JPH0869901A - Positive temperature coefficient thermistor - Google Patents

Positive temperature coefficient thermistor

Info

Publication number
JPH0869901A
JPH0869901A JP6203457A JP20345794A JPH0869901A JP H0869901 A JPH0869901 A JP H0869901A JP 6203457 A JP6203457 A JP 6203457A JP 20345794 A JP20345794 A JP 20345794A JP H0869901 A JPH0869901 A JP H0869901A
Authority
JP
Japan
Prior art keywords
temperature coefficient
positive temperature
thermistor
temperature
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6203457A
Other languages
Japanese (ja)
Other versions
JP3196516B2 (en
Inventor
Yuichi Abe
雄一 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20345794A priority Critical patent/JP3196516B2/en
Publication of JPH0869901A publication Critical patent/JPH0869901A/en
Application granted granted Critical
Publication of JP3196516B2 publication Critical patent/JP3196516B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE: To provide a compact positive temperature conefficient thermistor which has a large positive temperature coefficient of resistance immediately after Curie temperature. CONSTITUTION: A positive temperature coefficient thermistor which has a large positive temperature coefficient of resistance immediately after Curie temperature and is capable of suppressing growth of crystal grains is made from a material that contains 0.09-0.125mol of CaTiO3 to 1mol of barium titanate ceramic semiconductor and.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は例えば、温度補償装置、
カラーTV消磁装置、電流制御などの各種スイッチング
素子、あるいは低温発熱体として利用される正特性サー
ミスタに関するものである。
The present invention relates to, for example, a temperature compensation device,
The present invention relates to a color TV degaussing device, various switching elements for current control, or a positive temperature coefficient thermistor used as a low temperature heating element.

【0002】[0002]

【従来の技術】従来、緻密なサーミスタ素子を得るため
に、チタン酸バリウム系半導体磁器にSiO2等を添加
して結晶粒成長を抑制していた。
2. Description of the Related Art Conventionally, in order to obtain a dense thermistor element, crystal grain growth has been suppressed by adding SiO 2 or the like to a barium titanate-based semiconductor ceramic.

【0003】[0003]

【発明が解決しようとする課題】上記方法では、Si化
合物が形成されるため、キュリー温度での結晶変態速度
が遅くなり、キュリー温度直後の正の抵抗温度係数が小
さかった。
In the above method, since a Si compound is formed, the rate of crystal transformation at the Curie temperature is slow, and the positive temperature coefficient of resistance immediately after the Curie temperature is small.

【0004】従って、定温発熱体として利用した場合、
印加電圧が100V,220Vあるいはそれ以上の高電
圧になると電圧依存性を有することとなる。そのため、
100Vの電圧を印加したときと、220Vの電圧を印
加した場合の正特性サーミスタの動作温度変化が大きく
なり、印加電圧によって正特性サーミスタの発熱量が異
なり、使用する電圧によってサーミスタを替えなければ
ならないという問題点を有していた。
Therefore, when used as a constant temperature heating element,
When the applied voltage becomes a high voltage of 100 V, 220 V or higher, it has voltage dependence. for that reason,
The change in operating temperature of the positive temperature coefficient thermistor between when a voltage of 100 V is applied and when a voltage of 220 V is applied becomes large, the amount of heat generated by the positive temperature coefficient thermistor differs depending on the applied voltage, and the thermistor must be changed depending on the voltage used Had the problem.

【0005】本発明はキュリー温度直後の正の抵抗温度
係数の大きい正特性サーミスタを提供することを目的と
するものである。
An object of the present invention is to provide a positive temperature coefficient thermistor having a large positive temperature coefficient of resistance immediately after the Curie temperature.

【0006】[0006]

【課題を解決するための手段】この目的を達成するため
に本発明は、サーミスタ素子をチタン酸バリウム系半導
体磁器1モルに対してCaTiO3を0.09〜0.1
25モル含有させたもので構成するものである。
In order to achieve this object, the present invention provides a thermistor element containing CaTiO 3 in an amount of 0.09 to 0.1 with respect to 1 mol of barium titanate based semiconductor ceramics.
It is composed of 25 mol.

【0007】[0007]

【作用】この構成により、Caがチタン酸バリウムのバ
リウムサイト側に置換され、結晶粒子成長を抑制すると
同時にTiO2が過剰な状態になるため、液相焼結が促
進される。また、従来のようにSiO2を添加していな
いので、Si化合物を形成せずキュリー温度での結晶変
態速度が迅速になると考えられる。その結果、キュリー
温度直後の正の抵抗温度係数の大きい正特性サーミスタ
を提供することができる。
With this structure, Ca is substituted on the barium site side of barium titanate, and crystal grain growth is suppressed, and at the same time, TiO 2 is in an excessive state, so that liquid phase sintering is promoted. In addition, since SiO 2 is not added as in the conventional case, it is considered that the Si compound is not formed and the crystal transformation rate at the Curie temperature is increased. As a result, a positive temperature coefficient thermistor having a large positive temperature coefficient of resistance immediately after the Curie temperature can be provided.

【0008】[0008]

【実施例】以下、本発明の一実施例について説明する。
本実施例に用いた材料組成を(化1)に示している。
EXAMPLES An example of the present invention will be described below.
The material composition used in this example is shown in (Chemical Formula 1).

【0009】[0009]

【化1】 Embedded image

【0010】この配合組成になるように、市販のBaC
3、TiO2、PbO、Y23、Al23、Mn(NO
32及びCaTiO3を秤量し、原料1200gを10
lボールミルに入れ純水2lと直径10mmのYTZボー
ル3kgとを加え20時間湿式混合し、150℃で乾燥し
た。その後、この混合物を粗砕し1100℃で2時間仮
焼し、次に、仮焼粉を10lボールミルに入れ、純水1
lと直径10mmのYTZボール3kgとを加え20時間湿
式粉砕した後150℃で乾燥した。
[0010] Commercially available BaC should have the above composition.
O 3 , TiO 2 , PbO, Y 2 O 3 , Al 2 O 3 , Mn (NO
3 ) 2 and CaTiO 3 are weighed, and 1200 g of raw material is mixed with 10
The mixture was placed in a 1-ball mill, 2 l of pure water and 3 kg of YTZ balls having a diameter of 10 mm were added, wet-mixed for 20 hours, and dried at 150 ° C. Then, this mixture was crushed and calcined at 1100 ° C. for 2 hours, and then the calcined powder was put into a 10 l ball mill and purified water 1
1 and 3 kg of YTZ balls having a diameter of 10 mm were added, wet pulverized for 20 hours, and then dried at 150 ° C.

【0011】次に、得られた粉砕粉に5%ポリビニルア
ルコール水溶液を10wt%加え、ライカイ機で5分間
造粒した後20メッシュパスして造粒粉とし、その造粒
粉を直径12mmの成形金型を用いて800kg/cm2の圧
力でディスク形状に成形した。次に、その成形物を焼成
炉中で300℃/hrの速度で昇温し、1280℃の温
度で1.5時間焼成した後、150℃/hrの降温速度
で室温まで徐冷した。その後、得られたサーミスタ素子
の両面にアルミメタリコン溶射電極を設け、正特性サー
ミスタを得、その抵抗温度係数を測定した。
Next, 10% by weight of a 5% polyvinyl alcohol aqueous solution was added to the obtained pulverized powder, and the mixture was granulated for 5 minutes with a liquor machine and passed through 20 mesh to obtain granulated powder. The granulated powder having a diameter of 12 mm was formed. It was formed into a disc shape with a pressure of 800 kg / cm 2 using a die. Next, the molded product was heated in a firing furnace at a rate of 300 ° C./hr, fired at a temperature of 1280 ° C. for 1.5 hours, and then gradually cooled to room temperature at a temperature lowering rate of 150 ° C./hr. Then, aluminum metallikon sprayed electrodes were provided on both surfaces of the obtained thermistor element to obtain a positive temperature coefficient thermistor, and the temperature coefficient of resistance thereof was measured.

【0012】ここで本発明の特徴であるCaTiO3
ついてその作製方法を説明する。市販のCaCO3、T
iO2を1モル:1モルの比率にて秤量し、原料900
gを10lボールミルに入れ、純水2lと直径10mmの
YTZボール3kgとを加えて20時間湿式混合した後1
50℃で乾燥した。その後、混合物を粗砕し1100℃
で2時間仮焼し、仮焼粉を10lボールミルに入れ、純
水1lと直径10mmのYTZボール3kgとを加えて20
時間湿式粉砕し150℃で乾燥した。その後、ライカイ
機で3分間粗砕してCaTiO3粉末を得た。
Here, a method for producing CaTiO 3 which is a feature of the present invention will be described. Commercially available CaCO 3 , T
iO 2 was weighed at a ratio of 1 mol: 1 mol to obtain 900
g in a 10 liter ball mill, 2 liters of pure water and 3 kg of YTZ balls having a diameter of 10 mm were added and wet-mixed for 20 hours, and then 1
It was dried at 50 ° C. After that, the mixture is crushed to 1100 ° C.
Calcined for 2 hours, put the calcined powder in a 10 l ball mill, add 1 l of pure water and 3 kg of YTZ balls with a diameter of 10 mm, and add 20
It was wet-milled for an hour and dried at 150 ° C. Then, it was roughly crushed for 3 minutes with a liquor machine to obtain CaTiO 3 powder.

【0013】なお、本実施例では市販のCaCO3、T
iO2からCaTiO3を作製したが、市販のCaTiO
3を用いてもかまわない。
In this example, commercially available CaCO 3 , T
CaTiO 3 was produced from iO 2 , but commercially available CaTiO 3
You can use 3 .

【0014】本実施例によるサーミスタ素子の結晶粒子
径、サーミスタ素子特性と従来のサーミスタ素子の結晶
粒子径、サーミスタ素子特性を(表1)に比較して示し
ている。
The crystal grain diameter and thermistor element characteristics of the thermistor element according to this example and the crystal grain diameter and thermistor element characteristics of the conventional thermistor element are shown in comparison with each other (Table 1).

【0015】[0015]

【表1】 [Table 1]

【0016】(表1)において、CaTiO3を0.0
9〜0.125モル含有させたものは、その結晶粒子径
は従来のものと同等であるが、正の抵抗温度係数は向上
していることがわかる。特に、0.095〜0.115
モルで顕著な効果が得られることがわかる。一方、Ca
TiO3の含有量が0.08、0.13モルの場合は、
本発明の請求範囲外であり正の抵抗温度係数は向上して
いないことがわかる。
In Table 1, CaTiO 3 is 0.0
It can be seen that the crystal particles containing 9 to 0.125 mol have the same crystal particle size as the conventional one, but the positive temperature coefficient of resistance is improved. Especially, 0.095 to 0.115
It can be seen that a significant effect can be obtained in moles. On the other hand, Ca
When the content of TiO 3 is 0.08 or 0.13 mol,
It can be seen that the positive temperature coefficient of resistance is out of the scope of the claims of the present invention and is not improved.

【0017】また、従来はSiO2を添加し、CaTi
3の代わりにCaCO3、TiO2を添加しているが、
正の抵抗温度係数は小さい。
Conventionally, SiO 2 is added, and CaTi is added.
CaCO 3 and TiO 2 are added instead of O 3 .
The positive temperature coefficient of resistance is small.

【0018】さらに、図1に抵抗値−温度の特性を示す
が、従来の電圧を100V印加したとき(抵抗値R1
の動作温度(T3)と220V印加したとき(抵抗値
2)の動作温度(T4)の差よりも、本実施例の正特性
サーミスタに電圧を100V印加したときの動作温度
(T1)と220V印加したときの動作温度(T2)の差
は小さく、ほぼ一定の発熱量に保てることがわかる。
Further, FIG. 1 shows resistance value-temperature characteristics. When a conventional voltage of 100 V is applied (resistance value R 1 ).
Operating temperature (T 3) and when 220V is applied (the resistance value R 2) operating temperature (T 4) than the difference of the operating temperature when a voltage is 100V applied to the PTC thermistor of this embodiment of (T 1 ) And the operating temperature (T 2 ) when 220 V is applied are small, and it can be seen that the calorific value can be kept almost constant.

【0019】そのため、従来のように使用電圧によって
サーミスタ素子を変える必要がなく、同一のサーミスタ
素子を用いることができる。
Therefore, it is not necessary to change the thermistor element depending on the used voltage as in the prior art, and the same thermistor element can be used.

【0020】なお、本実施例ではキュリー温度195℃
の定温発熱体を用いるが、PbOの含有比率を変えた異
なるキュリー温度の定温発熱体にも用いることができ
る。
In this embodiment, the Curie temperature is 195 ° C.
Although the constant temperature heating element of No. 2 is used, it can also be used for constant temperature heating elements of different Curie temperatures with different PbO content ratios.

【0021】ここで正特性サーミスタの抵抗温度特性の
測定方法を説明する。まず室温から300℃までの温度
変化に対する正特性サーミスタの抵抗値変化を測定しプ
ロットする。次に抵抗値が室温抵抗値の2倍になる温度
をキュリー温度とし、キュリー温度での抵抗値とキュリ
ー温度+10℃での抵抗値を求め、その抵抗変化率を
(数1)により算出し抵抗温度係数とした。
Here, a method of measuring the resistance temperature characteristic of the positive temperature coefficient thermistor will be described. First, the resistance value change of the positive temperature coefficient thermistor with respect to the temperature change from room temperature to 300 ° C. is measured and plotted. Next, the temperature at which the resistance value is twice the room temperature resistance value is the Curie temperature, the resistance value at the Curie temperature and the resistance value at the Curie temperature + 10 ° C are calculated, and the resistance change rate is calculated by (Equation 1) The temperature coefficient was used.

【0022】[0022]

【数1】 [Equation 1]

【0023】なお、通常は、キュリー温度+30℃にて
抵抗温度係数を求めるが、本発明はキュリー温度直後の
抵抗温度係数を大きくすることを目的としているため、
キュリー温度+10℃にて抵抗温度係数を求めている。
Normally, the temperature coefficient of resistance is determined at the Curie temperature + 30 ° C., but the present invention aims to increase the temperature coefficient of resistance immediately after the Curie temperature.
The temperature coefficient of resistance is determined at the Curie temperature + 10 ° C.

【0024】[0024]

【発明の効果】以上のように本発明は、チタン酸バリウ
ム系半導体磁器組成物1モルに対してSiO2を添加せ
ず、CaTiO3を0.09〜0.125モル含有させ
ることにより結晶粒子成長を抑制し、かつ、キュリー温
度直後の正の抵抗温度係数の大きい正特性サーミスタを
提供することができる。
INDUSTRIAL APPLICABILITY As described above, the present invention does not add SiO 2 to 1 mol of the barium titanate-based semiconductor porcelain composition and makes CaTiO 3 0.09 to 0.125 mol, thereby forming crystal particles It is possible to provide a positive temperature coefficient thermistor which suppresses growth and has a large positive temperature coefficient of resistance immediately after the Curie temperature.

【0025】なお、本発明では定温発熱体を例として挙
げているが、キュリー温度直後の正の抵抗温度係数を大
きくすることにより、電圧を印加して安定電流に達する
までの減衰特性を向上させることができ、カラーTV消
磁装置、電流制御などの各種スイッチング素子などにも
利用できる。
In the present invention, the constant temperature heating element is taken as an example, but by increasing the positive temperature coefficient of resistance immediately after the Curie temperature, the damping characteristic until a stable current is applied by applying a voltage is improved. It can also be used for a color TV degaussing device, various switching elements for current control, and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】正特性サーミスタの抵抗値−温度特性曲線図[Fig. 1] Resistance value-temperature characteristic curve diagram of positive temperature coefficient thermistor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 サーミスタ素子と、このサーミスタ素子
の表面に形成した電極とを備え、前記サーミスタ素子は
チタン酸バリウム系半導体磁器組成物1モルに対しチタ
ン酸カルシウムを0.09〜0.125モル含有させた
もので構成した正特性サーミスタ。
1. A thermistor element and an electrode formed on the surface of the thermistor element, wherein the thermistor element contains 0.09 to 0.125 mol of calcium titanate per mol of the barium titanate-based semiconductor ceramic composition. A positive temperature coefficient thermistor composed of the contained elements.
JP20345794A 1994-08-29 1994-08-29 Positive thermistor Expired - Fee Related JP3196516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20345794A JP3196516B2 (en) 1994-08-29 1994-08-29 Positive thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20345794A JP3196516B2 (en) 1994-08-29 1994-08-29 Positive thermistor

Publications (2)

Publication Number Publication Date
JPH0869901A true JPH0869901A (en) 1996-03-12
JP3196516B2 JP3196516B2 (en) 2001-08-06

Family

ID=16474448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20345794A Expired - Fee Related JP3196516B2 (en) 1994-08-29 1994-08-29 Positive thermistor

Country Status (1)

Country Link
JP (1) JP3196516B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013507320A (en) * 2009-10-14 2013-03-04 エプコス アクチエンゲゼルシャフト Ceramic material, method for producing ceramic material, and resistance element having ceramic material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013507320A (en) * 2009-10-14 2013-03-04 エプコス アクチエンゲゼルシャフト Ceramic material, method for producing ceramic material, and resistance element having ceramic material
US9169161B2 (en) 2009-10-14 2015-10-27 Epcos Ag Ceramic material, method for producing the ceramic material, and resistor component comprising the ceramic material

Also Published As

Publication number Publication date
JP3196516B2 (en) 2001-08-06

Similar Documents

Publication Publication Date Title
JP4080576B2 (en) Method for manufacturing positive characteristic semiconductor porcelain
JP6604653B2 (en) Semiconductor porcelain composition and method for producing the same
JPH11322426A (en) Piezoelectric porcelain composition
US6071842A (en) Barium titanate-based semiconductor ceramic
JPH0869901A (en) Positive temperature coefficient thermistor
JP4058140B2 (en) Barium titanate semiconductor porcelain
JP3481832B2 (en) Piezoelectric ceramic
JP2000178068A (en) Piezoelectric porcelain composition
JPH07297009A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JPH07118061A (en) Barium titanate-based semiconductor porcelain composition
JPH11292622A (en) Semiconductor ceramic and semiconductor ceramic element
JP2940182B2 (en) Method for manufacturing semiconductor porcelain having positive temperature coefficient of resistance
JP3699195B2 (en) Positive characteristic semiconductor porcelain and manufacturing method thereof
JPH07211512A (en) Positive temperature coefficient thermistor
JPH07220902A (en) Barium titanate semiconductor ceramic
JPH04338601A (en) Semiconductor porcelain having positive resistance temperature coefficient and manufacture thereof
JPH0684605A (en) Positive characteristic thermister and production thereof
JP2677041B2 (en) Semiconductor porcelain with positive temperature coefficient of resistance
JP4800956B2 (en) Barium titanate semiconductor porcelain composition
JPH04280861A (en) Composition for barium titanate-based semiconductor porcelain and barium titanate-based semiconductor porcelain using the same composition
JPH11139870A (en) Barium titanate-base semiconductor porcelain
JPH11224803A (en) High curie-point ptc thermistor composition and its manufacture
JPS6243947B2 (en)
JPH05283202A (en) Barium titanate semiconductor porcelain composition
JPH10212161A (en) Thermistor material having positive characteristic and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080608

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090608

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees