3……透明電極 4……配向処理層 5……液晶 6……セル外周シール 7……偏光板 8……内部接着用樹脂 9……ギャップ制御用スペーサ(ガラス基板) 10……ガラス基板 11……封止部 12……内部接着用樹脂 13……ギャップ制御用スペーサ 14……液晶注入口 15……透明電極 16……配向処理層
FIG. 1 is a diagram showing a sectional structure of a liquid crystal cell. 2 (A) and 2 (B) are views for explaining the relationship between the orientation control direction of the liquid crystal cell of the present invention and the injection direction of the liquid crystal material. FIG. 3 is a diagram for explaining the relationship between the orientation control direction of the liquid crystal cell of the present invention and the injection direction of the liquid crystal material. 1 ... Polarizer 2 ... Substrate 3 ... Transparent electrode 4 ... Alignment treatment layer 5 ... Liquid crystal 6 ... Cell peripheral seal 7 ... Polarizing plate 8 ... Internal adhesive resin 9 ... Gap control spacer ( Glass substrate) 10 …… Glass substrate 11 …… Sealing part 12 …… Internal adhesive resin 13 …… Gap control spacer 14 …… Liquid crystal injection port 15 …… Transparent electrode 16 …… Alignment treatment layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】減圧注入法にて液晶材料を液晶セルに注入
する際に、液晶セルの液晶配向制御方向に対して垂直方
向に設けられた液晶注入口より液晶材料を注入する液晶
電気光学装置作製方法において、 減圧容器内に入れて、液晶セルの内部を減圧状態に排気
すると共に、液晶材料を注入し易い温度にする工程と、 液晶セルにおける液晶注入口を液晶材料で塞ぐ工程と、 減圧容器内を減圧状態から大気圧に戻すことにより、液
晶材料を液晶注入口から液晶セルの内部に注入する工程
と、 前記液晶セルを前記温度から使用温度以下にまで冷却し
ながら前記液晶材料を注入する工程と、 液晶注入口を封止する工程と、 を有することを特徴とする液晶電気光学装置作製方法。
1. A liquid crystal electro-optical device which, when injecting a liquid crystal material into a liquid crystal cell by a reduced pressure injection method, injects the liquid crystal material from a liquid crystal injection port provided in a direction perpendicular to a liquid crystal alignment control direction of the liquid crystal cell. In the manufacturing method, a step of putting in a decompression container, exhausting the inside of the liquid crystal cell to a decompressed state, and making a temperature at which a liquid crystal material can be easily injected, a step of closing a liquid crystal injection port in the liquid crystal cell with a liquid crystal material, and a decompression A step of injecting a liquid crystal material into the inside of the liquid crystal cell from a liquid crystal injection port by returning the inside of the container from a decompressed state to atmospheric pressure, and injecting the liquid crystal material while cooling the liquid crystal cell from the temperature to the use temperature or lower. And a step of sealing the liquid crystal injection port, and a method of manufacturing a liquid crystal electro-optical device, comprising:
【請求項2】特許請求の範囲第1項において、前記液晶
材料はスメクチック液晶相を有することを特徴とする液
晶電気光学装置作製方法。
2. A method of manufacturing a liquid crystal electro-optical device according to claim 1, wherein the liquid crystal material has a smectic liquid crystal phase.
JP62257899A 1987-09-29 1987-10-13 Liquid crystal electro-optical device manufacturing method Expired - Lifetime JPH087344B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP62257899A JPH087344B2 (en) 1987-10-13 1987-10-13 Liquid crystal electro-optical device manufacturing method
EP19880309073 EP0310403B1 (en) 1987-09-29 1988-09-29 Liquid crystal electro-optical device
US07/254,096 US4917473A (en) 1987-10-13 1988-10-06 Method of manufacturing liquid crystal devices
EP88116958A EP0312028B1 (en) 1987-10-13 1988-10-12 A method of manufacturing liquid crystal devices
DE88116958T DE3883341T2 (en) 1987-10-13 1988-10-12 Method of manufacturing liquid crystal devices.
US07/704,022 US5193019A (en) 1987-10-13 1991-05-22 Method of manufacturing liquid crystal devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62257899A JPH087344B2 (en) 1987-10-13 1987-10-13 Liquid crystal electro-optical device manufacturing method

Publications (2)

Publication Number Publication Date
JPH01100514A JPH01100514A (en) 1989-04-18
JPH087344B2 true JPH087344B2 (en) 1996-01-29

Family

ID=17312734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62257899A Expired - Lifetime JPH087344B2 (en) 1987-09-29 1987-10-13 Liquid crystal electro-optical device manufacturing method

Country Status (1)

Country Link
JP (1) JPH087344B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59149323A (en) * 1983-02-16 1984-08-27 Sharp Corp Production of liquid crystal display cell
JPH0785144B2 (en) * 1985-08-01 1995-09-13 セイコー電子工業株式会社 Method for manufacturing smectic liquid crystal device
JP2681267B2 (en) * 1986-04-21 1997-11-26 キヤノン株式会社 Manufacturing method of liquid crystal element

Also Published As

Publication number Publication date
JPH01100514A (en) 1989-04-18

Similar Documents

Publication Publication Date Title
US6011609A (en) Method of manufacturing LCD by dropping liquid crystals on a substrate and then pressing the substrates
US4917473A (en) Method of manufacturing liquid crystal devices
US6844908B2 (en) Apparatus for injecting liquid crystal materials and methods for manufacturing liquid crystal panels by using the same
JPH087344B2 (en) Liquid crystal electro-optical device manufacturing method
US5193019A (en) Method of manufacturing liquid crystal devices
JPS63237031A (en) Liquid crystal display element
JPH067237B2 (en) Liquid crystal electro-optical device manufacturing method
JPH0534696A (en) Production of liquid crystal electrooptical element
JPH0337624A (en) Liquid crystal element
JPH1020315A (en) Method for injecting liquid crystal to liquid crystal display device
JPH01262524A (en) Liquid crystal display element
JPH10104562A (en) Production of liquid crystal display and apparatus for production
JPS6330822A (en) Injecting method for liquid crystal
JPH01304426A (en) Liquid crystal display element
JP4158890B2 (en) Liquid crystal optical element and manufacturing method thereof
JP3159456B2 (en) Method for manufacturing color liquid crystal display element
JPS63223619A (en) Method for injecting liquid crystal
JPH06186573A (en) Liquid crystal display device
KR930005556B1 (en) Making method of lcd
JPH06265916A (en) Production of liquid crystal display device and its apparatus
JPH04362922A (en) Manufacture of liquid crystal display element
JPH0627471A (en) Production of liquid crystal panel
JPH05165038A (en) Manufacture of liquid crystal element
JP2535506B2 (en) Liquid crystal cell manufacturing method
JPS63218923A (en) Liquid crystal injection port sealing method for liquid crystal display element

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080129

Year of fee payment: 12