JPH0871972A - Automatic adjustment method for robot and camera - Google Patents

Automatic adjustment method for robot and camera

Info

Publication number
JPH0871972A
JPH0871972A JP6217030A JP21703094A JPH0871972A JP H0871972 A JPH0871972 A JP H0871972A JP 6217030 A JP6217030 A JP 6217030A JP 21703094 A JP21703094 A JP 21703094A JP H0871972 A JPH0871972 A JP H0871972A
Authority
JP
Japan
Prior art keywords
camera
robot
coordinates
circles
fields
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6217030A
Other languages
Japanese (ja)
Other versions
JP3144233B2 (en
Inventor
Tsuneyoshi Takahashi
常悦 高橋
Satoru Nomura
悟 野村
Kiyohide Abe
清秀 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP21703094A priority Critical patent/JP3144233B2/en
Publication of JPH0871972A publication Critical patent/JPH0871972A/en
Application granted granted Critical
Publication of JP3144233B2 publication Critical patent/JP3144233B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Image Analysis (AREA)
  • Manipulator (AREA)
  • Image Processing (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE: To provide an automatic adjustment method for a robot and a plurality of cameras, which can automate the axial alignment of the robot and the cameras, which can calculates degrees of overlapping among the fields of vision of the cameras, and which can calculate calibrations so as to eliminate errors caused by a worker. CONSTITUTION: An alignment plate 10 formed therein circles (hole) (a, b, c, d) at the four corners thereof is moved along robot coordinate axes, and the center of circular coordinates in each field of vision is obtained. From circular coordinates of the axes of the camera coordinates, a calibration and an inclination of a camera are obtained, degrees of overlapping among fields of vision and an axial deviation of the camera are obtained from the circular coordinates of the axes of camera coordinates in a condition such that the fields of vision are overlapped with each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、カメラによる画像処理
の結果を利用してロボットにてハンドリングを行なう場
合のロボットとカメラの自動調整方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for automatically adjusting a robot and a camera when the robot handles the result of image processing by the camera.

【0002】[0002]

【従来の技術とその課題】カメラを用いて画像処理によ
りある物体の位置を検出し、その位置情報をもとにロボ
ットにてハンドリングを行なうことが一般に行なわれて
いる。この場合、ロボット自体が内部に有するXY平面
上の座標とカメラひいては画像処理装置が持つXY平面
座標とがそれぞれに存在することになる。このため、カ
メラによるロボットの作業に当ってはこの座標を一致さ
せたり関連付ける必要がある。
2. Description of the Related Art It is generally practiced to detect the position of an object by image processing using a camera and to handle the object by a robot based on the position information. In this case, the coordinates on the XY plane that the robot itself has and the coordinates on the XY plane that the camera and by extension the image processing device have exist respectively. For this reason, it is necessary to match or associate the coordinates when the robot works with the camera.

【0003】従来において、ロボットの座標軸とカメラ
(画像処理装置)の座標軸とを合わせるに当っては、人
手によって正確に合わせるようにしているが、この作業
は面倒でありまた作業する人によってどうしても誤差が
生ずる。また、カメラを2台以上用いてひとつの物体の
位置を検出する場合、各カメラの視野の位置関係をはか
り、この関係を画像処理装置にデータとして与えたり、
カメラ視野を決められた位置に合わせる必要がある。更
に、画像処理装置で位置検出を行なう場合、単位画素が
何mmであるかのキャリブレーションが必要となる。こ
のため、カメラの視野を計って計算するとか、決められ
た視野にカメラを合わせてキャリブレーションを特定す
る必要がある。
Conventionally, the coordinate axis of the robot and the coordinate axis of the camera (image processing device) are manually adjusted accurately. However, this work is troublesome, and the error is inevitable depending on the operator. Occurs. Further, when detecting the position of one object using two or more cameras, the positional relationship between the visual fields of the cameras is measured, and this relationship is given to the image processing device as data.
It is necessary to adjust the camera view to the determined position. Further, when the position is detected by the image processing device, it is necessary to calibrate how many mm the unit pixel is. Therefore, it is necessary to measure and calculate the field of view of the camera, or to match the camera to the determined field of view to specify the calibration.

【0004】本発明は、上述の問題に鑑み、ロボットと
カメラとの軸合せを自動化し、カメラが複数台の場合の
カメラ視野のオーバラップを自動計算し、またカメラの
キャリブレーションを自動計算し、更には作業者による
誤差を無くすようにしたロボットとカメラとの自動調整
方法を提供する。
In view of the above problems, the present invention automates the axis alignment between the robot and the camera, automatically calculates the overlap of the camera visual fields when there are a plurality of cameras, and automatically calculates the calibration of the camera. Furthermore, the invention provides an automatic adjustment method between a robot and a camera that eliminates an error caused by an operator.

【0005】[0005]

【課題を解決するための手段】上述の目的を達成する本
発明は、四隅に円を有する合せ板をロボットに持たせこ
の合せ板をカメラの複数視野ごとにかつ各視野にまたが
ってロボット座標軸に沿い移動させ、上記各視野での円
中心座標を求めてカメラ座標軸上の円相互の偏差からキ
ャリブレーションとカメラ傾きを求め、上記各視野にま
たがった状態で円中心座標を求めてカメラ座標軸上の円
相互の偏差から視野オーバラップ量とカメラ軸ずれを求
め、るようにしたことを特徴とする。
According to the present invention for achieving the above object, a robot is provided with a laminated plate having circles at four corners, and the laminated plate is provided for each of a plurality of visual fields of a camera and as a robot coordinate axis. By moving along, the coordinates of the center of the circle in each field of view are calculated, the calibration and the camera tilt are calculated from the deviations of the circles on the camera coordinate axes, and the coordinates of the center of the circle are calculated across the fields of view to determine the coordinates of the center of the camera It is characterized in that the visual field overlap amount and the camera axis deviation are obtained from the deviation between the circles.

【0006】[0006]

【作用】ロボットの座標軸に沿う合せ板にてカメラの座
標軸の値をわり出すことにより、相対的にロボットの座
標軸に対するカメラの座標軸が得られる結果、複数のカ
メラがある場合も問題なく位置合わせやキャリブレーシ
ョンを特定できる。
By calculating the value of the coordinate axis of the camera with the matching plate along the coordinate axis of the robot, the coordinate axis of the camera relative to the coordinate axis of the robot can be obtained. The calibration can be specified.

【0007】[0007]

【実施例】ここで、図1〜図4を参照して本発明の実施
例を説明する。図1は、本実施例の調整装置に用いる合
せ板10であり、その四隅には円a,b,c,dが描か
れており(又は穴が開けられており)、合せ板10全体
としてはカメラ(図示省略)の視野に入る大きさとなっ
ている。かかる合せ板10をロボット座標軸と平行にな
るようにロボット(図示省略)にて持ち、ついでこの合
せ板10を位置計測を行なう物と同一の高さでロボット
座標軸と平行に動かす。
EXAMPLES Examples of the present invention will now be described with reference to FIGS. FIG. 1 shows a laminated plate 10 used in the adjusting apparatus of this embodiment, and circles a, b, c, d are drawn (or holes are formed) at its four corners, and the laminated plate 10 as a whole is shown. Has a size within the field of view of a camera (not shown). The laminated plate 10 is held by a robot (not shown) so as to be parallel to the robot coordinate axes, and then this laminated plate 10 is moved parallel to the robot coordinate axes at the same height as the position measurement object.

【0008】最初にロボットに合せ板10を持たせた状
態にてカメラによる画像処理装置で円a,b,c,dの
中心座標を求める。この中心座標を次のようにする。 a:(ax ,ay ) b:(bx ,by ) c:(cx ,cy ) d:(dx ,dy ) また、円と円との距離をLとする。かかる数値を得たう
えで、次式ΔX,ΔYを得る。 ΔX=(bx −ax )+(dx −cx )×1/2 ΔY=(by −ay )+(dy −cy )×1/2 すなわち、円どうしのX座標、Y座標上の長さが得られ
る。したがって、キャリブレーション(ChgX,Y)は
次式で示される。 ChgX=L/ΔX ChgY=L/ΔY また、カメラの傾きChgθは次式となる。 Chgθ=tan -1(ΔY/ΔX) かかる円の中心a,b,c,d、長さΔX,ΔY、キャ
リブレーションChgX,ChgY、カメラ傾きChgθを図
2に示す視野1、図3に示す視野2にて求めることによ
り、各カメラの値が得られることになる。
First, the center coordinates of the circles a, b, c, d are obtained by an image processing device using a camera with the robot having the matching plate 10. The center coordinates are as follows. a: (a x, a y ) b: (b x, b y) c: (c x, c y) d: (d x, d y) also the distance between the circle and the circle with L. After obtaining such numerical values, the following equations ΔX and ΔY are obtained. ΔX = (b x -a x) + (d x -c x) × 1/2 ΔY = (b y -a y) + (d y -c y) × 1/2 That is, X-coordinate of the circle each other, The length on the Y coordinate is obtained. Therefore, the calibration (ChgX, Y) is expressed by the following equation. ChgX = L / ΔX ChgY = L / ΔY Further, the camera inclination Chgθ is given by the following equation. Chgθ = tan −1 (ΔY / ΔX) Centers a, b, c and d of such circles, lengths ΔX and ΔY, calibration ChgX and ChgY, and camera tilt Chgθ are the visual field 1 shown in FIG. 2 and the visual field shown in FIG. The value of each camera can be obtained by obtaining the value in 2.

【0009】ついで、図4に示すように各視野1,2に
合せ板10の円が2個ずつ入るように移動させる。そし
て、同じ視野側の(同じカメラでの)円の座標上の偏差
を採る。 ΔX1 =cx −ax ΔY1 =cy −ay ΔX2 =dx −bx ΔY2 =dy −by カメラの傾きは次のようになる。 θ1 =−tan -1(ΔX1 /ΔY1 ) θ2 =−tan -1(ΔX2 /ΔY2 ) この結果オーバラップ量(overX,Y)は、円aを基準
にして円bまでの距離を出すことにより求まり、 overX=ax +Lcos(θ1)−bx overY=ay +Lsin(θ1)−by となる。また、カメ
ラ軸ずれoverθは次のようになる。 overθ=θ2 −θ1 この場合、オーバラップは例えば視野の左上を原点とし
て視野1の原点から視野2の原点までとする。また、実
際に位置計測を行なう場合は、画像処理装置上の座標を
キャリブレーション、カメラ傾き、オーバラップ、カメ
ラ軸ずれを用いて、空間座標に置きかえる。
Next, as shown in FIG. 4, two circles of the laminated plate 10 are moved so as to enter the respective visual fields 1 and 2. Then, the deviation on the coordinates of the circle (with the same camera) on the same visual field side is taken. [Delta] X 1 = slope of the c x -a x ΔY 1 = c y -a y ΔX 2 = d x -b x ΔY 2 = d y -b y camera is as follows. θ 1 = −tan −1 (ΔX 1 / ΔY 1 ) θ 2 = −tan −1 (ΔX 2 / ΔY 2 ). As a result, the amount of overlap (overX, Y) is from the circle a to the circle b. distance approximated by the issuing of, overX = a x + Lcos ( θ 1) -b x overY = a y + Lsin (θ 1) becomes -b y. Further, the camera axis deviation over θ is as follows. over θ = θ 2 −θ 1 In this case, the overlap is from the origin of the field of view 1 to the origin of the field of view 2 with the upper left of the field of view as the origin. When actually measuring the position, the coordinates on the image processing device are replaced with the spatial coordinates by using the calibration, the camera tilt, the overlap, and the camera axis shift.

【0010】[0010]

【発明の効果】以上説明したように本発明によれば、人
手により行なっていたロボットとカメラの軸合せ、カメ
ラキャリブレーションの計算、複数台のカメラ視野のオ
ーバラップ計算が自動化でき、また作業する人の誤差も
なくなる。
As described above, according to the present invention, the manual alignment of the robot and the camera, the calculation of the camera calibration, and the overlap calculation of the field of view of a plurality of cameras can be automated and performed according to the present invention. There is no human error.

【図面の簡単な説明】[Brief description of drawings]

【図1】合せ板の説明図。FIG. 1 is an explanatory view of a laminated plate.

【図2】視野1でのキャリブレーションとカメラ傾きの
ための説明図。
FIG. 2 is an explanatory diagram for calibration and camera tilt in a field of view 1.

【図3】視野2でのキャリブレーションとカメラ傾きの
ための説明図。
FIG. 3 is an explanatory diagram for calibration and camera tilt in a field of view 2.

【図4】オーバラップ量とカメラ軸ずれのための説明
図。
FIG. 4 is an explanatory diagram for an overlap amount and a camera axis deviation.

【符号の説明】[Explanation of symbols]

10 合せ板 a,b,c,d 円(穴) 10 Laminated plates a, b, c, d Circles (holes)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 四隅に円を有する合せ板をロボットに持
たせこの合せ板をカメラの複数視野ごとにかつ各視野に
またがってロボット座標軸に沿い移動させ、 上記各視野での円中心座標を求めてカメラ座標軸上の円
相互の偏差からキャリブレーションとカメラ傾きを求
め、 上記各視野にまたがった状態で円中心座標を求めてカメ
ラ座標軸上の円相互の偏差から視野オーバラップ量とカ
メラ軸ずれを求め、 るようにしたロボットとカメラの自動調整方法。
1. A robot is provided with a laminated plate having circles at four corners, and the laminated plate is moved along a robot coordinate axis for each of a plurality of visual fields of a camera and across each visual field to obtain coordinates of a circle center in each visual field. The calibration and the camera tilt are calculated from the deviations of the circles on the camera coordinate axes, and the center coordinates of the circles are calculated while straddling each of the above fields of view. The automatic adjustment method of the robot and camera that I asked for.
JP21703094A 1994-09-12 1994-09-12 Automatic adjustment of robot and camera Expired - Fee Related JP3144233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21703094A JP3144233B2 (en) 1994-09-12 1994-09-12 Automatic adjustment of robot and camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21703094A JP3144233B2 (en) 1994-09-12 1994-09-12 Automatic adjustment of robot and camera

Publications (2)

Publication Number Publication Date
JPH0871972A true JPH0871972A (en) 1996-03-19
JP3144233B2 JP3144233B2 (en) 2001-03-12

Family

ID=16697743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21703094A Expired - Fee Related JP3144233B2 (en) 1994-09-12 1994-09-12 Automatic adjustment of robot and camera

Country Status (1)

Country Link
JP (1) JP3144233B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8248471B2 (en) 2009-03-31 2012-08-21 Aisin Seiki Kabushiki Kaisha Calibrating apparatus for on-board camera of vehicle
US8866904B2 (en) 2009-03-31 2014-10-21 Aisin Seiki Kabushiki Kaisha Calibrating apparatus for on-board camera of vehicle
DE102015000589A1 (en) 2014-01-23 2015-08-06 Fanuc Corporation Data generation device for a visual sensor and a detection simulation system
JP2018077196A (en) * 2016-11-11 2018-05-17 スタンレー電気株式会社 Monitoring system
CN112454350A (en) * 2020-10-19 2021-03-09 中国电子科技集团公司第三十八研究所 High-precision rapid visual positioning system and method for multilayer disordered materials

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101629737B (en) * 2008-07-14 2012-02-29 海信(山东)空调有限公司 Indoor unit of air conditioner

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8248471B2 (en) 2009-03-31 2012-08-21 Aisin Seiki Kabushiki Kaisha Calibrating apparatus for on-board camera of vehicle
US8866904B2 (en) 2009-03-31 2014-10-21 Aisin Seiki Kabushiki Kaisha Calibrating apparatus for on-board camera of vehicle
DE102015000589A1 (en) 2014-01-23 2015-08-06 Fanuc Corporation Data generation device for a visual sensor and a detection simulation system
DE102015000589B4 (en) * 2014-01-23 2016-07-14 Fanuc Corporation Data generation device for a visual sensor and a detection simulation system
US9519736B2 (en) 2014-01-23 2016-12-13 Fanuc Corporation Data generation device for vision sensor and detection simulation system
JP2018077196A (en) * 2016-11-11 2018-05-17 スタンレー電気株式会社 Monitoring system
CN112454350A (en) * 2020-10-19 2021-03-09 中国电子科技集团公司第三十八研究所 High-precision rapid visual positioning system and method for multilayer disordered materials

Also Published As

Publication number Publication date
JP3144233B2 (en) 2001-03-12

Similar Documents

Publication Publication Date Title
AU693234B2 (en) Method and apparatus for transforming coordinate systems in an automated video monitor alignment system
TWI512875B (en) System and method for adjusting the position and orientation of a feed arm associated with a wafer handling robot
JPH02128101A (en) Specimen for coordinate measuring device
NO822589L (en) PROCEDURE AND APPARATUS FOR POSITIONING OF A TOOL OR INSTRUMENT.
US20210291376A1 (en) System and method for three-dimensional calibration of a vision system
JP3335826B2 (en) Solder bump measuring device
US4541721A (en) Optical checking apparatus and method of using same
CN112539714B (en) Eccentricity detection method, processing method and detection equipment
JP3402021B2 (en) Method for detecting relative position and orientation of robot device
JPH0871972A (en) Automatic adjustment method for robot and camera
JP3999308B2 (en) Robot mounting method
JP3095463B2 (en) 3D measurement method
JPH09196637A (en) Method for measuring bend angle of long material
CN112958957A (en) Automatic calibration method and system for welding of large steel reinforcement framework
CN112082482A (en) Visual positioning method for object with edge characteristic only, application and precision evaluation method
JP3651026B2 (en) Method for teaching robot for stocker
JP2002288633A (en) Image processing device and its positional correction method
TW201900358A (en) Method for calibrating coordinator of robot arm
JPH06201303A (en) Three dimensional measuring device
JPH0989527A (en) Method for measuring operation parameter of measuring device, and measuring device
JPH0283183A (en) Setting method for position of articulated robot
JP3464355B2 (en) Length measuring device and method for checking accuracy of length measuring device
JPH0232203A (en) Height correcting method for two-dimensional image processing
JPH0735515A (en) Device for measuring diameter of object
JPH07229736A (en) Device for calibrating three-dimensional measuring instrument

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001128

LAPS Cancellation because of no payment of annual fees