JPH0864878A - Thermoelectric generator - Google Patents

Thermoelectric generator

Info

Publication number
JPH0864878A
JPH0864878A JP6193935A JP19393594A JPH0864878A JP H0864878 A JPH0864878 A JP H0864878A JP 6193935 A JP6193935 A JP 6193935A JP 19393594 A JP19393594 A JP 19393594A JP H0864878 A JPH0864878 A JP H0864878A
Authority
JP
Japan
Prior art keywords
module
thermoelectric
power generation
thermoelectric generator
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6193935A
Other languages
Japanese (ja)
Other versions
JP3552751B2 (en
Inventor
Shigeki Mitani
茂樹 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP19393594A priority Critical patent/JP3552751B2/en
Publication of JPH0864878A publication Critical patent/JPH0864878A/en
Application granted granted Critical
Publication of JP3552751B2 publication Critical patent/JP3552751B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electromechanical Clocks (AREA)

Abstract

PURPOSE: To use all the performance of a thermoelectric generating element without freezing the element even if cryogenic substance is used. CONSTITUTION: The periphery of a thermoelectric generating element module is surrounded by a small heat conductive material or material 5 having small thermal conductivity and/or gas having small thermal conductivity and containing no moisture is filled into an air gap between thermoelectric generating elements 4 existing in the module.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、熱電発電器に関する
ものである。さらに詳しくは、この発明は、極低温環境
における熱電発電素子の性能低下を防ぐために有用な、
凍結防止対策を施した熱電発電器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric generator. More specifically, the present invention is useful for preventing performance degradation of a thermoelectric power generation element in a cryogenic environment,
The present invention relates to a thermoelectric generator with anti-freezing measures.

【0002】[0002]

【従来の技術と課題】従来より、温度の異なる2種類の
流体を利用して、その温度差によるゼーベック効果によ
り熱エネルギーを電気エネルギーに変換する方法は公知
であり、民生用、あるいは軍事用や人工衛星用電源等に
利用されている。これらの熱電発電器に用いる熱電発電
モジュールは、たとえば図1に例示されるように、高温
流体側セラミック板(1)と低温流体側セラミック板
(2)によって電極(3)と熱電発電素子(4)を挟み
込む構成を有し、両側のセラミック板(1)(2)の間
の温度差を利用することによって発電を行なうものであ
る。そして最近では、熱電発電をより効率よく行なうた
め、低温流体に液化天然ガス(LNG)等を用い、極低
温の条件を利用しようとする試みがなされている。
2. Description of the Related Art Conventionally, a method for converting thermal energy into electric energy by the Seebeck effect due to the difference in temperature between two types of fluids having different temperatures has been known, and is used for civilian or military purposes. It is used as a power source for artificial satellites. The thermoelectric power generation module used for these thermoelectric power generators has an electrode (3) and a thermoelectric power generation element (4) by a high temperature fluid side ceramic plate (1) and a low temperature fluid side ceramic plate (2), for example, as illustrated in FIG. ) Is sandwiched, and power is generated by utilizing the temperature difference between the ceramic plates (1) and (2) on both sides. Recently, in order to perform thermoelectric power generation more efficiently, an attempt has been made to utilize cryogenic conditions by using liquefied natural gas (LNG) or the like as a low temperature fluid.

【0003】しかしながら、低温流体側にLNG等を用
いる場合には、急速に冷却されて、熱電発電素子(4)
のモジュール部分が凍結状態となる。本発明者は各種の
実験の結果、このようなモジュールの凍結が、熱伝導に
影響を及ぼし通過熱量の変化や電気伝導への影響等によ
る発電効率の低下と発電出力の低下、さらには材料の劣
化等を引き起こし、熱電発電器の性能を低下させる原因
となることを確認した。
However, when LNG or the like is used on the low temperature fluid side, it is cooled rapidly and the thermoelectric generation element (4)
The module part of is frozen. As a result of various experiments, the present inventor has found that the freezing of such a module has an effect on heat conduction, which causes a reduction in power generation efficiency and a reduction in power generation output due to a change in the amount of passing heat and an influence on electrical conduction. It was confirmed that it causes deterioration, etc., and causes the performance of the thermoelectric generator to deteriorate.

【0004】そこで、この発明は、以上の通りの問題点
を解消し、LNG等のような極低温物質を使用する場合
にも、熱電発電素子が凍結状態にならずに熱電発電素子
の性能を十分に引き出すことが可能な、新しい熱電発電
器を提供することを目的としている。
Therefore, the present invention solves the above-mentioned problems and improves the performance of the thermoelectric power generation element without causing the thermoelectric power generation element to be frozen even when a cryogenic substance such as LNG is used. The purpose is to provide a new thermoelectric generator that can be fully pulled out.

【0005】[0005]

【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、複数の熱電発電素子を配設した
モジュールを備えた熱電発電器において、モジュールが
小熱伝導率材料で囲まれていること、あるいは熱電発電
素子間の空隙には小熱伝導率材料が充填されていること
を特徴とする凍結防止対策を施した熱電発電器を提供す
る。
The present invention is to solve the above problems by providing a thermoelectric generator including a module having a plurality of thermoelectric generator elements, wherein the module is surrounded by a small thermal conductivity material. Or a gap between thermoelectric generators is filled with a material having a small thermal conductivity, to provide a thermoelectric generator with anti-freezing measures.

【0006】また、この発明は、水分を含まない小熱伝
導率の気体を封入することや、モジュール素子間に空隙
を設けない熱電発電器をも提供する。
Further, the present invention also provides a thermoelectric generator in which a gas having a small thermal conductivity containing no water is filled and a void is not provided between the module elements.

【0007】[0007]

【作用】この発明は、上記の通りの構成により熱電発電
モジュールの周囲を熱伝導率の小さな材料で囲むか、あ
るいはモジュール中に存在する熱電発電素子間の素子間
の空隙を熱伝導率の小さな材料で満たし、さらには、気
体を封入して熱電発電素子の周囲を断熱することによっ
て、外気との接触を絶ち、熱電発電素子の凍結を防止す
るものである。
According to the present invention, the thermoelectric power generation module is surrounded by a material having a low thermal conductivity according to the above-described configuration, or the voids between the thermoelectric power generation elements existing in the module have a low thermal conductivity. It is filled with a material, and further, by enclosing a gas to insulate the periphery of the thermoelectric power generation element, contact with the outside air is cut off, and the thermoelectric power generation element is prevented from freezing.

【0008】さらに詳しく説明すると、この発明の熱電
発電器の熱電発電モジュールでは、図1と同様に、高温
流体側セラミック板(1)と低温流体側セラミック板
(2)によって、電極(3)と熱電発電素子(4)を挟
み込む構成を有し、図2に例示したように、この構成を
有する熱電発電モジュールの周囲をウレタン断熱材等の
小熱伝導材料で囲むか、さらには、図3に例示したよう
に、これら両側のセラミック板(1)(2)に挟まれた
熱電発電素子(4)間の空隙を、小熱伝導率材料(5)
で充填する。素子間空隙に充填する小熱伝導率材料
(5)としては、図2の例の場合と同様に、例えばウレ
タン等の微細気泡を有する熱伝導率の小さなものが好適
に使用される。そして、この発明の場合には、この小熱
伝導率材料(5)とともに、または、これとは別にN2
ガス等の熱伝導の小さな気体をモジュールに封入するこ
とが有効でもある。N2 ガス等の熱伝導率が小さく、か
つ、水分を含有しない気体を封入することによりさらに
外気との接触が絶たれ、断熱性が増すことで凍結が防止
される。
More specifically, in the thermoelectric power generation module of the thermoelectric power generator of the present invention, the electrode (3) is formed by the high temperature fluid side ceramic plate (1) and the low temperature fluid side ceramic plate (2) as in FIG. As shown in FIG. 2, the thermoelectric power generating element (4) is sandwiched, and the thermoelectric power generating module having this configuration is surrounded by a small heat conductive material such as urethane heat insulating material, or further, as shown in FIG. As illustrated, the voids between the thermoelectric power generating elements (4) sandwiched between the ceramic plates (1) and (2) on both sides of the ceramic plates (1) and (2) are filled with the small thermal conductivity material (5).
Fill with. As the small thermal conductivity material (5) to be filled in the inter-element voids, as in the case of the example in FIG. 2, for example, a material having small thermal conductivity having fine bubbles such as urethane is preferably used. In the case of the present invention, N 2 may be used together with the small thermal conductivity material (5) or separately.
It is also effective to enclose a gas having a small heat conduction such as a gas in the module. By enclosing a gas having a low thermal conductivity such as N 2 gas and containing no water, the contact with the outside air is further cut off, and the heat insulating property is increased to prevent freezing.

【0009】図4および図5は、このような気体封入し
た熱電発電器の構成を例示したものである。低温流体
(6)の流れる低温流体管(7)のまわりを熱電発電モ
ジュール(9)を含むガス封入管(10)で取り囲み、
2 ガス等の熱伝導率が小さくかつ水分を含有しない気
体(8)を封入する。そしてさらにそのまわりを高温流
体(11)の流れる高温流体管(12)で取り囲む。こ
の時、ガス封入管内には、N2 ガス等の熱伝導率が小さ
くかつ水分を含有しない気体とウレタン等の小熱伝導率
材料を併用してもよい。
FIG. 4 and FIG. 5 exemplify the structure of such a gas-filled thermoelectric generator. A cryogenic fluid pipe (7) in which a cryogenic fluid (6) flows is surrounded by a gas sealing pipe (10) including a thermoelectric power generation module (9),
A gas (8) having a low thermal conductivity such as N 2 gas and containing no water is enclosed. Further, it is surrounded by a high temperature fluid pipe (12) through which the high temperature fluid (11) flows. At this time, a gas having a small thermal conductivity such as N 2 gas and containing no water and a material having a small thermal conductivity such as urethane may be used together in the gas filled tube.

【0010】ウレタン等の多孔材料中の微細気泡部にこ
の気体を封入するようにしてもよい。この併用により凍
結防止性能はさらに向上する。もちろん、図2の例にお
いてもモジュールおよびウレタン断熱材等の内部に気体
を封入してもよい。また、この発明では、モジュールの
素子間に空隙がないようにモジュールを構成してもよ
い。この場合にも凍結防止のための断熱性が向上するこ
とになる。
This gas may be enclosed in the fine bubble portion in the porous material such as urethane. This combined use further improves the antifreezing performance. Of course, also in the example of FIG. 2, gas may be enclosed inside the module, the urethane heat insulating material and the like. Further, in the present invention, the module may be configured so that there is no gap between the elements of the module. Also in this case, the heat insulating property for preventing freezing is improved.

【0011】そして、モジュールのまわりを図2のよう
に小熱伝導率材料によって囲んでもよい。また、この材
料に前記の通りの気体を封入してもよい。以上の凍結防
止策を施すことで、熱電発電器の性能はより向上するこ
とになる。以下、実施例を示し、さらに詳しくこの発明
について説明する。
The module may be surrounded by a material having a small thermal conductivity as shown in FIG. Further, the gas as described above may be enclosed in this material. The performance of the thermoelectric generator will be further improved by applying the above anti-freezing measures. Hereinafter, the present invention will be described in more detail with reference to Examples.

【0012】[0012]

【実施例】実施例1 この発明の凍結防止対策を施した熱電発電素子モジュー
ルと従来の熱電発電素子モジュールの各々について、低
温熱流体の一例として液体窒素を用いたものを対象とし
て各種の測定をした。
EXAMPLE 1 For each of the thermoelectric power generation element module provided with the anti-freezing measure of the present invention and the conventional thermoelectric power generation element module, various measurements were performed using liquid nitrogen as an example of a low temperature thermal fluid. did.

【0013】以下の測定は図6に示されている実験装置
によって行った。図6に基づいて説明すると、この実験
装置では、液体窒素(21)を注入でき、かつ極低温側
熱伝達部(22)を備えたジュワー瓶(23)とその上
方のヒーター付きアルミニュームブロック(25)との
間に熱発電素子モジュール(24)を挟み込み、ヒータ
ー付きアルミニュームブロック(25)の上から断熱材
(26)を挟んで締め付けボルト(27)によって固定
している。この場合のモジュール(24)は、図2に例
示したように、その周囲をウレタン断熱材によって囲っ
ている。さらに熱電発電素子モジュール(24)の両極
には電圧計(28)と負荷抵抗(29)を介して電流計
(30)が接続されている。また、これらの測定機器で
得られたデータは、さらに接続されているパーソナルコ
ンピュータ(31)に送られ、計算・解析される。
The following measurements were carried out by the experimental apparatus shown in FIG. With reference to FIG. 6, in this experimental device, a dewar bottle (23) into which liquid nitrogen (21) can be injected and equipped with a cryogenic heat transfer section (22), and an aluminum block with a heater (above). The thermoelectric generation element module (24) is sandwiched between it and 25), and the heat insulating material (26) is sandwiched from above the aluminum block with a heater (25) and fixed by a tightening bolt (27). In this case, the module (24) is surrounded by urethane heat insulating material as illustrated in FIG. Further, an ammeter (30) is connected to both electrodes of the thermoelectric power generation element module (24) via a voltmeter (28) and a load resistance (29). Further, the data obtained by these measuring instruments is sent to the personal computer (31) which is further connected, and is calculated and analyzed.

【0014】以上のような構成の実験装置を用いて、ま
ず、ヒーター付きアルミニウムブロック(25)の温度
を上昇させて高温側温度を50℃とし、熱電発電素子モ
ジュール(24)の温度を徐々に液体窒素を入れて低下
させ、温度差を生じさせた。熱電発電素子モジュール
(24)の温度差が130℃程度となり、熱電発電素子
モジュール(24)の高温側温度が10℃程度になった
時点で発電を行い、温度差を小さくするようにして負荷
抵抗特性や効率のデータを測定した。
Using the experimental apparatus configured as described above, first, the temperature of the aluminum block with a heater (25) is raised to the high temperature side temperature of 50 ° C., and the temperature of the thermoelectric power generation element module (24) is gradually increased. Liquid nitrogen was added and lowered to create a temperature difference. When the temperature difference of the thermoelectric generation element module (24) becomes about 130 ° C and the high temperature side temperature of the thermoelectric generation element module (24) becomes about 10 ° C, power is generated to reduce the temperature difference and the load resistance is reduced. Characteristic and efficiency data were measured.

【0015】これらの測定結果から、まず、この発明の
凍結防止対策をおこなった熱電発電素子モジュールの場
合には、目視によって全く霜さえもついていないことが
確認された。これに対し従来の熱電発電素子モジュール
は、同一温度条件で完全に凍結していた。また、発電の
出力・電圧・電流の測定結果からは、この発明の熱電発
電素子モジュールと従来のモジュールとの比較において
は、大きな差は見られなかった。すなわち、電気的な性
質の変化は両者の間に認められなかった。
From these measurement results, it was first confirmed that the thermoelectric generation element module according to the present invention, which has the anti-freezing measure, has no frost visually. On the other hand, the conventional thermoelectric generator module was completely frozen under the same temperature condition. In addition, from the measurement results of the output, voltage, and current of power generation, no significant difference was found in the comparison between the thermoelectric power generation element module of the present invention and the conventional module. That is, no change in electrical properties was observed between the two.

【0016】一方、図7および図8は、発電効率に関す
る結果を示したものであるが、発電効率においては、凍
結防止対策を行なったこの発明の熱電発電素子モジュー
ルの方が、従来のモジュールに比して0.5〜1.0%
程度の向上がみられた。なお、温度差が大きい場合に
は、効率の差は小さくなることも確認された。これは、
熱入力量の差がそのまま効率として現われていると考え
られ、実際に温度差と熱入力の関係を図に表わしてみる
と、図9と図10に示す通り、凍結防止対策を施した方
が防止対策を行なわない場合に比べて熱入力量が少なく
なっている。この現象は、凍結に起因するものと考えら
れ、凍結することによって素子内部を通過するものに加
え他の経路を経由する別の熱の流れの場が発生するもの
と考えられる。そしてさらに、熱電発電素子の平均温度
が上昇すると素子表面に霜として付いていた物質がとけ
て完全に氷の状態となり、発電器素子の下で固まった状
態となる。ここで熱源は、氷を溶かすために熱を奪われ
ることになり、この結果、熱入力が増加すると考えられ
る。
On the other hand, FIG. 7 and FIG. 8 show the results regarding the power generation efficiency. Regarding the power generation efficiency, the thermoelectric power generation element module of the present invention having the anti-freezing measure is more effective than the conventional module. 0.5-1.0% compared to
The degree of improvement was seen. It was also confirmed that the efficiency difference decreases when the temperature difference is large. this is,
It is considered that the difference in the heat input amount appears as it is, and when the relationship between the temperature difference and the heat input is actually shown in the figure, it is better to take anti-freezing measures as shown in FIGS. 9 and 10. The amount of heat input is smaller than when no preventive measures are taken. This phenomenon is considered to be caused by freezing, and it is considered that freezing causes another heat flow field through other paths in addition to the one passing through the inside of the element. Further, when the average temperature of the thermoelectric power generation element rises, the substance attached to the surface of the thermoelectric generation element as frost melts into a completely iced state, and it solidifies under the power generation element. Here, it is considered that the heat source takes heat to melt the ice, resulting in an increase in heat input.

【0017】また、熱入力と熱電発電素子の平均温度の
関係を示したものが図11である。この図11より、そ
れぞれの素子の平均温度において、この発明の凍結対策
を施したモジュール(A)は、従来のモジュール(B)
に比べて熱入力値が小さいことがわかる。以上の通り、
この発明の例では、たとえば低温熱源として液体窒素を
用いても、熱電発電素子が凍結せず、発電効率の向上が
認められる。
FIG. 11 shows the relationship between the heat input and the average temperature of the thermoelectric generator. From FIG. 11, the module (A) provided with the measure against freezing of the present invention is the conventional module (B) at the average temperature of each element.
It can be seen that the heat input value is smaller than that of. As mentioned above,
In the example of the present invention, even if liquid nitrogen is used as the low-temperature heat source, the thermoelectric power generation element does not freeze, and the power generation efficiency is improved.

【0018】[0018]

【発明の効果】以上詳しく説明した通り、この発明によ
り、低温側物質に極低温物質を使用しても熱電発電素子
が凍結せず、熱電発電素子の性能を十分に引き出すこと
が可能となる。
As described above in detail, according to the present invention, the thermoelectric power generation element does not freeze even if an extremely low temperature substance is used as the low temperature side material, and the performance of the thermoelectric power generation element can be sufficiently brought out.

【図面の簡単な説明】[Brief description of drawings]

【図1】モジュールの構成を示した概略図である。FIG. 1 is a schematic diagram showing a configuration of a module.

【図2】この発明の構成例を示した斜視図である。FIG. 2 is a perspective view showing a configuration example of the present invention.

【図3】この発明の別の構成例を示した断面図である。FIG. 3 is a sectional view showing another configuration example of the present invention.

【図4】この発明のさらに別の例を示した要部斜視図で
ある。
FIG. 4 is a perspective view of a main part showing still another example of the present invention.

【図5】図4に対応する断面図である。5 is a cross-sectional view corresponding to FIG.

【図6】実施例の試験装置を示した構成図である。FIG. 6 is a configuration diagram showing a test apparatus of an example.

【図7】この発明の実施例として凍結防止対策を施した
場合の熱電発電モジュールの温度差と発電効率の関係を
示した関係図である。
FIG. 7 is a relationship diagram showing the relationship between the temperature difference and the power generation efficiency of the thermoelectric power generation module when the anti-freezing measure is taken as the embodiment of the present invention.

【図8】凍結防止対策を施さなかった場合の熱電発電モ
ジュールの温度差と発電効率の関係を示した関係図であ
る。
FIG. 8 is a relationship diagram showing the relationship between the temperature difference and the power generation efficiency of the thermoelectric power generation module when the antifreezing measure is not applied.

【図9】この発明の実施例として凍結防止対策を施した
場合の熱電発電モジュールの温度差と熱入力の関係を示
した関係図である。
FIG. 9 is a relationship diagram showing a relationship between the temperature difference and the heat input of the thermoelectric power generation module when the anti-freezing measure is taken as the embodiment of the present invention.

【図10】凍結防止対策を施さなかった場合の熱電発電
モジュールの温度差と熱入力の関係を示した関係図であ
る。
FIG. 10 is a relationship diagram showing the relationship between the temperature difference and the heat input of the thermoelectric power generation module when the anti-freezing measure is not applied.

【図11】熱電発電素子の平均温度と熱入力の関係を示
した関係図である。
FIG. 11 is a relationship diagram showing the relationship between the average temperature of the thermoelectric power generation element and the heat input.

【符号の説明】[Explanation of symbols]

1 高温流体側セラミック板 2 低温流体側セラミック板 3 電極 4 熱電発電素子 5 小熱伝導率材料 6 低温流体 7 低温流体管 8 熱伝導率が小さくかつ水分を含有しないガス 9 熱電発電モジュール 10 気体封入管 11 高温流体 12 高温流体管 21 液体窒素 22 極低温側熱伝達部 23 ジュワー瓶 24 熱電発電モジュール 25 ヒーター付きアルミブロック 26 断熱材 27 締め付けボルト 28 電圧計 29 負荷抵抗 30 電流計 31 パーソナルコンピュータ 1 High Temperature Fluid Side Ceramic Plate 2 Low Temperature Fluid Side Ceramic Plate 3 Electrode 4 Thermoelectric Generator 5 Small Thermal Conductivity Material 6 Low Temperature Fluid 7 Low Temperature Fluid Pipe 8 Gas with Low Thermal Conductivity and No Water Content 9 Thermoelectric Generator Module 10 Gas Filling Tube 11 High-temperature fluid 12 High-temperature fluid tube 21 Liquid nitrogen 22 Heat source of cryogenic temperature 23 Dewar bottle 24 Thermoelectric power generation module 25 Aluminum block with heater 26 Heat insulation material 27 Clamping bolt 28 Voltmeter 29 Load resistance 30 Ammeter 31 Personal computer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 複数の熱電発電素子を配設したモジュー
ルを備えた熱電発電器において、モジュールが小熱伝導
率材料で囲まれていることを特徴とする凍結防止対策を
施した熱電発電器。
1. A thermoelectric generator provided with a module having a plurality of thermoelectric generator elements, wherein the module is surrounded by a material having a small thermal conductivity, and the anti-freezing thermoelectric generator is provided.
【請求項2】 複数の熱電発電素子を配設したモジュー
ルを備えた熱電発電器において、熱電発電素子間の空隙
には小熱伝導率材料が充填されていることを特徴とする
凍結防止対策を施した熱電発電器。
2. A thermoelectric generator comprising a module in which a plurality of thermoelectric power generating elements are arranged, wherein a space between the thermoelectric power generating elements is filled with a small thermal conductivity material. A thermoelectric generator that has been applied.
【請求項3】 複数の熱電発電素子を配設したモジュー
ルを備えた熱電発電器において、モジュール素子間に空
隙がなく熱電発電素子が配置されていることを特徴とす
る凍結防止対策を施した熱電発電器。
3. A thermoelectric generator comprising a module having a plurality of thermoelectric generators arranged therein, wherein the thermoelectric generators are arranged without gaps between the module elements, and the thermoelectric generator having antifreeze measures. Generator.
【請求項4】 複数の熱電発電素子を配設したモジュー
ルを備えた熱電発電器において、モジュール素子間の空
隙に水分を含有しない小熱伝導率の気体が封入されてい
ることを特徴とする凍結防止対策を施した熱電発電器。
4. A thermoelectric generator comprising a module having a plurality of thermoelectric generator elements arranged therein, characterized in that a gap between the module elements is filled with a gas having a low thermal conductivity and containing no water. Thermoelectric generator with preventive measures.
【請求項5】 請求項1または2の熱電発電器におい
て、水分を含有しない小熱伝導率の気体が熱電発電素子
間の空隙に充填されている熱電発電器。
5. The thermoelectric generator according to claim 1 or 2, wherein a gas having a small thermal conductivity and containing no water is filled in a gap between the thermoelectric generators.
JP19393594A 1994-08-18 1994-08-18 Thermoelectric generator Expired - Fee Related JP3552751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19393594A JP3552751B2 (en) 1994-08-18 1994-08-18 Thermoelectric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19393594A JP3552751B2 (en) 1994-08-18 1994-08-18 Thermoelectric generator

Publications (2)

Publication Number Publication Date
JPH0864878A true JPH0864878A (en) 1996-03-08
JP3552751B2 JP3552751B2 (en) 2004-08-11

Family

ID=16316196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19393594A Expired - Fee Related JP3552751B2 (en) 1994-08-18 1994-08-18 Thermoelectric generator

Country Status (1)

Country Link
JP (1) JP3552751B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009246254A (en) * 2008-03-31 2009-10-22 Oki Denki Bosai Kk Thermoelectric conversion temperature sensor
JP2014086454A (en) * 2012-10-19 2014-05-12 Toyota Motor Corp Thermoelectric generator
JP2019500757A (en) * 2015-10-27 2019-01-10 コリア アドバンスト インスティチュート オブ サイエンス アンド テクノロジー Flexible thermoelectric element and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009246254A (en) * 2008-03-31 2009-10-22 Oki Denki Bosai Kk Thermoelectric conversion temperature sensor
JP2014086454A (en) * 2012-10-19 2014-05-12 Toyota Motor Corp Thermoelectric generator
JP2019500757A (en) * 2015-10-27 2019-01-10 コリア アドバンスト インスティチュート オブ サイエンス アンド テクノロジー Flexible thermoelectric element and manufacturing method thereof

Also Published As

Publication number Publication date
JP3552751B2 (en) 2004-08-11

Similar Documents

Publication Publication Date Title
US9000295B1 (en) Termination for gas cooled cryogenic power cables
CN114974792B (en) Liquid helium-free low-temperature excitation device for superconducting undulator
JP3552751B2 (en) Thermoelectric generator
Dunn et al. Electrical behavior of sulfur up to 600 kbar—metallic state
CN100594635C (en) Electrical connection structure for superconducting element
JP2006324325A (en) Super-conducting magnet apparatus
AU2014240481B2 (en) Electrical bushing
JP2005009582A (en) Fastening structure for use at low temperature
JP3180856B2 (en) Superconducting critical current measuring device
US3183121A (en) Thermoelectric generator with heat transfer and thermal expansion adaptor
US20140162882A1 (en) Cable termination for high voltage power cables cooled by a gaseous cryogen
CN107221834A (en) The encapsulating structure and method for packing of semiconductor laser
Kim et al. Simple technique for the simultaneous measurements of the four-probe resistivity and the thermoelectric power
CN106595896A (en) Carbon ceramic temperature sensor temperature monitoring control device
Bloem A cryogenic fast response thermometer
Murata et al. Low Temperature Properties of (TMTSF) 2CIO4, under Pressure
JP2000082347A (en) Cooling method of superconductive cable
Jacobsson et al. Thermal conductivity and Lorenz function of zinc under pressure
Kim et al. Investigation on the thermal behavior of HTS power cable under fault current
Shimizu et al. Oxygen under high pressure-temperature dependence of electrical resistance
JPH0423305A (en) Superconducting magnet system
Shiotsu et al. Transient heat transfer produced by a stepwise heat input to a flat plate on one end of a rectangular duct containing pressurized helium II
Kuchnir et al. Safety Leads
Ballarino et al. Design and tests on the 30 to 600 A HTS current leads for the Large Hadron Collider
Doi et al. Test of copper-braid-stabilized bus lines for superconducting dipole magnets

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees