JPH0865243A - Optical communication equipment - Google Patents

Optical communication equipment

Info

Publication number
JPH0865243A
JPH0865243A JP6191661A JP19166194A JPH0865243A JP H0865243 A JPH0865243 A JP H0865243A JP 6191661 A JP6191661 A JP 6191661A JP 19166194 A JP19166194 A JP 19166194A JP H0865243 A JPH0865243 A JP H0865243A
Authority
JP
Japan
Prior art keywords
light
optical communication
communication device
transmittance
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6191661A
Other languages
Japanese (ja)
Inventor
Shiro Suyama
史朗 陶山
Kinya Kato
謹矢 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6191661A priority Critical patent/JPH0865243A/en
Publication of JPH0865243A publication Critical patent/JPH0865243A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE: To provide the optical communication equipment, with which data can be received with high reliability even under the condition of low light receiving power or high surrounding light, concerning the optical communication equipment due to radio between computer terminal equipment or the like. CONSTITUTION: A permeability varying device 3a7 to change permeability corresponding to light intensity and an irradiated position varying device 3a8 to make different the irradiated position of this permeability varying device 3a7 corresponding to the direction of incident light are provided in front of a light receiver 3a11 inside a receiving part 3a4, and the threshold value of light intensity to considerably change the permeability of the permeability varying device 3a7 is set at light intensity to be considerably affected by noise due to that threshold value. Thus, the permeability of the permeability varying device 3a7 is changed at positions 3a9 and 3a10 strongly irradiated with sunlight 3a5 or illumination light 3a6 being surrounding light, and the irradiation of the light receiver 3a11 with the sunlight 3a5 or illumination light 3a being the surrounding light can be suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばコンピュータ端
末装置などの間における光を搬送波として用いた無線に
よる光通信装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wireless optical communication device using light as a carrier wave between computer terminal devices and the like.

【0002】[0002]

【従来の技術】近年、LAN(Local Area Network)など
に代表されるように、コンピュータ端末装置などの間に
おいて、情報のやり取りをするためのネットワーク通信
技術が急速に発展しつつある。しかも、特にコンピュー
タ端末装置の高速化に伴い、光を搬送波として用いた高
速通信が可能な通信装置が急速に注目を集めている。ま
た、パーソナル化の進展に伴う携帯型端末装置がとりざ
たされるような状況から、高速通信が可能な通信装置も
求められている。
2. Description of the Related Art In recent years, as represented by LAN (Local Area Network) and the like, network communication technology for exchanging information between computer terminal devices and the like is rapidly developing. Moreover, in particular, with the increase in speed of computer terminal devices, communication devices capable of high-speed communication using light as a carrier wave are rapidly attracting attention. In addition, a communication device capable of high-speed communication is also demanded due to a situation in which portable terminal devices are widely used due to the progress of personalization.

【0003】従来の光通信装置としては、ファイバーケ
ーブルを用いた無線の通信装置や赤外線を用いた無線デ
ータ通信装置などが提案されている。
As a conventional optical communication device, a wireless communication device using a fiber cable or a wireless data communication device using infrared rays has been proposed.

【0004】図10にファイバケーブルを用いた無線の
光通信装置の代表例を示す。この光通信装置によれば、
データ送信側の発光体α1より出射した赤外線α2を発
光体α1の前面にあるレンズα3によりできるだけ集光
して、ファイバケーブルα5の一方のファイバ端α4に
入射する。これにより、赤外線はファイバケーブルα5
を伝送した後、他方のデータ受信側のファイバ端α6よ
り出射する。
FIG. 10 shows a typical example of a wireless optical communication device using a fiber cable. According to this optical communication device,
The infrared ray α2 emitted from the light emitter α1 on the data transmission side is condensed as much as possible by the lens α3 on the front surface of the light emitter α1, and is incident on one fiber end α4 of the fiber cable α5. As a result, infrared rays are transmitted through fiber cable α5
After being transmitted, it is emitted from the fiber end α6 on the other data receiving side.

【0005】この後、データ受信側のファイバ端α6よ
り出射した赤外線α7をレンズα8によりできるだけ集
光して受光体α9に受光させる。
After that, the infrared ray α7 emitted from the fiber end α6 on the data receiving side is condensed as much as possible by the lens α8 and is received by the photoreceptor α9.

【0006】これにより、赤外線α2をデータ送信側で
種々の方法で変調し、赤外線α7を受信側で復調するこ
とによって光通信を行なっている。この方法はファイバ
ケーブルα5が低損失であるため、光パワーの伝送系で
の損失が10数dB以内に抑えられる利点を有するが、
有線であるために携帯端末装置など移動の頻繁な端末装
置には適用できない欠点を有していた。
As a result, the infrared ray α2 is modulated by the data transmitting side by various methods, and the infrared ray α7 is demodulated by the receiving side to perform optical communication. Since this method has a low loss in the fiber cable α5, it has an advantage that the loss in the optical power transmission system can be suppressed to within 10 dB.
Since it is wired, it has a drawback that it cannot be applied to terminal devices that are frequently moved such as portable terminal devices.

【0007】図11及び図12に無線による従来の光通
信装置の一例として、赤外線を搬送波として用いた光通
信装置を示す。まず初めに、図11に示した直接伝搬型
の赤外線による光通信装置について説明する。赤外線発
光体β1より出射した赤外線β5を赤外線発光体β1の
前面にある集光用レンズβ3及び赤外線受光体β2の前
面にある集光用レンズβ4を用いて赤外線受光体β2上
にできるだけ集光させ、この赤外線β5を種々の方法で
変調することにより光通信を行なう。
11 and 12 show an optical communication device using infrared rays as a carrier wave, as an example of a conventional wireless optical communication device. First, the optical communication device using infrared rays of the direct propagation type shown in FIG. 11 will be described. The infrared ray β5 emitted from the infrared ray emitter β1 is condensed on the infrared ray receptor β2 as much as possible by using the condenser lens β3 in front of the infrared ray emitter β1 and the condenser lens β4 in front of the infrared ray receiver β2. Optical communication is performed by modulating the infrared ray β5 by various methods.

【0008】この光通信装置は、無線によりデータ通信
を行なうことができ、且つ光パワーの伝送系での損失が
数10dB以内に抑えられる利点を有する。
This optical communication device has an advantage that it can perform data communication by radio and that the loss of optical power in the transmission system can be suppressed within several tens of dB.

【0009】しかし、光通信には送信側と受信側との間
に見通しが必要であり、赤外線発光体β1と赤外線受光
体β2との間に赤外線β5を遮る障害物などがあった
り、或いは障害物が通過したりするとデータ伝送が瞬断
される欠点を有している。さらに、赤外線発光体β1と
赤外線受光体β2とを人手により精密に位置合わせする
必要があり、携帯型端末装置のようにその位置が頻繁に
変わるものには使用し難い欠点を有している。
However, the optical communication requires a line of sight between the transmitting side and the receiving side, and there is an obstacle or the like that blocks the infrared ray β5 between the infrared light emitting body β1 and the infrared light receiving body β2. It has a drawback that data transmission is interrupted when an object passes through. Further, the infrared light emitter β1 and the infrared light receiver β2 need to be precisely aligned manually, which is a drawback that it is difficult to use for a portable terminal device whose position changes frequently.

【0010】次に、図12に示す拡散伝搬型の光通信装
置について説明する。赤外線発光装置γ1より出射した
出射広がり角γ6の広い赤外線γ3を一旦、例えば壁や
天井γ5等に照射し、これら壁や天井γ5から反射或い
は拡散してくる赤外線γ4を受光広がり角γ7の広い赤
外線受光装置γ2で受光する形で用い、この赤外線を種
々の方法で変調することにより光通信を行なう。
Next, the diffusion propagation type optical communication device shown in FIG. 12 will be described. An infrared ray γ3 having a wide divergence angle γ6 emitted from the infrared light emitting device γ1 is once radiated to, for example, a wall or ceiling γ5, and an infrared ray γ4 reflected or diffused from the wall or ceiling γ5 is received as an infrared ray having a wide divergence angle γ7. It is used in the form of receiving light by the light receiving device γ2, and this infrared ray is modulated by various methods to perform optical communication.

【0011】この光通信装置では、図11に示す光通信
装置と同じく無線により光通信装置を行なうことがで
き、かつ図11に示す光通信装置と異なり見通しを必要
とせず、赤外線発光装置γ1と赤外線受光装置γ2を結
ぶ直線上に赤外線の伝搬を妨げる障害物があってもデー
タの通信には支障がない。
In this optical communication device, the optical communication device can be wirelessly used like the optical communication device shown in FIG. 11, and unlike the optical communication device shown in FIG. Even if there is an obstacle that blocks the propagation of infrared rays on the straight line connecting the infrared light receiving device γ2, data communication will not be hindered.

【0012】従って、図11に示す光通信装置に比べ
て、携帯型端末装置のような頻繁に移動するものに対し
ては適している利点を有している。
Therefore, as compared with the optical communication device shown in FIG. 11, it has an advantage that it is suitable for a mobile terminal such as a mobile terminal that is frequently moved.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、前述し
た拡散伝搬型の光通信装置においては、拡散伝搬を用い
るため、光パワーの伝送系での損失が60dB以上と大
きくなる他、赤外線受光装置γ2が例えば照明光や太陽
光などの周囲光を受光し易いために赤外線受光装置のシ
ョット雑音が大きく増加するという欠点を有していた。
これにより、エラーレートが増加するため、高速な光通
信が困難であるという欠点を有していた。
However, in the above-mentioned diffusion propagation type optical communication device, since the diffusion propagation is used, the loss in the transmission system of the optical power is as large as 60 dB or more, and the infrared receiving device γ2 is used. For example, since it is easy to receive ambient light such as illumination light and sunlight, the shot noise of the infrared light receiving device is greatly increased.
As a result, the error rate increases, and there is a drawback that high-speed optical communication is difficult.

【0014】このように携帯端末装置でも使用できる無
線による赤外線の光通信装置においては、光パワーの大
きな損失や周囲光の影響によるショット雑音の増加など
を考慮にいれる必要性から、従来までは光通信速度を高
速化できなかった。
As described above, in a wireless infrared optical communication device which can be used in a portable terminal device as well, it is necessary to take into consideration a large loss of optical power and an increase in shot noise due to the influence of ambient light. The communication speed could not be increased.

【0015】本発明の目的は上記の問題点に鑑み、コン
ピュータ端末装置などの間における無線による光通信装
置において、低い受光パワーや高い周囲光の状況下でも
信頼性高くデータを受信できる光通信装置を提供するこ
とにある。
In view of the above problems, an object of the present invention is to provide a wireless optical communication device between computer terminal devices and the like, which is capable of receiving data with high reliability even under conditions of low received light power and high ambient light. To provide.

【0016】[0016]

【課題を解決するための手段】本発明は上記の目的を達
成するために、請求項1では、無線により光信号の送受
信を行う光通信装置において、受信部に、光の入射方向
別に受信感度を変化させる受信感度可変手段を設けた光
通信装置を提案する。
In order to achieve the above-mentioned object, the present invention provides an optical communication device for wirelessly transmitting and receiving an optical signal according to claim 1, wherein a receiving sensitivity is set in a receiving section for each incident direction of light. We propose an optical communication device provided with a receiving sensitivity varying means for changing the.

【0017】また、請求項2では、請求項1記載の光通
信装置において、前記受信部への光の照射位置を所定位
置に変換する照射位置変換手段を設けた光通信装置を提
案する。
A second aspect of the present invention proposes an optical communication device according to the first aspect, which is provided with an irradiation position conversion means for converting the irradiation position of the light to the receiving section into a predetermined position.

【0018】また、請求項3では、請求項1又は請求項
2記載の光通信装置において、前記受信感度可変手段
は、光強度に対応して透過率又は反射率を変化させる可
変手段を備えている光通信装置を提案する。
According to a third aspect of the present invention, in the optical communication device according to the first or second aspect, the receiving sensitivity varying means includes a varying means for varying the transmittance or the reflectance in accordance with the light intensity. Optical communication device is proposed.

【0019】また、請求項4では、請求項1又は請求項
2記載の光通信装置において、前記受信感度可変手段
は、複数の受光器を有し、且つこれら複数の受光器の出
力の減衰率を各々に変化させる減衰手段を備えている光
通信装置を提案する。
According to a fourth aspect of the present invention, in the optical communication device according to the first or second aspect, the reception sensitivity varying means has a plurality of light receivers, and the attenuation factors of the outputs of the plurality of light receivers. We propose an optical communication device equipped with an attenuator that changes the respective values.

【0020】また、請求項5では、請求項2記載の光通
信装置において、前記照射位置変換手段は、ピンホール
又はレンズからなる光通信装置を提案する。
According to a fifth aspect of the invention, there is provided the optical communication apparatus according to the second aspect, wherein the irradiation position conversion means is a pinhole or a lens.

【0021】また、請求項6では、請求項3記載の光通
信装置において、前記光強度に対応して透過率又は反射
率を変化させる可変手段は、ホトクロミック物質を備え
ている光通信装置を提案する。
According to a sixth aspect of the present invention, in the optical communication apparatus according to the third aspect, the variable means for changing the transmittance or the reflectance according to the light intensity is an optical communication apparatus including a photochromic substance. suggest.

【0022】また、請求項7では、請求項3記載の光通
信装置において、前記光強度に対応して透過率又は反射
率を変化させる可変手段は、光強度を電圧又は電流に変
換する変換装置と、該電圧又は電流に基づいて入射光の
透過率若しくは反射率を変化させる可変装置とを有する
光通信装置を提案する。
According to a seventh aspect, in the optical communication device according to the third aspect, the variable means for changing the transmittance or the reflectance in accordance with the light intensity is a converter for converting the light intensity into a voltage or a current. And an optical communication device including a variable device that changes the transmittance or reflectance of incident light based on the voltage or current.

【0023】また、請求項8では、請求項4記載の光通
信装置において、前記複数の受光器の出力の減衰率を各
々に変化させる減衰手段は、スイッチ回路又はクリップ
回路を含む光通信装置を提案する。
According to claim 8, in the optical communication device according to claim 4, the attenuation means for changing the attenuation factors of the outputs of the plurality of photodetectors respectively include an optical communication device including a switch circuit or a clip circuit. suggest.

【0024】また、請求項9では、請求項1乃至請求項
8のいずれかに記載の光通信装置において、通信に用い
る搬送波として赤外線を用いる光通信装置を提案する。
A ninth aspect of the present invention proposes an optical communication apparatus according to any one of the first to eighth aspects, which uses infrared rays as a carrier wave used for communication.

【0025】[0025]

【作用】本発明の請求項1によれば、受信感度可変手段
によって、光の入射方向別に受信感度が変化される。こ
れにより、不要な方向から入射される信号光以外の周囲
光の受信感度を弱めることが可能となる。
According to the first aspect of the present invention, the receiving sensitivity varying means changes the receiving sensitivity for each incident direction of light. As a result, it becomes possible to weaken the reception sensitivity of ambient light other than the signal light incident from the unnecessary direction.

【0026】また、請求項2によれば、照射位置変換手
段によって、受信部への光の照射位置が所定位置に変換
される。これにより、信号光と周囲光の照射位置がそれ
ぞれ異なる位置とされる。例えば信号光の照射位置が受
光器の位置とされ、信号光以外の太陽光又は照明光の照
射位置が受光器以外の位置とされる。
Further, according to the second aspect, the irradiation position conversion means converts the irradiation position of the light to the receiving portion into a predetermined position. As a result, the irradiation positions of the signal light and the ambient light are set to different positions. For example, the irradiation position of the signal light is the position of the light receiver, and the irradiation position of sunlight or illumination light other than the signal light is the position other than the light receiver.

【0027】また、請求項3によれば、可変手段によっ
て、入射光の光強度に対応して光の透過率又は反射率が
変化される。これにより、例えば信号光よりも光強度が
弱い周囲光等の光を減衰させるように可変手段によって
透過率又は反射率を変化させれば、可変手段を透過し
て、或いは可変手段によって反射されて受光器に入射す
る光のほとんどが信号光となり、信号光以外の周囲光が
除去される。
Further, according to the third aspect, the light transmittance or the reflectance is changed by the variable means according to the light intensity of the incident light. Thus, for example, if the transmittance or reflectance is changed by the variable means so as to attenuate light such as ambient light whose light intensity is weaker than the signal light, the variable light is transmitted through the variable means or reflected by the variable means. Most of the light incident on the light receiver becomes signal light, and ambient light other than signal light is removed.

【0028】また、請求項4によれば、減衰手段によっ
て複数の受光器のそれぞれの出力の減衰率が各々変化さ
れる。これにより、例えば信号光以外の周囲光が入射し
た受光器の出力の減衰量を大きく設定しておけば、信号
光以外の周囲光成分が除去される。
According to a fourth aspect of the present invention, the attenuation rate of the output of each of the plurality of light receivers is changed by the attenuation means. Thus, for example, if the amount of attenuation of the output of the light receiver on which ambient light other than the signal light is incident is set to be large, ambient light components other than the signal light are removed.

【0029】また、請求項5によれば、ピンホール又は
レンズによって、受信部への光の照射位置が所定位置に
変換され、例えば信号光の照射位置が受光器の位置とさ
れ、信号光以外の太陽光又は照明光の照射位置が受光器
以外の位置とされる。
Further, according to the fifth aspect, the irradiation position of the light to the receiving portion is converted into a predetermined position by the pinhole or the lens, and, for example, the irradiation position of the signal light is set to the position of the light receiver, and other than the signal light The irradiation position of sunlight or illumination light is set to a position other than the light receiver.

【0030】また、請求項6によれば、可変手段内に備
わるホトクロミック物質によって、入射光の光強度に対
応して光の透過率又は反射率が変化される。これによ
り、例えば信号光よりも光強度が弱い周囲光等の光を減
衰させるように透過率又は反射率を変化させれば、可変
手段を透過して、或いは可変手段によって反射されて受
光器に入射する光のほとんどが信号光となり、信号光以
外の周囲光が除去される。
According to the sixth aspect, the photochromic substance provided in the variable means changes the transmittance or reflectance of light in accordance with the light intensity of incident light. Thereby, for example, if the transmittance or the reflectance is changed so as to attenuate the light such as the ambient light whose light intensity is weaker than the signal light, the light is transmitted through the variable means or reflected by the variable means to the light receiver. Most of the incident light becomes signal light, and ambient light other than signal light is removed.

【0031】また、請求項7によれば、可変手段に備わ
る変換装置によって光強度が電圧又は電流に変換され、
該電圧又は電流に基づいて可変装置によって入射光の透
過率若しくは反射率が変化される。これにより、例えば
信号光よりも光強度が弱い周囲光等の光を減衰させるよ
うに可変手段によって透過率又は反射率を変化させれ
ば、可変手段を透過して、或いは可変手段によって反射
されて受光器に入射する光のほとんどが信号光となり、
信号光以外の周囲光が除去される。
According to a seventh aspect, the light intensity is converted into a voltage or a current by a converter provided in the variable means,
The transmittance or reflectance of incident light is changed by the variable device based on the voltage or current. Thus, for example, if the transmittance or reflectance is changed by the variable means so as to attenuate light such as ambient light whose light intensity is weaker than the signal light, the variable light is transmitted through the variable means or reflected by the variable means. Most of the light that enters the light receiver becomes signal light,
Ambient light other than the signal light is removed.

【0032】また、請求項8によれば、減衰手段に含ま
れるスイッチ回路又はクリップ回路によって複数の受光
器のそれぞれの出力の減衰率が各々変化される。これに
より、例えば信号光以外の周囲光が入射した受光器の出
力の減衰量を大きく設定しておけば、信号光以外の周囲
光成分が除去される。
According to the eighth aspect, the attenuation rate of the output of each of the plurality of light receivers is changed by the switch circuit or the clipping circuit included in the attenuation means. Thus, for example, if the amount of attenuation of the output of the light receiver on which ambient light other than the signal light is incident is set to be large, ambient light components other than the signal light are removed.

【0033】また、請求項9によれば、通信に用いる搬
送波として赤外線が用いられる。
According to the ninth aspect, infrared rays are used as a carrier wave used for communication.

【0034】[0034]

【実施例】以下、図面に基づいて本発明の一実施例を説
明する。以下に示す実施例では、通信を行なう搬送波と
して、赤外線を用いた実施例により説明を行なうが、こ
れが赤外線より波長の短い光を用いる場合であっても、
同様の効果があることは明らかである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In the embodiments described below, an example using infrared rays as a carrier wave for communication will be described. However, even when light having a shorter wavelength than infrared rays is used,
It is clear that there is a similar effect.

【0035】図1は本発明の請求項1に対応する光通信
装置における受光装置の要部構成図である。図1を用い
て本発明の概略を説明する。
FIG. 1 is a block diagram of a main part of a light receiving device in an optical communication device according to claim 1 of the present invention. The outline of the present invention will be described with reference to FIG.

【0036】図1において、受信側の光通信装置11の
受信部12に、送信側の光通信装置(図示せず)より送
信されたデータをのせた赤外線13を受信することによ
り光通信を行なう。しかし、受信部12にはデータをの
せた赤外線13以外に、周囲光である太陽光14や照明
光15などが同時に入射する。この周囲光を光通信用の
赤外線13と共に受光することは、受信部12内の受光
器にとって以下のように雑音増大の要因となり、光通信
の高速化を阻害する。
In FIG. 1, an infrared ray 13 carrying data transmitted from an optical communication apparatus (not shown) on the transmitting side is received by a receiving section 12 of the optical communication apparatus 11 on the receiving side for optical communication. . However, in addition to the infrared rays 13 on which the data is placed, the ambient light such as the sunlight 14 and the illumination light 15 are simultaneously incident on the receiving unit 12. Receiving this ambient light together with the infrared ray 13 for optical communication causes a noise increase in the light receiver in the receiving unit 12 as described below, and impedes the speedup of optical communication.

【0037】ここで周囲光と雑音との関係を説明する。
1Mbps以上の無線による高速光通信における受光部
で問題となる主な雑音としては、受光器に用いる、例え
ばPD(フォトダイオード)或いはAPD(アバランシ
ェフォトダイオード)又はPCD(フォトコンダクティ
ブデバイス)自身から発生するショット雑音と、その後
段に用いる抵抗器や増幅器などから発生する熱雑音とが
ある。
Now, the relationship between ambient light and noise will be described.
The main noise that becomes a problem in the light receiving portion in high-speed optical communication by wireless of 1 Mbps or more is generated from, for example, PD (photodiode), APD (avalanche photodiode) or PCD (photoconductive device) used in the light receiver. There are shot noise and thermal noise generated from resistors and amplifiers used in the subsequent stage.

【0038】ここで、熱雑音は、受光パワーが低く、単
純な光電変換のみでは光電流が十分にとれない場合に問
題となる。しかしこの場合には、例えば受光面積をN倍
(N≧1)に大きくしたり、APD或いはPCDを含む
ような自己増倍作用のある受光器を用いることにより、
信号をM倍(M≧1)に増倍できるため、熱雑音は相対
的に1/N又は1/M倍に抑制できる。
Here, the thermal noise becomes a problem when the received light power is low and a sufficient photocurrent cannot be obtained by only simple photoelectric conversion. However, in this case, for example, by increasing the light receiving area to N times (N ≧ 1) or using a photodetector having a self-multiplying action such as including APD or PCD,
Since the signal can be multiplied by M times (M ≧ 1), thermal noise can be suppressed to 1 / N or 1 / M times.

【0039】これに対して、ショット雑音は、約N(M
+α)倍(α>0)で増幅されるため、このような方法
では抑制できない。しかもこのショット雑音は、受光器
に入射する光パワーにほぼ比例して増加するため、受光
器が周囲光を光通信用赤外線と共に取り込む場合には、
周囲光によりショット雑音が大きく増加する。特に太陽
光や白熱灯からの出射光などは、図2に示すように、可
視域から赤外域にかけて強い光を受光器に与えるため、
大きな問題となっていた。これが従来まで高速化を阻害
する深刻な問題であった。
On the other hand, the shot noise is about N (M
Since it is amplified by + α) times (α> 0), it cannot be suppressed by such a method. Moreover, this shot noise increases almost in proportion to the optical power incident on the light receiver, so when the light receiver captures ambient light together with infrared light for optical communication,
Ambient noise significantly increases shot noise. In particular, sunlight, light emitted from an incandescent lamp, and the like give strong light to the light receiver from the visible region to the infrared region as shown in FIG.
It was a big problem. This has been a serious problem that impedes speeding up until now.

【0040】そこで本実施例では、光通信用赤外線13
の方向の受信感度Qに対して、周囲光、例えば太陽光1
4や照明光15の方向に対しては受信感度をそれぞれQ
/P4、Q/P5(P4、P5≧1)と減衰させること
により、受信部12において周囲光による雑音が光通信
用赤外線13の受信に与える悪影響を抑制している。こ
れにより、高速な光通信が可能となる。
Therefore, in this embodiment, the infrared ray 13 for optical communication is used.
For the reception sensitivity Q in the direction of
4 and the illuminating light 15 in the direction of the reception sensitivity Q
By attenuating / P4 and Q / P5 (P4, P5 ≧ 1), the adverse effect of ambient light noise on the reception of the infrared light 13 for optical communication in the receiving unit 12 is suppressed. This enables high-speed optical communication.

【0041】ここで、周囲光をできるだけ減衰させ、且
つ光通信用赤外線13を減衰させないためには、周囲光
と光通信用赤外線13の光強度の違い、或いは光強度変
化の周波数の違い、光波長の違い、又はこれらの組合わ
せを用いることが考えられる。
Here, in order to attenuate the ambient light as much as possible and not to attenuate the infrared light 13 for optical communication, the difference in light intensity between the ambient light and the infrared light 13 for optical communication, or the difference in the frequency of light intensity change, It is conceivable to use different wavelengths or a combination of these.

【0042】例えば、光強度の違いを用いる場合には、
受信感度を大きく減衰させる光強度を、周囲光の強度が
光通信用赤外線13の受信に大きな悪影響を与える強度
に設定することで、周囲光をできるだけ減衰させ、且つ
光通信用赤外線13を減衰させないことが可能となる。
また、光通信用赤外線13の強度変調によりデータを通
信する場合には、光強度変化の周波数の違いを用いて、
光通信用赤外線13の減衰が周囲光の強度変化の周波数
領域で主に起こるように設定することで可能となる。
For example, when the difference in light intensity is used,
By setting the light intensity that greatly attenuates the reception sensitivity to an intensity at which the intensity of the ambient light has a great adverse effect on the reception of the infrared ray 13 for optical communication, the ambient light is attenuated as much as possible and the infrared ray 13 for optical communication is not attenuated. It becomes possible.
Further, when data is communicated by the intensity modulation of the infrared ray 13 for optical communication, the difference in frequency of light intensity change is used.
It is possible to set the attenuation of the infrared ray 13 for optical communication so that it mainly occurs in the frequency region of the intensity change of ambient light.

【0043】これは、例えば光通信速度が高速の場合に
は強度変調の周波数は高いため、受信感度の減衰が起こ
る光強度の変化の周波数を強度変調の周波数より十分低
く設定することにより可能となる。また、光波長の違い
を用いる場合には、周囲光の強度が光通信用赤外線の受
信に大きな悪影響を与えない強度となる光波長に光通信
用赤外線の光波長を設定することで可能となる。
This is possible, for example, by setting the frequency of light intensity change that causes attenuation of reception sensitivity sufficiently lower than the frequency of intensity modulation because the frequency of intensity modulation is high when the optical communication speed is high. Become. Further, when using a difference in light wavelength, it is possible to set the light wavelength of the infrared light for optical communication to a light wavelength at which the intensity of ambient light does not have a large adverse effect on the reception of the infrared light for optical communication. .

【0044】ここで、光通信用赤外線13の強度変調に
よりデータを通信する場合には、光通信の信号と区別す
るため、受信感度を減衰させる速度を光通信用赤外線1
3の強度変調の周波数領域にほとんど影響を与えない速
度に設定する必要がある。これは、例えば光通信速度が
高速の場合には強度変調の周波数は高いため、受信感度
の減衰をこの周波数より十分低く設定することにより可
能となる。
Here, when data is communicated by intensity modulation of the infrared ray 13 for optical communication, in order to distinguish it from the signal for optical communication, the speed at which the reception sensitivity is attenuated is set to the infrared ray 1 for optical communication.
It is necessary to set the speed so that it hardly affects the frequency domain of the intensity modulation of No. 3. For example, when the optical communication speed is high, the frequency of the intensity modulation is high, so that the attenuation of the reception sensitivity can be set sufficiently lower than this frequency.

【0045】また、図1に示した構成では、周囲光、例
えば太陽光14や照明光15などと同一方向から光通信
用赤外線13が入射した場合には、この赤外線13も減
衰するため、受信は困難となる可能性がある。むろん、
本発明によらない通常の受信においても光通信用赤外線
13と高強度の周囲光が同一方向から入射した場合には
ショット雑音が大きくなり受信は困難であるが、本実施
例における光通信用赤外線13を受信できない方向を減
らすため、前述したように受信感度を大きく減衰させる
光強度を、周囲光の強度が光通信用赤外線13の受信に
大きな悪影響を与える強度に設定することはきわめて有
益である。
Further, in the configuration shown in FIG. 1, when the infrared ray 13 for optical communication enters from the same direction as the ambient light, for example, the sunlight 14 or the illumination light 15, this infrared ray 13 is also attenuated, so that the reception is performed. Can be difficult. Of course,
Even in the normal reception not according to the present invention, when the infrared light 13 for optical communication and the high-intensity ambient light are incident from the same direction, shot noise becomes large and reception is difficult, but the infrared light for optical communication in the present embodiment. In order to reduce the direction in which 13 cannot be received, it is extremely useful to set the light intensity that greatly attenuates the reception sensitivity as described above to the intensity at which the intensity of the ambient light has a great adverse effect on the reception of the infrared ray 13 for optical communication. .

【0046】ここで、通常のオフィス環境では、太陽光
14が入射してくる窓側からは光通信用赤外線13はほ
とんど入射することはなく、また照明光15としては赤
外域の強度がきわめて弱い螢光灯がほとんどであること
を考慮すると大きな影響はない。
Here, in a normal office environment, the infrared rays 13 for optical communication hardly enter from the window side where the sunlight 14 enters, and the illumination light 15 has a very weak intensity in the infrared region. Considering that most of the light lamps are used, there is no big impact.

【0047】図3及び図4は、本発明の請求項2及び請
求項3に対応する光通信装置における受光装置の要部構
成図である。図3において、送信側の光通信装置(図示
せず)から到達したデータをのせた赤外線3a2を受信
側の光通信装置3a3の受信部3a4で受けてデータ通
信を行なう。この場合に、周囲光として太陽光3a5や
照明光3a6などが同時に受信部3a4に入力する。
FIG. 3 and FIG. 4 are main part configuration diagrams of a light receiving device in an optical communication device according to claims 2 and 3 of the present invention. In FIG. 3, an infrared ray 3a2 carrying data arrived from an optical communication device (not shown) on the transmitting side is received by a receiving section 3a4 of the optical communication device 3a3 on the receiving side for data communication. In this case, the sunlight 3a5, the illumination light 3a6, and the like are simultaneously input to the receiving unit 3a4 as ambient light.

【0048】ここで、本実施例においては、光強度によ
り透過率が変化する透過率可変装置3a7と、入射光の
方向に対応してこの透過率可変装置3a7への照射位置
を異ならせる照射位置可変装置3a8が受信部3a4内
の受光器3a11の前に設けられている。
Here, in the present embodiment, the transmittance varying device 3a7 whose transmittance changes according to the light intensity, and the irradiation position for changing the irradiation position to this transmittance varying device 3a7 in accordance with the direction of the incident light. The variable device 3a8 is provided in front of the light receiver 3a11 in the receiver 3a4.

【0049】さらに、透過率可変装置3a7の透過率が
大きく変化する光強度の閾値を、光による雑音が大きな
影響を与える光強度に設定するか、或いは光通信用赤外
線3a2の強度変調の周波数領域を周囲光の強度変化の
周波数領域で主に起こるように設定するか、周囲光の強
度が光通信用赤外線の受信に大きな悪影響を与えない強
度となる光波長に光通信用赤外線の光波長を設定する
か、又はこれらの組合わせとして設定されている。
Further, the threshold value of the light intensity at which the transmittance of the transmittance varying device 3a7 greatly changes is set to the light intensity at which the noise due to light has a great influence, or the frequency range of the intensity modulation of the infrared ray 3a2 for optical communication. Is set so that it mainly occurs in the frequency range of the intensity change of the ambient light, or the optical wavelength of the infrared light for optical communication is set to an optical wavelength at which the intensity of the ambient light does not have a large adverse effect on the reception of the infrared light for optical communication. Either set or set as a combination thereof.

【0050】これにより、周囲光である太陽光3a5や
照明光3a6などが強く照射する位置3a9,3a10
においては、透過率可変装置3a7の透過率が変化し、
受光器3a11に周囲光である太陽光3a5や照明光3
a6などが照射するのを抑制することができ、しかも光
通信用の赤外線3a2が透過率可変装置3a7に照射す
る位置3a12での透過率はほとんど減衰しないため、
光通信用の赤外線3a2を受光器3a11の位置3a1
3で受光することができる。
As a result, the positions 3a9 and 3a10 where the ambient light such as the sunlight 3a5 and the illumination light 3a6 are strongly irradiated.
In, the transmittance of the transmittance varying device 3a7 changes,
Ambient light such as sunlight 3a5 or illumination light 3 is received by the light receiver 3a11.
Since it is possible to suppress irradiation of a6 and the like, and the infrared ray 3a2 for optical communication irradiates the transmittance varying device 3a7, the transmittance at the position 3a12 is hardly attenuated.
Infrared ray 3a2 for optical communication is placed at position 3a1 of light receiver 3a11.
Light can be received at 3.

【0051】また、図4に示すように、光強度により反
射率が変化する反射率可変装置3b7と入射光の方向に
対応してこの反射率可変装置3b7への照射位置を異な
らせる照射位置可変装置3b8を前述したと同様の受信
部3b4内の受光器3b11の前段に設けることによ
り、周囲光である太陽光3b5や照明光3b6などが照
射する位置3b9,3b10においては反射率可変装置
3b7の反射率が変化し、受光器3b11に周囲光であ
る太陽光3b5や照明光3b6などが照射するのを抑制
することができる。これにより、従来までデータ受信の
妨げとなっていた雑音を抑制でき、光通信の高速化を可
能にすることができる。
Further, as shown in FIG. 4, the irradiation position changing means for changing the irradiation position to the reflectance changing device 3b7 whose reflectance changes depending on the light intensity and the incident light direction according to the direction of the incident light. By providing the device 3b8 in front of the light receiver 3b11 in the receiving unit 3b4 similar to that described above, the reflectance varying device 3b7 is provided at the positions 3b9, 3b10 irradiated by the ambient light such as the sunlight 3b5 and the illumination light 3b6. It is possible to suppress the reflectance from changing and to irradiate the light receiver 3b11 with the ambient light such as the sunlight 3b5 and the illumination light 3b6. As a result, it is possible to suppress noise, which has been a hindrance to data reception until now, and it is possible to speed up optical communication.

【0052】図5は、本発明の請求項2及び請求項4に
対応する光通信装置における受光装置の要部構成図であ
る。図5において、送信側の光通信装置(図示せず)か
ら到達したデータをのせた赤外線42を受信側の光通信
装置43の受信部44で受けて光通信を行なう。
FIG. 5 is a configuration diagram of a main part of a light receiving device in an optical communication device according to claims 2 and 4 of the present invention. In FIG. 5, the infrared ray 42 carrying the data arrived from the optical communication device (not shown) on the transmitting side is received by the receiving section 44 of the optical communication device 43 on the receiving side for optical communication.

【0053】この場合に、周囲光として太陽光45や照
明光46などが同時に受信部44に入射する。ここで、
本実施例においては、複数の受光器47の前段に入射光
の方向に対応してこの複数の受光器47への照射位置を
異ならせる照射位置可変装置49が設けられている。さ
らに、これらの受光器47のそれぞれの出力を減衰する
減衰装置48を備え、かつ減衰装置48の減衰率が大き
く変化する光強度の閾値を、光による雑音が大きな影響
を与える光強度に設定するか、或いは光通信用赤外線4
2の強度変調の周波数領域を周囲光の強度変化の周波数
領域で主に起こるように設定するか、周囲光の強度が光
通信用赤外線42の大きな悪影響を与えない強度となる
光波長に光通信用赤外線42の光波長を設定するか、又
はこれらの組合わせとして設定されている。
In this case, the sunlight 45, the illumination light 46 and the like as ambient light are simultaneously incident on the receiver 44. here,
In this embodiment, an irradiation position changing device 49 is provided in front of the plurality of light receivers 47 so as to change the irradiation position to the plurality of light receivers 47 in accordance with the direction of incident light. Further, an attenuator 48 for attenuating the output of each of these light receivers 47 is provided, and the threshold value of the light intensity at which the attenuation factor of the attenuator 48 changes greatly is set to the light intensity at which the noise due to light has a great influence. Or infrared 4 for optical communication
2 is set so that the frequency range of intensity modulation mainly occurs in the frequency range of intensity change of ambient light, or the optical communication is performed at an optical wavelength at which the intensity of ambient light does not have a great adverse effect on the infrared ray 42 for optical communication. The light wavelength of the infrared ray 42 for use is set, or a combination thereof is set.

【0054】これにより、周囲光である太陽光45や照
明光46などが照射する位置410,411に存在する
受光器47等では、減衰装置48により周囲光である太
陽光45や照明光46などにより生じる出力を減衰で
き、その影響を抑制することができる。従って、従来ま
でデータ受信の妨げとなっていた雑音を抑制でき、光通
信の高速化を可能とできる。ここで、受光器47の出力
を減衰させる減衰装置48としては、スイッチ回路やグ
リップ回路をはじめとして多くの回路があることは周知
のことである。
As a result, in the light receivers 47 and the like existing at the positions 410 and 411 irradiated by the ambient light such as the sunlight 45 and the illumination light 46, the ambient light such as the sunlight 45 and the illumination light 46 is provided by the attenuator 48. The output generated by the above can be attenuated and its influence can be suppressed. Therefore, it is possible to suppress noise that has been a hindrance to data reception until now, and it is possible to speed up optical communication. Here, as the attenuator 48 for attenuating the output of the light receiver 47, it is well known that there are many circuits including a switch circuit and a grip circuit.

【0055】図6は、本発明の請求項5に対応する光通
信装置における受光装置の要部構成図である。図6の
(a) に示すようにレンズ5a1と被照射対象5a2とを
配置することにより、入射光の方向を空間的に任意の位
置に変換する装置を構成することができる。例えば方向
5a3及び方向5a4から入射した光は、レンズ5a1
の作用により例えば5a5及び5a6という異なる位置
で被照射対象5a2に照射される。
FIG. 6 is a schematic view of the essential parts of a light receiving device in an optical communication device according to a fifth aspect of the present invention. Of FIG.
By arranging the lens 5a1 and the irradiation target 5a2 as shown in (a), it is possible to configure a device that spatially converts the direction of incident light into an arbitrary position. For example, light incident from the direction 5a3 and the direction 5a4 is reflected by the lens 5a1.
By this action, the irradiation target 5a2 is irradiated at different positions such as 5a5 and 5a6.

【0056】ここで、収差を抑えるために、単球面レン
ズとしては平凸レンズを用いたり、非球面レンズや組合
わせレンズを用いることは周知の事実であり、また球面
収差に沿って被照射対象を湾曲させたり、レンズと被照
射対象とを傾けた構成にしても良いことは自明のことで
ある。
It is a well known fact that a plano-convex lens, an aspherical lens or a combination lens is used as the monospherical lens in order to suppress the aberration, and the object to be irradiated is irradiated along the spherical aberration. Obviously, it may be curved or the lens and the irradiation target may be inclined.

【0057】また、入射光照射位置を変換する装置は、
図6の(b) に示すようにピンホール5b1と被照射対象
5a2とを配置することによっても構成することができ
る。例えば方向5b3及び方向5b4から入射した光
は、ピンホール5b1の作用により5b5及び5b6の
位置で被照射対象5b2に照射される。
The device for converting the incident light irradiation position is
As shown in FIG. 6 (b), it can also be configured by disposing the pinhole 5b1 and the irradiation target 5a2. For example, the light incident from the direction 5b3 and the direction 5b4 is irradiated on the irradiation target 5b2 at the positions of 5b5 and 5b6 by the action of the pinhole 5b1.

【0058】図7は、本発明の請求項6に対応する光通
信装置における透過率可変装置の要部構成図である。図
7の(a) に示すように、光強度により光の透過率が変化
する透過率可変装置6a1は、ホトクロミック物質6a
2を含む透過性物質6a3により構成される。また、図
7の(b) に示すようにホトクロミック物質6b2を含む
透過性物質6b3と反射板6b4により構成することが
できる。
FIG. 7 is a block diagram showing the essential parts of a transmittance varying device in an optical communication device according to claim 6 of the present invention. As shown in (a) of FIG. 7, the transmittance varying device 6a1 in which the transmittance of light changes according to the light intensity is a photochromic substance 6a.
It is composed of a permeable substance 6a3 containing 2. Further, as shown in FIG. 7B, it can be constituted by a transmissive substance 6b3 containing a photochromic substance 6b2 and a reflection plate 6b4.

【0059】図7には、ホトクロミック物質6a2,6
b2が分散して入っているように示されているが、むろ
ん層状や網目状などに入っていても良いことは明らかで
ある。このようなホトクロミック物質6a2,6b2と
しては、Hg322 やZnSなどの無機化合物や、
各種のヒドラゾン、オサゾン、フルギド、スチルベン、
サリチルアルデヒド、スピロピラン、ビイミダゾリル、
ビアントロンなどの有機化合物があることは周知のこと
である。
FIG. 7 shows the photochromic substances 6a2 and 6a.
Although b2 is shown as dispersedly contained, it is obvious that it may be contained in layers or meshes. Examples of such photochromic substances 6a2 and 6b2 include inorganic compounds such as Hg 3 S 2 I 2 and ZnS,
Various hydrazones, osazones, fulgides, stilbenes,
Salicylaldehyde, spiropyran, biimidazolyl,
It is well known that there are organic compounds such as biantron.

【0060】また、光を透過する透過性物質6a3,6
b3としては各種のガラスやプラスチックなど多くの物
質があり、反射板6b4としても鏡や金属版など多くの
物質があり、これらを用いることができることは周知の
ことである。
Further, the transmissive substances 6a3, 6 which transmit light
It is well known that there are many substances such as various glasses and plastics as b3, and many substances such as mirrors and metal plates as the reflection plate 6b4, which can be used.

【0061】ここで、周囲光などは光通信装置の移動な
どを考慮しても光強度の変化は光通信用の赤外線に比べ
るときわめて穏やかであるため、ホトクロミック物質6
a2,6b2などを周囲光などがもたらす光強度の変化
のみに反応し、光通信用の赤外線の変化には反応しない
ように選択することにより、その抑制効果をより一層向
上させることができる。
Here, since the change in the light intensity of ambient light is much gentler than that of infrared light for optical communication even when the movement of the optical communication device is taken into consideration, the photochromic substance 6 is used.
The suppression effect can be further improved by selecting a2, 6b2 and the like so as to react only to the change in the light intensity caused by the ambient light and the like and not to the change in the infrared ray for optical communication.

【0062】図8は、本発明の請求項7に対応する光通
信装置における受光装置の要部構成図である。光強度に
より光の透過率或いは反射率が変化する可変装置71
は、光強度を電圧又は電流に変換する変換装置72と、
変換装置72から出力される電圧又は電流を導線73を
介して入力し、この電圧又は電流により透過率或いは反
射率を変化できる装置74により構成される。
FIG. 8 is a block diagram of a main part of a light receiving device in an optical communication device according to claim 7 of the present invention. Variable device 71 whose light transmittance or reflectance changes according to light intensity
Is a conversion device 72 for converting light intensity into voltage or current;
The voltage or current output from the converter 72 is input via a conductor 73, and the voltage or current is used to change the transmittance or reflectance.

【0063】光強度を電圧又は電流に変化する変換装置
72は、PD(フォトダイオード)、APD(アバラン
シェフォトダイオード)、又はPCD(フォトコンダク
ティブデバイス)など多くの手段により実現できること
は周知のことである。
It is well known that the converter 72 for changing the light intensity into a voltage or a current can be realized by many means such as PD (photodiode), APD (avalanche photodiode), or PCD (photoconductive device). .

【0064】また、電圧又は電流により光の透過率ある
いは反射率を変化できる装置73としては、液晶表示に
用いられている種々の液晶表示など多くの手段により実
現できることは周知のことである。
It is well known that the device 73 capable of changing the light transmittance or the reflectance by voltage or current can be realized by various means such as various liquid crystal displays used for liquid crystal display.

【0065】図9は、雑音を抑制するために光通信に用
いる搬送波以外の波長の光を遮る遮光装置81を設ける
場合の配置例を示す構成図である。例えば、光強度によ
り透過率或いは反射率が変化する可変装置82が光通信
の搬送波の波長でも十分に動作するならば、図9の(b)
に示すように、光通信に用いる搬送波以外の波長の光を
遮る遮光装置81を光強度により透過率或いは反射率が
変化する可変装置82より、入射光84側に入れたり種
々の場合が考えられることは容易に分かる。
FIG. 9 is a block diagram showing an arrangement example in the case of providing a light shielding device 81 for shielding light having a wavelength other than a carrier wave used for optical communication in order to suppress noise. For example, if the variable device 82 whose transmittance or reflectance changes depending on the light intensity operates sufficiently even at the wavelength of the carrier wave of optical communication, (b) in FIG.
As shown in FIG. 6, there are various cases in which a light shielding device 81 that shields light having a wavelength other than the carrier wave used for optical communication is placed on the incident light 84 side from a variable device 82 whose transmittance or reflectance changes depending on the light intensity. It's easy to see.

【0066】これに対して、赤外線に弱い感度しかもた
ない場合には、可視光で動作させるために、図9の(a)
に示すように、光通信に用いる搬送波以外の波長の光を
遮る遮光装置81を光強度により透過率或いは反射率が
変化する可変装置82より受光器83側に入れることが
必要となる。ここで、光通信に用いる搬送波以外の波長
の光を遮る遮光装置81としては、種々の吸収フィルタ
ーやダイクロイックフィルターなど多くの装置があるこ
とは周知のことである。
On the other hand, in the case where it has a weak sensitivity to infrared rays, in order to operate with visible light, (a) in FIG.
As shown in, it is necessary to insert a light shielding device 81 that shields light having a wavelength other than the carrier wave used for optical communication from the variable device 82 whose transmittance or reflectance changes depending on the light intensity on the side of the light receiver 83. Here, it is well known that there are many devices such as various absorption filters and dichroic filters as the light shielding device 81 that shields light having a wavelength other than the carrier wave used for optical communication.

【0067】[0067]

【発明の効果】以上説明したように本発明の請求項1に
よれば、受信感度可変手段によって、光の入射方向別に
受信感度が変化され、不要な方向から入射される信号光
以外の周囲光の受信感度を弱めることができるので、周
囲光の受光器への照射を抑制し、この周囲光の影響で従
来まで受信の妨げとなっていた雑音を抑制できるため、
低い受光パワーや高い周囲光の状況下でも信頼性高くデ
ータを受信でき、高速な光通信を行なえる利点を有す
る。
As described above, according to the first aspect of the present invention, the receiving sensitivity varying means changes the receiving sensitivity according to the incident direction of light, and the ambient light other than the signal light is incident from an unnecessary direction. Since it is possible to weaken the reception sensitivity of the, it is possible to suppress the irradiation of the ambient light to the light receiver, it is possible to suppress the noise that had been disturbing reception until now due to the effect of this ambient light,
It has an advantage that data can be received with high reliability even under the condition of low light receiving power and high ambient light, and high-speed optical communication can be performed.

【0068】また、請求項2によれば、上記の効果に加
えて、受信部への光の照射位置が所定位置に変換され、
信号光と周囲光の照射位置がそれぞれ異なる位置とされ
るので、さらに周囲光の受光器への照射を抑制すること
ができる。
According to claim 2, in addition to the above effect, the irradiation position of the light to the receiving unit is converted into a predetermined position,
Since the irradiation positions of the signal light and the ambient light are different from each other, it is possible to further suppress the irradiation of the light receiver with the ambient light.

【0069】また、請求項3によれば、上記の効果に加
えて、入射光の光強度に対応して光の透過率又は反射率
が変化されるので、例えば信号光よりも光強度が弱い周
囲光等の光を減衰させるように可変手段によって透過率
又は反射率を変化させれば、可変手段を透過して、或い
は可変手段によって反射されて受光器に入射する光のほ
とんどが信号光となり、信号光以外の周囲光が除去され
るため、さらに周囲光の受光器への照射を抑制すること
ができる。
According to the third aspect, in addition to the above effects, the light transmittance or reflectance is changed according to the light intensity of the incident light, so that the light intensity is weaker than that of the signal light, for example. If the transmittance or the reflectance is changed by the variable means so as to attenuate the light such as the ambient light, most of the light that passes through the variable means or is reflected by the variable means and enters the light receiver becomes signal light. Since the ambient light other than the signal light is removed, it is possible to further suppress the irradiation of the light receiver with the ambient light.

【0070】また、請求項4によれば、上記の効果に加
えて、減衰手段によって複数の受光器のそれぞれの出力
の減衰率が各々変化されるので、例えば信号光以外の周
囲光が入射した受光器の出力の減衰量を大きく設定して
おけば、信号光以外の周囲光成分が除去されるため、周
囲光の影響で従来まで受信の妨げとなっていた雑音をさ
らに抑制することができる。
Further, according to claim 4, in addition to the above effect, since the attenuation rate of the output of each of the plurality of light receivers is changed by the attenuating means, for example, ambient light other than the signal light is incident. If the attenuation of the output of the light receiver is set to a large value, ambient light components other than the signal light are removed, so that it is possible to further suppress the noise that has hitherto prevented reception due to the influence of ambient light. .

【0071】また、請求項5によれば、上記の効果に加
えて、受信部への光の照射位置がピンホール又はレンズ
によって変換されるので、構成を簡単化することができ
る。
According to the fifth aspect, in addition to the above effect, since the irradiation position of the light on the receiving section is converted by the pinhole or the lens, the structure can be simplified.

【0072】また、請求項6によれば、上記の効果に加
えて、ホトクロミック物質によって入射光の光強度に対
応して光の透過率又は反射率が変化されるので、周囲光
などがもたらす光強度の変化のみに反応し、光通信用の
信号光の変化には反応しないように選択することによ
り、周囲光の抑制効果を一層向上させることができる。
According to the sixth aspect, in addition to the above effects, the photochromic substance changes the light transmittance or reflectance in accordance with the light intensity of the incident light, so that ambient light or the like brings about it. The effect of suppressing the ambient light can be further improved by selecting such that it responds only to the change in the light intensity and does not respond to the change in the signal light for optical communication.

【0073】また、請求項7によれば、上記の効果に加
えて、入射光の光強度に対応して光の透過率又は反射率
が変化されるので、例えば信号光よりも光強度が弱い周
囲光等の光を減衰させるように可変手段によって透過率
又は反射率を変化させれば、可変手段を透過して、或い
は可変手段によって反射されて受光器に入射する光のほ
とんどが信号光となり、信号光以外の周囲光が除去され
るため、さらに周囲光の受光器への照射を抑制すること
ができる。
Further, according to claim 7, in addition to the above effect, since the light transmittance or reflectance is changed according to the light intensity of the incident light, the light intensity is weaker than that of the signal light, for example. If the transmittance or the reflectance is changed by the variable means so as to attenuate the light such as the ambient light, most of the light that passes through the variable means or is reflected by the variable means and enters the light receiver becomes signal light. Since the ambient light other than the signal light is removed, it is possible to further suppress the irradiation of the light receiver with the ambient light.

【0074】また、請求項8によれば、上記の効果に加
えて、減衰手段に含まれるスイッチ回路又はクリップ回
路よって複数の受光器のそれぞれの出力の減衰率が各々
変化されるので、例えば信号光以外の周囲光が入射した
受光器の出力の減衰量を大きく設定しておけば、信号光
以外の周囲光成分が除去されるため、周囲光の影響で従
来まで受信の妨げとなっていた雑音をさらに抑制するこ
とができる。
According to the eighth aspect, in addition to the above effect, the attenuation rate of the output of each of the plurality of light receivers is changed by the switch circuit or the clipping circuit included in the attenuating means. If the amount of attenuation of the output of the receiver that receives ambient light other than light is set to a large value, ambient light components other than the signal light will be removed, and the effect of ambient light has hindered reception until now. Noise can be further suppressed.

【0075】また、請求項9によれば、上記の効果に加
えて、通信に用いる搬送波として赤外線が用いられるの
で、前記照射位置変換手段による照射位置の変換を容易
に行うことができると共に、前記可変手段により透過率
又は反射率を容易に変化させることができる。
According to claim 9, in addition to the above effects, since infrared rays are used as a carrier wave used for communication, the irradiation position can be easily converted by the irradiation position conversion means, and at the same time, the irradiation position can be easily changed. The transmittance or the reflectance can be easily changed by the variable means.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の光通信装置における受光装
置の要部構成図
FIG. 1 is a configuration diagram of a main part of a light receiving device in an optical communication device according to an embodiment of the present invention.

【図2】一実施例における周囲光の波長依存性を示す図FIG. 2 is a diagram showing the wavelength dependence of ambient light in one example.

【図3】本発明の一実施例の光通信装置における受光装
置の要部構成図
FIG. 3 is a configuration diagram of a main part of a light receiving device in an optical communication device according to an embodiment of the present invention.

【図4】本発明の一実施例の光通信装置における受光装
置の要部構成図
FIG. 4 is a configuration diagram of a main part of a light receiving device in an optical communication device according to an embodiment of the present invention.

【図5】本発明の一実施例の光通信装置における受光装
置の要部構成図
FIG. 5 is a configuration diagram of a main part of a light receiving device in an optical communication device according to an embodiment of the present invention.

【図6】本発明の一実施例の光通信装置における受光装
置の要部構成図
FIG. 6 is a configuration diagram of a main part of a light receiving device in an optical communication device according to an embodiment of the present invention.

【図7】本発明の一実施例の光通信装置における透過率
可変装置の要部構成図
FIG. 7 is a configuration diagram of a main part of a transmittance varying device in an optical communication device according to an embodiment of the present invention.

【図8】本発明の一実施例の光通信装置における受光装
置の要部構成図
FIG. 8 is a configuration diagram of a main part of a light receiving device in an optical communication device according to an embodiment of the present invention.

【図9】本発明の一実施例の光通信装置における受光装
置の要部構成図
FIG. 9 is a main part configuration diagram of a light receiving device in an optical communication device according to an embodiment of the present invention.

【図10】従来例の赤外線を搬送波とした光通信装置を
示す構成図
FIG. 10 is a configuration diagram showing a conventional optical communication device using infrared rays as a carrier wave.

【図11】従来例の赤外線を搬送波とした光通信装置を
示す構成図
FIG. 11 is a configuration diagram showing a conventional optical communication device using infrared rays as a carrier wave.

【図12】従来例の赤外線を搬送波とした光通信装置を
示す構成図
FIG. 12 is a configuration diagram showing a conventional optical communication device using infrared rays as a carrier wave.

【符号の説明】[Explanation of symbols]

11…受信側の光通信装置、12…受信部、13…赤外
線、14…太陽光、15…照明光、3a2…赤外線、3
a3…受信側の光通信装置、3a4…受信部、3a5…
太陽光、3a6…照明光、3a7…透過率可変装置、3
a8…照射位置可変装置、3b2…赤外線、3b4…受
信部、3b5…太陽光、3b6…照明光、3b7…反射
率可変装置、3b8…照射位置可変装置、3b11…受
光器、42…赤外線、43…受信側の光通信装置、44
…受信部、45…太陽光、46…照明光、47…受光
器、48…減衰器、5a1…レンズ、5a2…被照射対
象、5b1…ピンホール、5b2…被照射対象、6a1
…透過率可変装置、6a2…ホトクロミック物質、6a
3…透過性物質、6b1…透過率可変装置、6b2…ホ
トクロミック物質、6b3…透過性物質、6b4…反射
板、71…可変装置、72…変換装置、81…遮光装
置、82…可変装置、83…受光器、84…入射光、α
1…発光体、α2…赤外線、α3…レンズ、α4…ファ
イバー端、α5…ファイバケーブル、α6…ファイバ
端、α7…赤外線、α8…レンズ、α9…受光器、β1
…発光体、β2…受光体、β3…レンズ、β4…レン
ズ、β5…赤外線、γ1…赤外線発光装置、γ2…赤外
線受光装置、γ4…赤外線、γ4…赤外線、γ5…壁や
天井など、γ6…出射広がり角、γ7…受光広がり角。
11 ... Receiving side optical communication device, 12 ... Receiving part, 13 ... Infrared, 14 ... Sunlight, 15 ... Illumination light, 3a2 ... Infrared, 3
a3 ... Receiving side optical communication device, 3a4 ... Receiving unit, 3a5 ...
Sunlight, 3a6 ... Illumination light, 3a7 ... Transmittance variable device, 3
a8 ... Irradiation position varying device, 3b2 ... Infrared ray, 3b4 ... Receiving part, 3b5 ... Sunlight, 3b6 ... Illumination light, 3b7 ... Reflectance varying device, 3b8 ... Irradiation position varying device, 3b11 ... Light receiver, 42 ... Infrared ray, 43 ... Optical communication device on receiving side, 44
... receiver, 45 ... sunlight, 46 ... illumination light, 47 ... light receiver, 48 ... attenuator, 5a1 ... lens, 5a2 ... irradiation target, 5b1 ... pinhole, 5b2 ... irradiation target, 6a1
... Variable transmittance device, 6a2 ... Photochromic material, 6a
3 ... Transparent substance, 6b1 ... Transmittance variable device, 6b2 ... Photochromic substance, 6b3 ... Transparent substance, 6b4 ... Reflector, 71 ... Variable device, 72 ... Conversion device, 81 ... Shading device, 82 ... Variable device, 83 ... Light receiver, 84 ... Incident light, α
1 ... Light emitter, α2 ... Infrared, α3 ... Lens, α4 ... Fiber end, α5 ... Fiber cable, α6 ... Fiber end, α7 ... Infrared, α8 ... Lens, α9 ... Light receiver, β1
... light emitter, β2 ... light receiver, β3 ... lens, β4 ... lens, β5 ... infrared light, γ1 ... infrared light emitting device, γ2 ... infrared light receiving device, γ4 ... infrared light, γ4 ... infrared light, γ5 ... wall and ceiling, etc., γ6 ... Emission divergence angle, γ7 ... Receiving light divergence angle.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H04B 10/02 10/18 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H04B 10/02 10/18

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 無線により光信号の送受信を行う光通信
装置において、 受信部に、光の入射方向別に受信感度を変化させる受信
感度可変手段を設けたことを特徴とする光通信装置。
1. An optical communication apparatus for wirelessly transmitting and receiving an optical signal, wherein the receiving section is provided with receiving sensitivity varying means for changing the receiving sensitivity according to the incident direction of light.
【請求項2】 前記受信部への光の照射位置を所定位置
に変換する照射位置変換手段を設けたことを特徴とする
請求項1記載の光通信装置。
2. The optical communication device according to claim 1, further comprising irradiation position conversion means for converting an irradiation position of light to the receiving section into a predetermined position.
【請求項3】 前記受信感度可変手段は、光強度に対応
して透過率又は反射率を変化させる可変手段を備えてい
ることを特徴とする請求項1又は請求項2記載の光通信
装置。
3. The optical communication device according to claim 1, wherein the reception sensitivity varying means includes a varying means for varying the transmittance or the reflectance according to the light intensity.
【請求項4】 前記受信感度可変手段は、複数の受光器
を有し、 且つこれら複数の受光器の出力の減衰率を各々に変化さ
せる減衰手段を備えていることを特徴とする請求項1又
は請求項2記載の光通信装置。
4. The reception sensitivity varying means includes a plurality of light receivers, and an attenuation means for changing the attenuation rate of the output of each of the plurality of light receivers. Alternatively, the optical communication device according to claim 2.
【請求項5】 前記照射位置変換手段は、ピンホール又
はレンズからなることを特徴とする請求項2記載の光通
信装置。
5. The optical communication device according to claim 2, wherein the irradiation position conversion means comprises a pinhole or a lens.
【請求項6】 前記光強度に対応して透過率又は反射率
を変化させる可変手段は、ホトクロミック物質を備えて
いることを特徴とする請求項3記載の光通信装置。
6. The optical communication device according to claim 3, wherein the variable means for changing the transmittance or the reflectance in accordance with the light intensity comprises a photochromic substance.
【請求項7】 前記光強度に対応して透過率又は反射率
を変化させる可変手段は、光強度を電圧又は電流に変換
する変換装置と、 該電圧又は電流に基づいて入射光の透過率若しくは反射
率を変化させる可変装置とを有することを特徴とする請
求項3記載の光通信装置。
7. The variable means for changing the transmittance or the reflectance in accordance with the light intensity includes a converter for converting the light intensity into a voltage or a current, and a transmittance of incident light based on the voltage or the current, or The optical communication device according to claim 3, further comprising a variable device that changes a reflectance.
【請求項8】 前記複数の受光器の出力の減衰率を各々
に変化させる減衰手段は、スイッチ回路又はクリップ回
路を含むことを特徴とする請求項4記載の光通信装置。
8. The optical communication device according to claim 4, wherein the attenuator that changes the attenuation factors of the outputs of the plurality of light receivers includes a switch circuit or a clip circuit.
【請求項9】 通信に用いる搬送波として赤外線を用い
ることを特徴とする請求項1乃至請求項8のいずれかに
記載の光通信装置。
9. The optical communication device according to claim 1, wherein infrared rays are used as a carrier wave used for communication.
JP6191661A 1994-08-15 1994-08-15 Optical communication equipment Pending JPH0865243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6191661A JPH0865243A (en) 1994-08-15 1994-08-15 Optical communication equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6191661A JPH0865243A (en) 1994-08-15 1994-08-15 Optical communication equipment

Publications (1)

Publication Number Publication Date
JPH0865243A true JPH0865243A (en) 1996-03-08

Family

ID=16278362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6191661A Pending JPH0865243A (en) 1994-08-15 1994-08-15 Optical communication equipment

Country Status (1)

Country Link
JP (1) JPH0865243A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7366420B2 (en) 2003-03-27 2008-04-29 Canon Kabushiki Kaisha Optical transmission device
WO2023218916A1 (en) * 2022-05-11 2023-11-16 Dic株式会社 Light-collecting plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7366420B2 (en) 2003-03-27 2008-04-29 Canon Kabushiki Kaisha Optical transmission device
WO2023218916A1 (en) * 2022-05-11 2023-11-16 Dic株式会社 Light-collecting plate

Similar Documents

Publication Publication Date Title
Killinger Free space optics for laser communication through the air
US4222880A (en) Arrangement for optical transmission of communications
US20020149822A1 (en) Optical commuincation system for a portable computing device and method of use
CN1593028A (en) Free-space optical communication system employing wavelength conversion
US5319190A (en) Pocket laser communicator and illuminator
Cailean et al. Enhanced design of visible light communication sensor for automotive applications: Experimental demonstration of a 130 meters link
EP1365526B1 (en) Method and apparatus for receiving/transmitting an optical signal through the air with a variable fading margin
Rockwell et al. Wavelength selection for optical wireless communications systems
Sterckx et al. Sensitivity assessment of a three-segment pyramidal fly-eye detector in a semidisperse optical wireless communication link
JPH0865243A (en) Optical communication equipment
Szajowski et al. Key elements of high-speed WDM terrestrial free-space optical communications systems
US4088884A (en) Wide aperture optical communications detector
Hulea et al. Mitigation method for the solar irradiation effect in visible light communications
WO2005055436A2 (en) Transceiver for optical transmission
KR20040006726A (en) Receiving device of laser diode wireless optical communications system
RU27285U1 (en) TRANSMISSION DEVICE FOR OPEN OPTICAL COMMUNICATION SYSTEM
JP2002300113A (en) Optical space transmission system and optical transmitter and optical receiver, and optical transmitter-receiver
CN1203580C (en) Receiving antenna of optical communication system
JPH0119481Y2 (en)
Promise et al. Simulated sensitivity improvement of optical receiver in fiber optic network
JPH01289328A (en) Receiver for optical signal
JPH0613095U (en) Infrared remote control lighting equipment
Boucouvalas Ambient light noise and its effect on receiver design for indoor wireless optical links
JPH08167875A (en) Optical spatial communication device
JPH06217136A (en) Optical removing mechanism for back ground light