JPH0871535A - Water making apparatus - Google Patents

Water making apparatus

Info

Publication number
JPH0871535A
JPH0871535A JP21465694A JP21465694A JPH0871535A JP H0871535 A JPH0871535 A JP H0871535A JP 21465694 A JP21465694 A JP 21465694A JP 21465694 A JP21465694 A JP 21465694A JP H0871535 A JPH0871535 A JP H0871535A
Authority
JP
Japan
Prior art keywords
seawater
effect
heat transfer
steam
transfer surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP21465694A
Other languages
Japanese (ja)
Inventor
Isao Shimizu
勲 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP21465694A priority Critical patent/JPH0871535A/en
Publication of JPH0871535A publication Critical patent/JPH0871535A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

PURPOSE: To prevent the precipitation of scale by holding a heat transfer surface to a wetted state, in a water making apparatus using low pressure turbine as a heating source, by increasing the amt. of seawater flowing down along the heat transfer surface having liquid load unit width of the heat transfer part of a utility boiler without increasing the replenishing amt. of seawater. CONSTITUTION: A part of seawater conc. in a utility boiler 3A without being evaporated is branched at the outlet of a concn. seawater pump 8 by piping 30 to be mixed with raw material seawater issued from pretreatment equipment 9. By this constitution, a large quantity of seawater is supplied to the utility boiler 3A to increase liquid load.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、発電プラント等の蒸気
タービンの背気である低圧蒸気を利用した造水装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a desalination apparatus using low pressure steam which is the back air of a steam turbine of a power plant or the like.

【0002】[0002]

【従来の技術】図2は従来の多重効用缶造水装置の一例
を示す全体系統図、図3は図2中の各段効用缶の拡大図
である。図中(3)は多重効用缶,(3a)は第1段効
用缶,(3b)は中間段効用缶,(3c)は最終段効用
缶,(4)は復水器(凝縮器),(5)はボイラー水供
給ポンプ,(6)は製造水ポンプ,(7)は海水取水ポ
ンプ,(8)は濃縮海水ポンプ,(9)は前処理設備を
それぞれ示す。
2. Description of the Related Art FIG. 2 is an overall system diagram showing an example of a conventional multi-effect can water freshener, and FIG. 3 is an enlarged view of each stage effect can in FIG. In the figure, (3) is a multi-effect can, (3a) is a first-stage effect can, (3b) is an intermediate-stage effect can, (3c) is a final-stage effect can, (4) is a condenser (condenser), (5) is a boiler water supply pump, (6) is a production water pump, (7) is a seawater intake pump, (8) is a concentrated seawater pump, and (9) is a pretreatment facility.

【0003】図示しない加熱用蒸気供給源(例えばボイ
ラー)を出た蒸気は、配管(21)により多重効用缶
(3)の塔頂効用缶(第1段(3a))に供給される。
一方海水は、海水取水ポンプ(7)によって汲み上げら
れ、配管(23)を経て復水器(4)に至り、ここで予
熱された後、配管(24),前処理設備(9)を経て、
多重効用缶(3)に至る。そして多重効用缶(3)内の
予熱部(A)で昇温された後、効用缶第1段(3a)に
供給され、ここで前記加熱用蒸気供給源から来た蒸気と
熱交換する。ここで海水の一部が蒸発するとともに、加
熱用の蒸気は凝縮し、ボイラー水供給ポンプ(5)によ
り、配管(22)を経て蒸気供給源に戻される。第1段
(3a)で海水から蒸発した蒸気は、加熱源として第2
段(3b)に供給され、第1段から来た未蒸発海水の一
部を蒸発させるとともに自身は凝縮して製造水となる。
以下後流段でも同様な操作が繰り返される。最終段(3
c)で海水から蒸発した蒸気は復水器(4)に導かれ
る。多重効用缶(3)内で凝縮した製造水は最終段(3
c)に集められ、復水器(4)内で凝縮した製造水とと
もに、製造水ポンプ(6)により配管(27)を経て系
外へ取り出される。未蒸発の濃縮海水は最終段から濃縮
海水ポンプ(8)によって系外へ排出される。
The steam exiting a heating steam supply source (not shown) (for example, a boiler) is supplied to the overhead effect can (first stage (3a)) of the multiple effect can (3) through a pipe (21).
On the other hand, seawater is pumped up by the seawater intake pump (7), reaches the condenser (4) through the pipe (23), is preheated there, and then passes through the pipe (24) and the pretreatment facility (9).
Reach multi-effect can (3). Then, after being heated in the preheating section (A) in the multiple effect can (3), it is supplied to the first stage (3a) of the effect can, where it exchanges heat with the steam coming from the heating steam supply source. Here, a part of seawater is evaporated and the steam for heating is condensed and returned to the steam supply source through the pipe (22) by the boiler water supply pump (5). The steam evaporated from seawater in the first stage (3a) is used as a second heat source.
It is supplied to the stage (3b) and evaporates a part of the non-evaporated seawater coming from the first stage and condenses itself to produce water.
The same operation is repeated in the subsequent stage. Last stage (3
The steam evaporated from seawater in c) is guided to the condenser (4). The production water condensed in the multi-effect can (3) is the final stage (3
It is taken out of the system through the pipe (27) by the production water pump (6) together with the production water that is collected in c) and condensed in the condenser (4). Unevaporated concentrated seawater is discharged from the final stage to the outside of the system by a concentrated seawater pump (8).

【0004】多重効用缶においては、海水を蒸発させる
蒸発部熱交換器は各段に設置され、海水は第1段,第2
段と各熱交換器をシリーズに流下することにより、熱交
換器の伝熱表面当りの海水量としては高負荷が維持でき
る。
In the multi-effect can, an evaporator heat exchanger for evaporating seawater is installed in each stage, and seawater is used in the first and second stages.
By flowing the stages and each heat exchanger in series, a high load can be maintained as the amount of seawater per heat transfer surface of the heat exchanger.

【0005】一方低圧蒸気を利用した少数段の効用缶で
は、段当りの伝熱面積が多重効用缶に比べて大きく、伝
熱面の単位幅当りを流下する海水量(液負荷)が小さい
ので、この液負荷を所定値に保つためには、多重効用缶
に比べて多量の海水を供給することが必要となる。
On the other hand, in a small number of effect cans using low pressure steam, the heat transfer area per stage is larger than that in the multiple effect can, and the amount of seawater (liquid load) flowing down per unit width of the heat transfer surface is small. In order to keep this liquid load at a predetermined value, it is necessary to supply a large amount of seawater as compared with the multi-effect can.

【0006】[0006]

【発明が解決しようとする課題】前記従来の多重効用缶
における蒸発部への海水供給方法をタービン背気のよう
な低圧蒸気を利用した造水装置に適用すると、液負荷が
小さくなり、蒸発部であるプレート型やチューブ型等の
伝熱面が十分に海水で濡れずにドライスポットが発生
し、表面にスケールが析出しやすくなるという問題があ
った。
When the conventional method of supplying seawater to the evaporator in the multiple-effect can is applied to a fresh water generator using low-pressure steam such as turbine back air, the liquid load becomes small, and the evaporator is reduced. However, there is a problem that the heat transfer surface of the plate type or the tube type is not sufficiently wet with seawater to generate a dry spot, and scale is likely to be deposited on the surface.

【0007】[0007]

【課題を解決するための手段】本発明者は、前記従来の
課題を解決するために、タービンから排出された蒸気を
海水で冷却し凝縮させてボイラーへ還流するとともに上
記海水の一部を蒸発させる効用缶と、上記海水から発生
した蒸気を冷却して凝縮させる凝縮器とを備えた造水装
置において、上記効用缶内で蒸発せずに濃縮された海水
の一部を上記効用缶に供給される海水に混入する管路を
設けたことを特徴とする造水装置を提案するものであ
る。
In order to solve the above-mentioned conventional problems, the present inventor cooled the steam discharged from the turbine with seawater, condensed it and returned it to the boiler, and evaporated a part of the seawater. In a desalination apparatus equipped with an effect can to be made and a condenser for cooling and condensing steam generated from the seawater, a part of seawater concentrated without being evaporated in the effect can is supplied to the effect can. The present invention proposes a desalination apparatus, which is characterized in that it is provided with a pipeline that mixes with seawater to be produced.

【0008】[0008]

【作用】本発明においては、効用缶内で蒸発せずに濃縮
された海水の一部を上記効用缶に供給される海水に混入
することができるので、補給海水量を必要以上に増すこ
となく、効用缶に多量の海水を供給して効用缶蒸発部伝
熱面の液負荷を大きくし、伝熱面を濡れ状態に保ってス
ケールの析出を防止することができる。
In the present invention, a part of seawater concentrated without evaporating in the effect can can be mixed with the seawater supplied to the effect can, so that the amount of supplemental seawater is not increased more than necessary. It is possible to supply a large amount of seawater to the effect can to increase the liquid load on the heat transfer surface of the effect can evaporation section and keep the heat transfer surface in a wet state to prevent scale deposition.

【0009】[0009]

【実施例】図1は、本発明の一実施例として、ゴミ焼却
プラント内の発電設備と単効用缶からなる容量1000T/
日の造水装置とを組み合わせたプラントを示す系統図で
ある。
EXAMPLE FIG. 1 shows, as an example of the present invention, a capacity of 1000 T / consisting of a power generation facility in a refuse incineration plant and a single-effect can.
It is a systematic diagram which shows the plant which combined the day's desalination apparatus.

【0010】ゴミ焼却炉内ボイラー(1)より配管(2
0)を通ってタービン(2)に供給された蒸気は、ター
ビン(2)と発電機(2a)を駆動,発電後,低圧蒸気
として配管(21)を通り、1段からなる効用缶(3
A)に供給される。この低圧蒸気は、造水能率を高める
ため、例えば発電単独プラントの場合よりも10℃程度
背気温度を高くして供給される。そして効用缶(3A)
内で海水と熱交換して海水の一部を蒸発させ、自身は凝
縮してボイラー水供給ポンプ(5)により配管(22)
を通ってゴミ焼却炉ボイラー(1)に戻される。効用缶
(3A)内で海水から蒸発した蒸気は、配管(29)を
通り復水器(凝縮器)(4)に送られる。そして復水器
(4)内で海水と熱交換することにより凝縮し、製造水
として製造水ポンプ(6)により配管(27)を通って
系外に取出される。
From the boiler (1) in the refuse incinerator, piping (2
The steam supplied to the turbine (2) through (0) drives the turbine (2) and the generator (2a), and after power generation, passes through the pipe (21) as low-pressure steam and has a one-stage effect can (3
A). This low-pressure steam is supplied at a higher back air temperature of about 10 ° C. than in the case of a single power generation plant, for example, in order to increase the water production efficiency. And the effect can (3A)
Inside it heat-exchanges with seawater to evaporate a part of the seawater, condenses itself, and then uses the boiler water supply pump (5) to pipe (22).
It is returned to the garbage incinerator boiler (1) through the. The vapor evaporated from seawater in the effect can (3A) is sent to the condenser (condenser) (4) through the pipe (29). Then, it is condensed by exchanging heat with seawater in the condenser (4), and is taken out of the system as production water by the production water pump (6) through the pipe (27).

【0011】一方、海水取水ポンプ(7)により配管
(23)を経て復水器(4)に供給される海水は、蒸気
との熱交換により昇温された後、大部分は配管(26)
を経て温排水として系外に捨てられる。残りの海水は原
料海水として配管(24)を通り、前処理設備(9)を
経由して、効用缶(3)の予熱部Aで昇温された後、蒸
発部Bで一部が蒸発する。蒸発蒸気は、前記のとおり復
水器(4)へ供給される。蒸発せずに残った海水は濃縮
され、濃縮海水ポンプ(8)により排出される。本実施
例では、濃縮海水ポンプ(8)出口の濃縮海水の一部を
配管(30)により分岐し、前処理設備(9)を出た原
料海水に合流させる。残りの濃縮海水は系外へ捨てられ
る。
On the other hand, most of the seawater supplied to the condenser (4) through the pipe (23) by the seawater intake pump (7) is heated by heat exchange with steam, and then most of it is pipe (26).
After that, it is discharged outside the system as warm waste water. The remaining seawater passes through the pipe (24) as raw material seawater, passes through the pretreatment facility (9), is heated in the preheating section A of the effect can (3), and is partially evaporated in the evaporation section B. . The evaporated vapor is supplied to the condenser (4) as described above. The seawater remaining without evaporation is concentrated and discharged by the concentrated seawater pump (8). In this embodiment, a part of the concentrated seawater at the outlet of the concentrated seawater pump (8) is branched by the pipe (30) and merged with the raw seawater that has left the pretreatment facility (9). The remaining concentrated seawater is discarded outside the system.

【0012】さて1000T/日の造水装置では、一時間当
りの製造水量が 42T/H,濃縮海水の塩分濃縮度を2
倍とすると補給海水量は 84T/Hとなり、この量では
後述の試算例のとおり、液負荷を106 kg/mhrしか確保で
きない。伝熱面を十分に濡らすのに必要な液負荷は、熱
交換器のタイプにより異なるが、プレートタイプの熱交
換器の場合、本発明者らのテスト結果によると、300 kg
/mhr以上が必要である。したがって液負荷106 kg/mhrで
は伝熱面が十分に濡れず、ドライポットが発生してスケ
ールが析出する。この場合、未蒸発濃縮海水153 T/H
を補給海水に混入すれば、液負荷は300 kg/mhrとなり、
伝熱面を十分に濡らすことができる。
[0012] Now, in the water producing device of 1000 T / day, the amount of water produced per hour is 42 T / H, and the salinity concentration of concentrated seawater is 2
If doubled, the amount of supplementary seawater will be 84 T / H, and with this amount, a liquid load of only 106 kg / mhr can be secured, as shown in a trial calculation example described later. The liquid load required to sufficiently wet the heat transfer surface varies depending on the type of heat exchanger, but in the case of a plate type heat exchanger, according to the test results of the present inventors, it is 300 kg.
/ mhr or more is required. Therefore, when the liquid load is 106 kg / mhr, the heat transfer surface is not sufficiently wetted, and a dry pot is generated to deposit scale. In this case, unvaporized concentrated seawater 153 T / H
When mixed with replenishing seawater, the liquid load becomes 300 kg / mhr,
The heat transfer surface can be sufficiently wetted.

【0013】上記のとおり本実施例においては、効用缶
(3A)内で蒸発せずに濃縮された海水の一部を、上記
効用缶(3A)に供給される海水に混入するので、補給
海水量を必要以上に増すことなく、効用缶に多量の海水
を供給して効用缶蒸発部Bの伝熱面の液負荷を大きく
し、伝熱面を濡れ状態に保ってスケール析出を防止する
ことができる。そして、このように補給海水量が少ない
ので、脱気など補給海水の前処理設備は小さくてすむ。
また、補給海水の温度を所定温度まで高めるのに必要な
熱量が小さくなるので、消費スチーム量が減少し、予熱
部の伝熱面積も小さくてすむ。一方、本実施例によれば
循環海水の塩分濃度が補給海水の塩分濃度よりも高くな
るが、循環海水温度上昇が最高でも 70℃と低いためス
ケール析出に影響を及ぼすことはない。
As described above, in this embodiment, a part of the seawater concentrated without evaporating in the effect can (3A) is mixed with the seawater supplied to the effect can (3A). Without increasing the amount more than necessary, supply a large amount of seawater to the effect can to increase the liquid load on the heat transfer surface of the effector evaporation section B and keep the heat transfer surface wet to prevent scale deposition. You can Since the amount of supplemental seawater is small in this way, the pretreatment facility for supplemental seawater such as deaeration can be small.
Further, since the amount of heat required to raise the temperature of the supplementary seawater to a predetermined temperature is small, the amount of steam consumed is reduced and the heat transfer area of the preheating section can be small. On the other hand, according to this example, the salinity concentration of the circulating seawater is higher than the salinity concentration of the supplementary seawater, but since the temperature rise of the circulating seawater is as low as 70 ° C. at the maximum, it does not affect the scale deposition.

【0014】ここで容量1000T/日の造水装置の蒸発部
液負荷を試算すると、次のとおりである。
Here, a trial calculation of the liquid load in the evaporation section of the fresh water generator having a capacity of 1000 T / day is as follows.

【0015】[0015]

【数1】 [Equation 1]

【0016】[0016]

【発明の効果】本発明においては、効用缶伝熱面の液負
荷を大きくしてスケール析出を防止するので補給海水量
を増す必要がない。したがって補給海水の脱気など前処
理設備が小さくてすむ。また補給海水を所定温度まで加
熱するのに必要な熱量も少なくてすむので、消費蒸気量
が減少し、予熱部の伝熱面積も小さくてよい。
In the present invention, it is not necessary to increase the amount of supplemental seawater because the liquid load on the heat transfer surface of the utility can is increased to prevent scale deposition. Therefore, a small pretreatment facility such as degassing of makeup seawater can be used. Further, since the amount of heat required to heat the supplemental seawater to a predetermined temperature is small, the amount of steam consumed can be reduced and the heat transfer area of the preheating section can be small.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の一実施例を示す系統図である。FIG. 1 is a system diagram showing an embodiment of the present invention.

【図2】図2は従来の多重効用缶造水装置の一例を示す
全体系統図である。
FIG. 2 is an overall system diagram showing an example of a conventional multi-effect can water producing device.

【図3】図3は図2中の各段効用缶を拡大して示す図
で、図3(a)は第1段効用缶,図3(b)は中間段効
用缶,図3(c)は最終段効用缶である。
3 is an enlarged view of each stage effect can in FIG. 2, FIG. 3 (a) is a first stage effect can, FIG. 3 (b) is an intermediate stage effect can, and FIG. ) Is a final effect can.

【符号の説明】[Explanation of symbols]

(1) ゴミ焼却炉内ボイラー (2) タービン (3) 多重効用缶 (3a) 第1段効用缶 (3b) 中間段効用缶 (3c) 最終段効用缶 (3A) 単効用缶 (4) 復水器(凝縮器) (5) ボイラー水供給ポンプ (6) 製造水ポンプ (7) 海水取水ポンプ (8) 濃縮海水ポンプ (9) 前処理設備 (1) Boiler in the refuse incinerator (2) Turbine (3) Multiple effect can (3a) First stage effect can (3b) Intermediate stage effect can (3c) Final stage effect can (3A) Single effect can (4) Recovery Water device (condenser) (5) Boiler water supply pump (6) Production water pump (7) Seawater intake pump (8) Concentrated seawater pump (9) Pretreatment facility

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 タービンから排出された蒸気を海水で冷
却し凝縮させてボイラーへ還流するとともに上記海水の
一部を蒸発させる効用缶と、上記海水から発生した蒸気
を冷却して凝縮させる凝縮器とを備えた造水装置におい
て、上記効用缶内で蒸発せずに濃縮された海水の一部を
上記効用缶に供給される海水に混入する管路を設けたこ
とを特徴とする造水装置。
1. An effect can for cooling the steam discharged from the turbine with seawater, condensing and returning the steam to the boiler, and a part of the seawater for evaporation, and a condenser for cooling and condensing the steam generated from the seawater. In the desalination apparatus including the above, a desalination apparatus is provided, which is provided with a pipe for mixing a part of seawater that is not evaporated in the effect can and is mixed with seawater supplied to the effect can. .
JP21465694A 1994-09-08 1994-09-08 Water making apparatus Withdrawn JPH0871535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21465694A JPH0871535A (en) 1994-09-08 1994-09-08 Water making apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21465694A JPH0871535A (en) 1994-09-08 1994-09-08 Water making apparatus

Publications (1)

Publication Number Publication Date
JPH0871535A true JPH0871535A (en) 1996-03-19

Family

ID=16659389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21465694A Withdrawn JPH0871535A (en) 1994-09-08 1994-09-08 Water making apparatus

Country Status (1)

Country Link
JP (1) JPH0871535A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008142810A1 (en) * 2007-05-23 2008-11-27 Saline Water Conversion Corporation Desalination apparatus and method of desalination
JP2016209873A (en) * 2015-05-07 2016-12-15 斗山重工業株式会社 Multiple-effect desalination apparatus partly adding acid to some utility devices and desalination method using the apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008142810A1 (en) * 2007-05-23 2008-11-27 Saline Water Conversion Corporation Desalination apparatus and method of desalination
JP2008289976A (en) * 2007-05-23 2008-12-04 Saline Water Conversion Corp Fresh water generating apparatus and method
JP2016209873A (en) * 2015-05-07 2016-12-15 斗山重工業株式会社 Multiple-effect desalination apparatus partly adding acid to some utility devices and desalination method using the apparatus
US10683214B2 (en) 2015-05-07 2020-06-16 DOOSAN Heavy Industries Construction Co., LTD Multi-effect desalination apparatus partially dosing acids into some evaporator and desalination method using the same

Similar Documents

Publication Publication Date Title
JP3448201B2 (en) Wastewater evaporative concentrator
US20110147195A1 (en) Waste heat driven desalination process
CN105036223B (en) High-efficiency energy-saving sewage treatment method and device
CN105923676A (en) Efficient solar seawater desalination and air conditioner refrigeration combined operation method and system thereof
CN103806964A (en) Method and system for comprehensively utilizing steam turbine dead steam latent heat
CN101318716A (en) Film evaporating concentration liquid processing system and processing method
JPH09507036A (en) Evaporative concentrating and drying apparatus and method having vapor purification capability
CN104973642B (en) A kind of method that utilization flue gas low-temperature used heat handles brine waste
JPH0952082A (en) Apparatus for desalinating seawater
JPH02181002A (en) Double flow turbine plant
US3433717A (en) Multistage flash still with vapor compression plant
WO2001072638A1 (en) Desalination device
CN101525196A (en) Multi-effect distilled seawater desalting plant with pre-heater
JPH0871535A (en) Water making apparatus
CN106115824A (en) A kind of efficient integrated low temperature multiple-effect distillation sea water desalting device
CN106082378A (en) A kind of low temperature (1+n) effect distillation seawater desalination technique
JPH10169907A (en) Boiler plant
CN208087250U (en) The device that high-salt wastewater low-temperature evaporation is concentrated using hot industry waste water
JPH0952083A (en) Apparatus for desalinating seawater
CN208413903U (en) The vaporising devices of two kinds of variety classes waste liquids can be handled with self-cleaning function and simultaneously
CN108249499A (en) The method and device concentrated using hot industry waste water to high-salt wastewater low-temperature evaporation
CN205011406U (en) Coking wastewater evaporation to dryness crystallization zero release distilled water retrieval and utilization processing system
JPS6142390A (en) Method for making pure water for boiler
JPS61141985A (en) Seawater desalting system
JPH05280825A (en) Absorption heat pump

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011120