JPH0864247A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPH0864247A
JPH0864247A JP6225535A JP22553594A JPH0864247A JP H0864247 A JPH0864247 A JP H0864247A JP 6225535 A JP6225535 A JP 6225535A JP 22553594 A JP22553594 A JP 22553594A JP H0864247 A JPH0864247 A JP H0864247A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
battery
pas
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6225535A
Other languages
Japanese (ja)
Inventor
Hajime Kinoshita
肇 木下
Nobuo Ando
信雄 安東
Akihiro Anegawa
彰博 姉川
Takeshi Hashimoto
武 橋本
Yukinori Hadou
之規 羽藤
Shizukuni Yada
静邦 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP6225535A priority Critical patent/JPH0864247A/en
Publication of JPH0864247A publication Critical patent/JPH0864247A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To provide high capacity and high voltage by using metal oxide for a positive electrode, using insoluble and infusible substrate having a polyacene group skeletal structure provided with the specific porous structure for a negative electrode, and controlling quantity of lithium in a battery. CONSTITUTION: Metal oxide containing lithium, capable of electrochemically doping/dedoping lithium, is used for a positive electrode 1, while a substance composed of insoluble and infusible substrate (PAS) is used for a negative electrode 2. In other words, PAS which is prepared by heating aromatic group condensation polymer and is provided with an atomic ratio (H/C) of hydrogen atoms to carbon atoms of 0.5-0.05 and a polyacene skeletal structure is used for the negative electrode 2. In PAS, adsorbed gas quantity per nitrogen adsorption thickness 10Å found on the basis of a nitrogen adsorption isotherm is 100cc/g or less, and to PAS used for the electrode 2, total quantity of lithium contained in a battery is 500mAh/g or more, while lithium derived from the electrode 2 is 100mAh/g or more, and both of the quantity of lithium in the battery and lithium derived from the electrode 2 are properly controlled. In this way, high capacity and high voltage can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、負極にポリアセン系骨
格構造を有する不溶不融性基体、正極に金属酸化物を用
いた、高容量かつ高電圧を有する有機電解質電池に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electrolyte battery having a high capacity and a high voltage, which uses an insoluble and infusible substrate having a polyacene skeleton structure for a negative electrode and a metal oxide for a positive electrode.

【0002】[0002]

【従来の技術】近年、導電性高分子、遷移金属酸化物等
を正極とし、負極にリチウム金属あるいはリチウム合金
を用いた二次電池がエネルギー密度が高いことから、N
i−Cd電池、鉛電池に代る電池として提案されてい
る。しかし、これら二次電池は繰り返し充放電を行うと
正極、あるいは負極の劣化による容量低下が大きく実用
に問題が残されている。特に負極の劣化はデントライト
と呼ばれるこけ状のリチウム結晶の生成を伴い、充放電
の繰り返しにより終局的にはデントライトがセパレータ
ーを貫通し、電池内部でショートを引き起こし、場合に
よっては電池が破裂する等、安全面においても問題があ
った。
2. Description of the Related Art In recent years, secondary batteries using a conductive polymer, a transition metal oxide or the like as a positive electrode and a lithium metal or a lithium alloy as a negative electrode have a high energy density.
It has been proposed as an alternative to i-Cd batteries and lead batteries. However, when these secondary batteries are repeatedly charged and discharged, the capacity decreases due to deterioration of the positive electrode or the negative electrode, and a problem remains for practical use. In particular, the deterioration of the negative electrode is accompanied by the generation of moss-like lithium crystals called dendrites, and the dendrites eventually penetrate the separator due to repeated charging and discharging, causing a short circuit inside the battery, and in some cases the battery bursts. There was also a problem in terms of safety.

【0003】近時、上記問題点を解決すべく、グラファ
イト等の炭素材料を負極に用い、正極にLiCoO2
のリチウム含有金属酸化物を用いた電池が提案されてい
る。該電池は、電池組立後、充電する事により正極のリ
チウム含有金属酸化物より負極にリチウムを供給し、更
に放電では負極リチウムを正極に戻すという、いわゆる
ロッキングチェア型電池である。該電池は高電圧、高容
量を特長とするものの、その容量は最大80〜90mA
h/cc(電極、セパレーター、集電材の総体積基準)
程度であり、リチウム電池の特長である高エネルギー密
度を得るに至っていない。一方、芳香族系縮合ポリマー
の熱処理物であって水素原子/炭素原子の原子比が0.
5〜0.05であるポリアセン系骨格構造を有する不溶
不融性基体は、一般の炭素材料に比べ大量にリチウムを
ドープする事が可能であるが、該不溶不融性基体を負
極、正極にリチウム含有酸化物を用いた上記ロッキング
チェア型の電池を組み立てた場合、炭素材料に比べ高容
量が得られるものの、その容量には不満足な点が残され
ていた。
Recently, in order to solve the above problems, a battery using a carbon material such as graphite for the negative electrode and a lithium-containing metal oxide such as LiCoO 2 for the positive electrode has been proposed. The battery is a so-called rocking chair type battery in which lithium is supplied from the lithium-containing metal oxide of the positive electrode to the negative electrode by charging after the battery is assembled, and the negative electrode lithium is returned to the positive electrode by discharging. Although the battery is characterized by high voltage and high capacity, its capacity is 80 to 90 mA at maximum.
h / cc (based on total volume of electrodes, separators, and current collectors)
However, the high energy density, which is a feature of lithium batteries, has not been achieved. On the other hand, it is a heat-treated product of an aromatic condensation polymer and has an atomic ratio of hydrogen atoms / carbon atoms of 0.
An insoluble infusible substrate having a polyacene skeleton structure of 5 to 0.05 can be doped with a large amount of lithium as compared with a general carbon material, but the insoluble infusible substrate is used as a negative electrode and a positive electrode. When the above-mentioned rocking chair type battery using a lithium-containing oxide was assembled, a high capacity was obtained as compared with the carbon material, but an unsatisfactory point remained in the capacity.

【0004】[0004]

【発明が解決しようとする課題】本発明者らは上記問題
点に鑑み、鋭意研究を続けた結果本発明を完成したもの
であって、本発明の目的は高容量かつ高電圧を有する二
次電池を提供するにある。本発明の他の目的は長期に亘
って充放電が可能で、安全性に優れた二次電池を提供す
るにある。本発明の更に他の目的は製造が容易な二次電
池を提供するにある。本発明の更に他の目的は以下の説
明から明らかにされよう。
The inventors of the present invention have completed the present invention as a result of intensive research in view of the above problems, and an object of the present invention is to provide a secondary battery having a high capacity and a high voltage. To provide batteries. Another object of the present invention is to provide a secondary battery which can be charged and discharged for a long period of time and is excellent in safety. Still another object of the present invention is to provide a secondary battery that is easy to manufacture. Still other objects of the present invention will be apparent from the following description.

【0005】[0005]

【課題を解決するための手段】本発明者らは、正極に金
属酸化物を、負極に特定の細孔構造をもつポリアセン系
骨格構造を有する不溶不融性基体を用い、かつ、電池内
のリチウム量を適切に制御することにより本発明を完成
した。すなわち、本発明は、正極,負極並びに電解液と
してリチウム塩の非プロトン性有機溶媒溶液を備えた有
機電解質電池であって、(1)正極が金属酸化物を含む
ものであり、(2)負極が芳香族系縮合ポリマーの熱処
理物であって水素原子/炭素原子の原子比(H/C)が
0.5〜0.05であるポリアセン系骨格構造を有する
不溶不融性基体であり、かつ該不溶不融性基体の窒素吸
着等温線から得られる窒素吸着厚み10Åにおける吸着
ガス量が100cc/g以下であり、(3)負極PAS
に対し、電池内に含まれる総リチウム量が500mAh
/g以上であり、かつ負極由来のリチウムが100mA
h/g以上であることを特徴とする有機電解質電池であ
る。
The present inventors have used a metal oxide for a positive electrode, an insoluble and infusible substrate having a polyacene skeleton structure having a specific pore structure for a negative electrode, and The present invention has been completed by appropriately controlling the amount of lithium. That is, the present invention is an organic electrolyte battery comprising a positive electrode, a negative electrode, and an aprotic organic solvent solution of a lithium salt as an electrolytic solution, wherein (1) the positive electrode contains a metal oxide, and (2) the negative electrode. Is a heat-treated product of an aromatic condensation polymer and is an insoluble infusible substrate having a polyacene skeleton structure having a hydrogen atom / carbon atom atomic ratio (H / C) of 0.5 to 0.05, and The amount of adsorbed gas at a nitrogen adsorption thickness of 10 Å obtained from the nitrogen adsorption isotherm of the insoluble infusible substrate is 100 cc / g or less, and (3) negative electrode PAS.
In contrast, the total amount of lithium contained in the battery is 500 mAh
/ G or more, and the lithium derived from the negative electrode is 100 mA
It is an organic electrolyte battery characterized by being h / g or more.

【0006】本発明における芳香族系縮合ポリマーと
は、フェノール性水酸基を有する芳香族炭化水素化合物
とアルデヒド類との縮合物である。芳香族炭化水素化合
物としては、例えばフェノール,クレゾール,キシレノ
ールの如きいわゆるフェノール類が好適であるが、これ
らに限られない。例えば下記式
The aromatic condensation polymer in the present invention is a condensation product of an aromatic hydrocarbon compound having a phenolic hydroxyl group and an aldehyde. Suitable aromatic hydrocarbon compounds include, but are not limited to, so-called phenols such as phenol, cresol and xylenol. For example, the following formula

【化1】 (ここで、xおよびyはそれぞれ独立に、0、1又は2
である)で表されるメチレン・ビスフェノール類である
ことができ、或いはヒドロキシ・ビフェニル類、ヒドロ
キシナフタレン類であることもできる。これらの内、実
用的にはフェノール類、特にフェノールが好適である。
特に本発明における芳香族系縮合ポリマーとしては、上
記のフェノール性水酸基を有する芳香族炭化水素化合物
の1部を、フェノール性水酸基を有さない芳香族炭化水
素化合物、例えばキシレン等で置換した変成芳香族系縮
合ポリマー、例えばフェノールとキシレンとホルムアル
デヒドとの縮合物が好ましく用いられる。また、メラミ
ン、尿素で置換した変成芳香族系ポリマーやフラン樹脂
を用いることもできる。また、アルデヒドとしては、ホ
ルムアルデヒド、アセトアルデヒド、フルフラール等の
アルデヒドを使用することができるが、ホルムアルデヒ
ドが好適である。フェノールホルムアルデヒド縮合物と
しては、ノボラック型又はレゾール型或はそれらの混合
物のいずれであってもよい。
Embedded image (Where x and y are each independently 0, 1 or 2
Methylene bisphenols represented by the formula), or hydroxy biphenyls and hydroxynaphthalenes. Of these, phenols, particularly phenol, are practically preferred.
In particular, as the aromatic condensation polymer in the present invention, a modified aromatic compound obtained by substituting a part of the aromatic hydrocarbon compound having a phenolic hydroxyl group with an aromatic hydrocarbon compound having no phenolic hydroxyl group, for example, xylene. Group-based condensation polymers such as condensation products of phenol, xylene and formaldehyde are preferably used. Further, a modified aromatic polymer substituted with melamine or urea or a furan resin can also be used. Aldehydes such as formaldehyde, acetaldehyde and furfural can be used as the aldehyde, but formaldehyde is preferred. The phenol-formaldehyde condensate may be a novolac type, a resol type, or a mixture thereof.

【0007】本発明における不溶不融性基体は、上記芳
香族系ポリマーを熱処理する事により得られ、特公平1
−44212号公報等に記載されているポリアセン系骨
格構造を有する不溶不融性基体は全て用いることがで
き、例えば、次のようにして製造することもできる。該
芳香族系縮合ポリマーを、非酸化性雰囲気下(真空も含
む)中で、400°C〜800°Cの適当な温度まで徐
々に加熱する事により、水素原子/炭素原子の原子比
(以下H/Cと記す)が0.50〜0.05、好ましく
は0.35〜0.10の不溶不融性基体を得ることがで
きる。
The insoluble and infusible substrate in the present invention is obtained by heat-treating the above aromatic polymer.
All of the insoluble and infusible substrates having a polyacene-based skeleton structure described in JP-A-44212 can be used, and for example, they can also be produced as follows. By gradually heating the aromatic condensation polymer in a non-oxidizing atmosphere (including vacuum) to an appropriate temperature of 400 ° C. to 800 ° C., the atomic ratio of hydrogen atoms / carbon atoms (hereinafter It is possible to obtain an insoluble infusible substrate having an H / C ratio of 0.50 to 0.05, preferably 0.35 to 0.10.

【0008】本発明に用いる不溶不融性基体は、X線回
折(CuKα)によれば、メイン・ピークの位置は2θ
で表して24°以下に存在し、また該メイン・ピークの
他に41〜46°の間にブロードな他のピークが存在す
る。すなわち、上記不溶不融性基体は芳香族系多環構造
が適度に発達したポリアセン系骨格構造を有し、かつア
モルファス構造をとると示唆され、リチウムを安定にド
ーピングできることから電池用活物質として有用であ
る。H/Cが0.50を越える場合、芳香族系多環構造
が充分に発達していないため、リチウムのドーピング、
脱ドーピングがスムーズに行うことができず、電池を組
んだ時、充放電効率が低下する。また、H/Cが0.0
5以下の場合、本発明の電池の容量が低下し好ましくな
い。
The insoluble and infusible substrate used in the present invention has a main peak position of 2θ according to X-ray diffraction (CuKα).
In addition to the main peak, there is another broad peak between 41 and 46 °. That is, it is suggested that the insoluble and infusible substrate has a polyacene skeleton structure in which an aromatic polycyclic structure is appropriately developed, and that it has an amorphous structure, which is useful as a battery active material because it can be stably doped with lithium. Is. When H / C exceeds 0.50, the aromatic polycyclic structure is not sufficiently developed, and therefore lithium doping,
Dedoping cannot be performed smoothly, and the charge / discharge efficiency decreases when the battery is assembled. Also, H / C is 0.0
When it is 5 or less, the capacity of the battery of the present invention decreases, which is not preferable.

【0009】本発明の負極は上記不溶不融性基体(以下
PAS)より成り、実用的には粉末状、粒状、短繊維状
等の成形しやすい形状にあるPASをバインダーで成形
したものを用いる事が望ましい。バインダーとしては、
フッ素系バインダーが好ましく、更にはフッ素原子/炭
素原子の原子比(以下、F/Cと記す)が1.5未満
0.75以上であるフッ素系バインダーが好ましく、特
に、1.3未満0.75以上のフッ素系バインダーが好
ましい。上記フッ素系バインダーとしては、例えば、ポ
リフッ化ビニリデン、フッ化ビニリデン−3フッ化エチ
レン共重合体、エチレン−4フッ化エチレン共重合体、
プロピレン−4フッ化エチレン共重合体等が挙げられ、
更に主鎖の水素をアルキル基で置換した含フッ素系ポリ
マーも用いることできる。ポリフッ化ビニリデンの場
合、F/Cは1であり、フッ化ビニリデン−3フッ化エ
チレン共重合体の場合、フッ化ビニリデンのモル分率が
50%の時、80%の時それぞれF/Cは1.25、
1.1となり、更にプロピレン−4フッ化エチレン共重
合体の場合、プロピレンのモル分率が50%の時、F/
Cは0.75となる。中でも、ポリフッ化ビニリデン、
フッ化ビニリデンのモル分率が50%以上のフッ化ビニ
リデン−3フッ化エチレン共重合体が好ましく、実用的
にはポリフッ化ビニリデンが好ましい。これらバインダ
ーを用いた場合、PASの有するリチウムのドープ能
(容量)を充分に利用することができる。
The negative electrode of the present invention comprises the above-mentioned insoluble and infusible substrate (hereinafter referred to as PAS), and in practice, PAS having a shape such as powder, granules, short fibers, etc., which is easy to be molded, is used with a binder. Things are desirable. As a binder,
Fluorine-based binders are preferable, and fluorine-based binders having an atomic ratio of fluorine atoms / carbon atoms (hereinafter referred to as F / C) of less than 1.5 and 0.75 or more are preferable, and particularly less than 1.3. A fluorine-based binder of 75 or more is preferable. Examples of the fluorine-based binder include polyvinylidene fluoride, vinylidene fluoride-3 fluoroethylene copolymer, ethylene-4 fluoroethylene copolymer,
Propylene-4 fluorinated ethylene copolymer and the like,
Further, a fluorine-containing polymer in which hydrogen in the main chain is replaced with an alkyl group can also be used. In the case of polyvinylidene fluoride, the F / C is 1, and in the case of vinylidene fluoride-3 fluoroethylene copolymer, the F / C is 50% and 50%, respectively, when the vinylidene fluoride mole fraction is 50%. 1.25,
1.1, and in the case of a propylene-4 fluoroethylene copolymer, when the propylene mole fraction is 50%, F /
C becomes 0.75. Among them, polyvinylidene fluoride,
A vinylidene fluoride-3 fluoroethylene copolymer having a vinylidene fluoride mole fraction of 50% or more is preferable, and polyvinylidene fluoride is practically preferable. When these binders are used, the dope capacity (capacity) of lithium that PAS has can be fully utilized.

【0010】本発明の有機電解質電池の正極としては、
例えば、LiX CoO2 、 LiX NiO2 、 LiX Mn
2 、LiX FeO2 等のLiX y Z (Mは金属、
二種以上の金属でも良い)の一般式で表され得る、リチ
ウムを電気化学的にドープ、脱ドープが可能なリチウム
含有金属酸化物、あるいはコバルト、マンガン、ニッケ
ル等の遷移金属酸化物を用いる。特にリチウム金属に対
し4V以上の電圧を有するリチウム含有酸化物が好まし
い。中でも、リチウム含有コバルト酸化物、リチウム含
有ニッケル酸化物が好ましい。本発明における正極は、
上記活物質、及び必要に応じて導電材、バインダーを加
え成形したものであり、導電材、バインダーの種類、組
成等は適宜設定すればよい。
As the positive electrode of the organic electrolyte battery of the present invention,
For example, Li X CoO 2, Li X NiO 2, Li X Mn
O 2, Li X FeO 2, etc. Li X M y O Z (M is a metal,
A lithium-containing metal oxide that can be electrochemically doped or dedoped with lithium, or a transition metal oxide such as cobalt, manganese, or nickel, which can be represented by the general formula (two or more kinds of metals may be used) is used. Particularly, a lithium-containing oxide having a voltage of 4 V or more with respect to lithium metal is preferable. Of these, lithium-containing cobalt oxide and lithium-containing nickel oxide are preferable. The positive electrode in the present invention is
The active material and, if necessary, a conductive material and a binder are added and molded, and the types and compositions of the conductive material and the binder may be appropriately set.

【0011】導電剤の種類は、金属ニッケル等の金属粉
末でもよいが、例えば、活性炭、カーボンブラック、ア
セチレンブラック、黒鉛等の炭素系のものが特に好まし
い。混合比は活物質の電気伝導度、電極形状等により異
なるが、活物質に対して2〜40%加えるのが適当であ
る。また、バインダーの種類は、後述の本発明にて用い
る電解液に不溶のものであればよく、例えば、SBR等
のゴム系バインダー、ポリ四フッ化エチレン、ポリフッ
化ビニリデン等の含フッ素系樹脂、ポリプロピレン、ポ
リエチレン等の熱可塑性樹脂が好ましく、その混合比は
20%以下とするのが好ましい。
The kind of the conductive agent may be a metal powder such as metallic nickel, but carbon-based ones such as activated carbon, carbon black, acetylene black and graphite are particularly preferable. The mixing ratio varies depending on the electric conductivity of the active material, the shape of the electrode, etc., but it is appropriate to add 2 to 40% to the active material. Further, the kind of binder may be one that is insoluble in the electrolytic solution used in the present invention described later, for example, a rubber-based binder such as SBR, a fluorine-containing resin such as polytetrafluoroethylene, polyvinylidene fluoride, Thermoplastic resins such as polypropylene and polyethylene are preferable, and the mixing ratio thereof is preferably 20% or less.

【0012】本発明に用いる正極、負極の電極形状は、
目的とする電池により、板状、フィルム状、円柱状、あ
るいは、金属箔上に成形するなど、種々の形状をとるこ
とが出来る。特に、金属箔上に成形したものは集電体一
体電極として、種々の電池に応用できることから好まし
い。
The shape of the positive and negative electrodes used in the present invention is as follows:
Depending on the intended battery, various shapes such as a plate shape, a film shape, a column shape, or molding on a metal foil can be adopted. In particular, the one formed on a metal foil is preferable as it can be applied to various batteries as a collector-integrated electrode.

【0013】本発明の電池は、特定の細孔構造を有する
PASを負極に用い、かつ電池内に含まれるリチウム量
を適切に制御する事により従来の電池に比べ、容量を大
幅に向上することができる。本発明におけるPASへの
窒素ガス吸着量は以下のようにして測定した。即ち、デ
ィスクミルで粉砕した平均粒径15μmのPAS粉体
0.035gを定容装置(湯浅アイオニクス製、オート
ソーブ−1)のサンプルセルに入れ、液体窒素温度77
°Kにおいて窒素ガスを吸着させた。得られた吸着等温
線から、吸着ガス層厚みt(Å)に対して吸着ガス量
(cc/g)をプロットした。t(Å)としては以下の
式を用いた。
In the battery of the present invention, PAS having a specific pore structure is used for the negative electrode, and the amount of lithium contained in the battery is appropriately controlled, so that the capacity is greatly improved as compared with the conventional battery. You can The amount of nitrogen gas adsorbed on PAS in the present invention was measured as follows. That is, 0.035 g of PAS powder having an average particle size of 15 μm crushed by a disc mill was put into a sample cell of a constant volume apparatus (Yuasa Ionics, Autosorb-1), and a liquid nitrogen temperature of 77
Nitrogen gas was adsorbed at ° K. From the obtained adsorption isotherm, the adsorption gas amount (cc / g) was plotted against the adsorption gas layer thickness t (Å). The following equation was used as t (Å).

【数1】 (ここでP/P0 は窒素ガスの相対圧力) 本発明において電池内の総リチウム量とは正極由来のリ
チウム、電解液由来のリチウム、負極由来のリチウムの
総計である。正極由来のリチウムとは、電池組立時、正
極に含まれるリチウムであり、該リチウムの一部もしく
は全部は、外部回路から電流を通ずる操作(充電等)に
より、負極に供給される。また、電解液由来のリチウム
とは、セパレーター、正極、負極等に含まれる電解液中
のリチウムである。また、負極由来のリチウムとは、本
発明の負極PASに担持されているリチウムである(正
極由来のリチウム、電解液由来のリチウム以外のリチウ
ムである)。リチウムを負極PASに担持させる方法は
特に限定しないが、例えば、電池を組む前に予めリチウ
ム金属を対極とした電気化学セルにて予め負極PASに
リチウムをドープしたのち電池を組む方法、リチウム金
属を負極PASに張りつける等の方法で電池内にて負極
PASとリチウム金属を導通させておき、該電池内でリ
チウムをPASにドープする等の方法等が挙げられる。
[Equation 1] (Here, P / P 0 is the relative pressure of nitrogen gas) In the present invention, the total amount of lithium in the battery is the total of lithium derived from the positive electrode, lithium derived from the electrolytic solution, and lithium derived from the negative electrode. The lithium derived from the positive electrode is lithium contained in the positive electrode during battery assembly, and a part or all of the lithium is supplied to the negative electrode by an operation (charging or the like) of passing a current from an external circuit. The lithium derived from the electrolytic solution is lithium in the electrolytic solution contained in the separator, the positive electrode, the negative electrode and the like. In addition, the lithium derived from the negative electrode is lithium supported on the negative electrode PAS of the present invention (lithium derived from the positive electrode, lithium other than lithium derived from the electrolytic solution). The method of supporting lithium on the negative electrode PAS is not particularly limited, but, for example, before assembling the battery, a method of assembling the battery after previously doping the negative electrode PAS with lithium in an electrochemical cell having a lithium metal as a counter electrode in advance, Examples thereof include a method in which the negative electrode PAS and the lithium metal are made conductive in the battery by a method such as sticking to the negative electrode PAS and the lithium is doped into the PAS in the battery.

【0014】本発明においてPASへの窒素吸着厚み1
0Åにおける吸着ガス量は100cc/g以下、好まし
くは80cc/g以下であり、100cc/gを超えた
場合、容量が十分に得られない。本発明において電池内
の総リチウム量は、負極PASに対し500mAh/g
以上,好ましくは600mAh/g以上であり、500
mAh/g未満の場合、容量が充分に得られない。ま
た、本発明における負極由来のリチウムは負極PASに
対し100mAh/g以上、好ましくは150mAh/
g以上であり、100mAh/g未満の場合、たとえ総
リチウム量が負極PASに対し500mAh/g以上で
あったとしても充分な容量が得られない。本発明におけ
る正極由来のリチウム、電解液由来のリチウムは上記条
件を満たしていればよいが、正極由来のリチウムが負極
PASに対し300mAh/g以上であることが好まし
い。
In the present invention, the thickness of nitrogen adsorption on PAS 1
The amount of adsorbed gas at 0Å is 100 cc / g or less, preferably 80 cc / g or less, and when it exceeds 100 cc / g, a sufficient capacity cannot be obtained. In the present invention, the total amount of lithium in the battery is 500 mAh / g based on the negative electrode PAS.
Or more, preferably 600 mAh / g or more, 500
If it is less than mAh / g, sufficient capacity cannot be obtained. Further, the lithium derived from the negative electrode in the present invention is 100 mAh / g or more, preferably 150 mAh / g based on the negative electrode PAS.
When it is g or more and less than 100 mAh / g, sufficient capacity cannot be obtained even if the total amount of lithium is 500 mAh / g or more based on the negative electrode PAS. The lithium derived from the positive electrode and the lithium derived from the electrolytic solution in the present invention may satisfy the above conditions, but the lithium derived from the positive electrode is preferably 300 mAh / g or more based on the negative electrode PAS.

【0015】本発明に用いる電解液を構成する溶媒とし
ては非プロトン性有機溶媒が用いられる。非プロトン性
有機溶媒としては、例えば、エチレンカーボネート、プ
ロピレンカーボネート、ジメチルカーボネート、ジエチ
ルカーボネート、γ−ブチロラクトン、アセトニトリ
ル、ジメトキシエタン、テトラヒドロフラン、ジオキソ
ラン、塩化メチレン、スルホラン等が挙げられ、更に、
これら非プロトン性有機溶媒の二種以上の混合液も用い
ることができる。
An aprotic organic solvent is used as a solvent constituting the electrolytic solution used in the present invention. Examples of the aprotic organic solvent include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, acetonitrile, dimethoxyethane, tetrahydrofuran, dioxolane, methylene chloride, sulfolane, and the like.
Mixtures of two or more of these aprotic organic solvents can also be used.

【0016】また、上記の混合又は単一の溶媒に溶解さ
せる電解質は、リチウムイオンを生成しうる電解質のい
ずれでも良い。このような電解質としては、例えばLi
I、LiClO4 、LiAsF6 、LiBF4 、LiP
6 、又はLiHF2 等が挙げられる。上記の電解質及
び溶媒は充分に脱水された状態で混合され、電解液とす
るのであるが、電解液中の電解質の濃度は電解液による
内部抵抗を小さくするため少なくとも0.1モル/l以
上とするのが好ましく、通常0.2〜1.5モル/lと
するのが更に好ましい。
The electrolyte mixed or dissolved in a single solvent may be any electrolyte capable of producing lithium ions. As such an electrolyte, for example, Li
I, LiClO 4 , LiAsF 6 , LiBF 4 , LiP
F 6 or LiHF 2 may, for example, be mentioned. The above electrolyte and solvent are mixed in a sufficiently dehydrated state to form an electrolytic solution, and the concentration of the electrolyte in the electrolytic solution is at least 0.1 mol / l or more in order to reduce the internal resistance of the electrolytic solution. It is preferable that the amount is usually 0.2 to 1.5 mol / l.

【0017】電池外部に電流を取り出すための集電体と
しては、例えば、炭素、白金、ニッケル、ステンレス、
アルミニウム、銅等を用いることが出来、箔状、ネット
状の集電体を用いる場合、電極を集電体上に成形するこ
とにより集電体一体型電極として用いることもできる。
Examples of the current collector for extracting the electric current to the outside of the battery include carbon, platinum, nickel, stainless steel,
Aluminum, copper or the like can be used, and when a foil-shaped or net-shaped current collector is used, it can be used as a current collector-integrated electrode by molding the electrode on the current collector.

【0018】次に図面により本発明の実施態様の一例を
説明する。図1は本発明に係る電池の基本構成説明図で
ある。図1において、(1)は正極であり、(2)は負
極である。(3),(3′)は集電体であり、各電極及
び外部端子(7),(7′)に電圧降下を生じないよう
に接続されている。(4)は電解液であり、ドーピング
されうるイオンを生成し得る前述の化合物が非プロトン
性有機溶媒に溶解されている。電解液は通常液状である
が漏液を防止するためゲル状又は固体状にして用いるこ
ともできる。(5)は正負両極の接触を阻止する事及び
電解液を保持する事を目的として配置されたセパレータ
ーである。
Next, an example of an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating the basic configuration of a battery according to the present invention. In FIG. 1, (1) is a positive electrode and (2) is a negative electrode. Current collectors (3) and (3 ') are connected to the electrodes and the external terminals (7) and (7') so as not to cause a voltage drop. (4) is an electrolytic solution in which the above-mentioned compound capable of generating a dopable ion is dissolved in an aprotic organic solvent. The electrolytic solution is usually liquid, but it may be used in the form of gel or solid to prevent liquid leakage. (5) is a separator arranged for the purpose of preventing contact between the positive and negative electrodes and holding the electrolytic solution.

【0019】該セパレーターは、電解液或は電極活物質
等に対し、耐久性のある連通気孔を有する電子伝導性の
ない多孔体であり、通常ガラス繊維、ポリエチレン或は
ポリプロピレン等からなる布、不織布或は多孔体が用い
られる。セパレーターの厚さは電池の内部抵抗を小さく
するため薄い方が好ましいが、電解液の保持量、流通
性、強度等を勘案して決定される。正負極及びセパレー
ターは電池ケース(6)内に実用上問題が生じないよう
に固定される。電極の形状、大きさ等は目的とする電池
の形状、性能により適宜決められる。本発明の電池形状
は上記基本構成を満足する、コイン型、円筒型、角形、
箱型等が挙げられ、その形状は特に限定されない。
The separator is a porous body having no continuous electron-permeation holes, which has durability to the electrolytic solution or the electrode active material, and is usually a cloth or non-woven fabric made of glass fiber, polyethylene or polypropylene. Alternatively, a porous body is used. The thickness of the separator is preferably thin in order to reduce the internal resistance of the battery, but is determined in consideration of the amount of electrolyte retained, flowability, strength and the like. The positive and negative electrodes and the separator are fixed in the battery case (6) so that there is no practical problem. The shape and size of the electrode are appropriately determined according to the shape and performance of the target battery. The battery shape of the present invention is a coin type, a cylindrical type, a prism type,
A box shape and the like can be mentioned, and the shape thereof is not particularly limited.

【0020】[0020]

【発明の効果】本発明の有機電解質電池は、負極に特定
の細孔構造を有するPAS、正極に金属酸化物を用い、
かつ電池内のリチウム量、負極PAS由来のリチウム量
の両者を適切に制御した、高容量かつ高電圧の電池であ
る。以下、実施例を挙げて本発明を具体的に説明する。
The organic electrolyte battery of the present invention uses PAS having a specific pore structure in the negative electrode and a metal oxide in the positive electrode.
In addition, it is a battery of high capacity and high voltage in which both the amount of lithium in the battery and the amount of lithium derived from the negative electrode PAS are appropriately controlled. Hereinafter, the present invention will be specifically described with reference to examples.

【0021】[0021]

【実施例1】キシレン樹脂(リグナイト社製)50重量
部と、ノボラック(昭和高分子社製)50重量部、キシ
レンスルホン酸0.1重量部を100℃で加熱してキシ
レン変成ノボラック樹脂を得た。該樹脂100重量部に
ヘキサメチレンテトラミン10重量部を混合、粉砕した
ものを熱プレスにより成形板に成形した。該キシレン変
成ノボラック樹脂成形板をシリコニット電気炉中に入れ
窒素雰囲気下で10℃/時間の速度で昇温し、650℃
まで熱処理し、不溶不融性基体(PASと記す)を合成
した。かくして得られたPAS板をディスクミルで粉砕
することにより平均粒径15μmのPAS粉体を得た。
H/C比は0.22であった。該PAS粉体の窒素吸着
厚み10Åにおける吸着ガス量は29cc/gであっ
た。次に上記PAS粉末100重量部と、ポリフッ化ビ
ニリデン粉末10重量部をN,N−ジメチルホルムアミ
ド90重量部に溶解した溶液100重量部とを充分に混
合する事によりスラリーを得た。該スラリーをアプリケ
ーターを用い厚さ10μmの銅箔(負極集電体)上に塗
布し、乾燥、プレスし厚さ110μmのPAS負極を得
た。市販のLiCoO2 (ストレム社製)100部、グ
ラファイト5部に対し、ポリフッ化ビニリデン粉末10
重量部、、N,N−ジメチルホルムアミド90重量部に
溶解した溶液50重量部を充分に混合する事によりスラ
リーを得た。該スラリーをアプリケーターを用い厚さ2
0μmのアルミ箔(正極集電体)上に塗布し、乾燥、プ
レスし厚さ165μmの正極を得た。
Example 1 50 parts by weight of xylene resin (manufactured by Lignite), 50 parts by weight of novolak (manufactured by Showa High Polymer Co., Ltd.), and 0.1 parts by weight of xylene sulfonic acid were heated at 100 ° C. to obtain a xylene-modified novolak resin. It was Hexamethylenetetramine (10 parts by weight) was mixed with 100 parts by weight of the resin, and the mixture was crushed and molded into a molded plate by hot pressing. The xylene-modified novolak resin molded plate was placed in a silicon knit electric furnace and heated at a rate of 10 ° C./hour in a nitrogen atmosphere to 650 ° C.
Heat treatment was performed until the insoluble and infusible substrate (referred to as PAS) was synthesized. The PAS plate thus obtained was pulverized with a disc mill to obtain PAS powder having an average particle size of 15 μm.
The H / C ratio was 0.22. The amount of adsorbed gas in the PAS powder having a nitrogen adsorption thickness of 10 liters was 29 cc / g. Next, 100 parts by weight of the PAS powder and 100 parts by weight of a solution prepared by dissolving 10 parts by weight of polyvinylidene fluoride powder in 90 parts by weight of N, N-dimethylformamide were sufficiently mixed to obtain a slurry. The slurry was applied on a copper foil (negative electrode current collector) having a thickness of 10 μm using an applicator, dried and pressed to obtain a PAS negative electrode having a thickness of 110 μm. 100 parts of commercially available LiCoO 2 (manufactured by Strem Co., Ltd.), 5 parts of graphite, and 10 parts of polyvinylidene fluoride powder
A slurry was obtained by thoroughly mixing 50 parts by weight of a solution of 90 parts by weight of N, N-dimethylformamide and 50 parts by weight of a solution. Thickness of the slurry is 2 using an applicator.
It was applied onto a 0 μm aluminum foil (positive electrode current collector), dried and pressed to obtain a positive electrode with a thickness of 165 μm.

【0022】上記負極をリチウムを対極とし、電解液に
プロピレンカーボネートとジエチルカーボネートの1:
1(重量比)混合液に、1モル/lの濃度にLiPF6
を溶解した溶液を用い、定電流(一時間当たり、負極P
ASに30mAh/gのリチウムを担持させるような電
流を設定)にて負極PASあたり150mAh/g、2
00mAh/g、300mAh/gのリチウムをドーピ
ングし担持させた(負極由来のリチウム)。それぞれ負
極1、2、3とした。上記正極と,負極1、2、3(い
ずれも1×1cm2 )とを用い、図1のような電池を3
種類組み立てた。セパレーターとしては、厚さ25μm
のポリプロピレンセパレーターを用いた。また電解液と
してはプロピレンカーボネートとジエチルカーボネート
の1:1(重量比)混合液に、1モル/lの濃度にLi
PF6を溶解した溶液を用いた。電池内の負極PASに
対する総リチウム量は表1に示す。上記電池に0.25
mAhの定電流で電池電圧が4.3Vになるまで充電
し、続いて0.25mAhの定電流で電池電圧が2.5
Vになるまで放電した。この4.3V−2.5Vのサイ
クルを繰り返し、3回目の放電において、体積容量(m
Ah/cc)にて評価した。体積基準としては、電極体
積、セパレーター体積、集電体体積の総計を用いた。結
果を表1に示す。
Lithium is used as a counter electrode for the above negative electrode, and the electrolyte solution of propylene carbonate and diethyl carbonate 1:
1 (weight ratio) liquid mixture to a concentration of 1 mol / l LiPF 6
Constant current (per hour of negative electrode P)
The current is set so that 30 mAh / g of lithium is supported on AS), and 150 mAh / g per negative electrode PAS, 2
00 mAh / g and 300 mAh / g of lithium were doped and supported (lithium derived from the negative electrode). Negative electrodes 1, 2, and 3 were used, respectively. Using the above positive electrode and negative electrodes 1, 2, and 3 (both are 1 × 1 cm 2 ), a battery as shown in FIG.
Type assembled. The thickness of the separator is 25 μm
The polypropylene separator of was used. Further, as an electrolytic solution, a 1: 1 (weight ratio) mixed solution of propylene carbonate and diethyl carbonate was used, and Li was added at a concentration of 1 mol / l.
A solution in which PF 6 was dissolved was used. Table 1 shows the total amount of lithium with respect to the negative electrode PAS in the battery. 0.25 for the above battery
It is charged with a constant current of mAh until the battery voltage reaches 4.3V, and then with a constant current of 0.25 mAh, the battery voltage is 2.5.
It was discharged to V. This 4.3 V-2.5 V cycle was repeated, and the volume capacity (m
It was evaluated by Ah / cc). As the volume reference, the total of the electrode volume, the separator volume, and the current collector volume was used. The results are shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【実施例2】実施例1においてPAS原料の組成をキシ
レン樹脂30重量部、ノボラック70重量部、及びキシ
レン樹脂10重量部、ノボラック90重量部に変えたも
のを負極に用いた。これらの負極PASあたり300m
Ah/gのリチウムをドーピングし担持させ、それぞれ
負極4、負極5とした。実施例1と同様の方法で電池を
組み、体積容量を評価した。結果を表2に示す。
Example 2 A negative electrode was prepared by changing the composition of the PAS raw material in Example 1 to 30 parts by weight of xylene resin, 70 parts by weight of novolac, 10 parts by weight of xylene resin and 90 parts by weight of novolac. 300m per these negative electrode PAS
Ah / g lithium was doped and supported to form negative electrode 4 and negative electrode 5, respectively. A battery was assembled in the same manner as in Example 1 and the volume capacity was evaluated. Table 2 shows the results.

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【比較例1】実施例1においてPAS原料の組成をキシ
レン樹脂30重量部、ノボラック70重量部に変えたも
のを負極に用いた。これらの負極のうち1つにはリチウ
ムを予め担持させず、もう1つには負極PASあたり5
0mAh/gのリチウムをドーピングし担持させ、それ
ぞれ負極6、7とした。実施例1と同様の方法で電池を
組み、体積容量を評価した。結果を表3に示す。
Comparative Example 1 The negative electrode was prepared by changing the composition of the PAS raw material in Example 1 to 30 parts by weight of xylene resin and 70 parts by weight of novolac. One of these negative electrodes was not preloaded with lithium and the other was negative 5 per negative electrode PAS.
Negative electrodes 6 and 7 were prepared by doping and supporting 0 mAh / g of lithium. A battery was assembled in the same manner as in Example 1 and the volume capacity was evaluated. The results are shown in Table 3.

【0027】[0027]

【表3】 [Table 3]

【0028】PAS原料の組成をノボラック100重量
部とヘキサメチレンテトラミン10重量部、及び粉末レ
ゾール(昭和高分子製)としたものを負極に用いた。こ
れらの負極PASあたり300mAh/gのリチウムを
ドーピングし担持させ、それぞれ負極8、9とした。実
施例1と同様の方法で電池を組み、体積容量を評価し
た。結果を表4に示す。
The composition of the PAS raw material was 100 parts by weight of novolac, 10 parts by weight of hexamethylenetetramine, and powdered resol (manufactured by Showa High Polymer Co., Ltd.) were used for the negative electrode. 300 mAh / g of lithium was doped and supported per negative electrode PAS to obtain negative electrodes 8 and 9, respectively. A battery was assembled in the same manner as in Example 1 and the volume capacity was evaluated. The results are shown in Table 4.

【0029】[0029]

【表4】 [Table 4]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る電池の基本構成説明図。FIG. 1 is an explanatory diagram of a basic configuration of a battery according to the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3、3’集電体 4 電解液 5 セパレーター 6 電池ケース 7、7’ 外部端子 1 Positive Electrode 2 Negative Electrode 3, 3'Current Collector 4 Electrolyte 5 Separator 6 Battery Case 7, 7'External Terminal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 羽藤 之規 大阪市都島区友渕町1丁目6番2−305号 (72)発明者 矢田 静邦 兵庫県加古郡播磨町宮西2丁目6番13号 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Noriyuki Hato, No. 6 2-305, Tomobuchi-cho, Miyakojima-ku, Osaka (72) Inventor Shizuka Yada 2-6-13 Miyanishi, Harima-cho, Kako-gun, Hyogo Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極,負極並びに電解液としてリチウム
塩の非プロトン性有機溶媒溶液を備えた有機電解質電池
であって、(1)正極が金属酸化物を含むものであり、
(2)負極が芳香族系縮合ポリマーの熱処理物であって
水素原子/炭素原子の原子比が0.5〜0.05である
ポリアセン系骨格構造を有する不溶不融性基体であり、
かつ該不溶不融性基体の窒素吸着等温線から得られる窒
素吸着厚み10Åにおける吸着ガス量が100cc/g
以下であり、(3)負極PASに対し、電池内に含まれ
る総リチウム量が500mAh/g以上であり、かつ負
極由来のリチウムが100mAh/g以上であることを
特徴とする有機電解質電池。
1. An organic electrolyte battery comprising a positive electrode, a negative electrode and an aprotic organic solvent solution of a lithium salt as an electrolytic solution, wherein (1) the positive electrode contains a metal oxide,
(2) The negative electrode is a heat-treated product of an aromatic condensation polymer, which is an insoluble and infusible substrate having a polyacene skeleton structure having an atomic ratio of hydrogen atoms / carbon atoms of 0.5 to 0.05,
And the amount of adsorbed gas at a nitrogen adsorption thickness of 10Å obtained from the nitrogen adsorption isotherm of the insoluble and infusible substrate is 100 cc / g.
(3) The total amount of lithium contained in the battery is 500 mAh / g or more, and the lithium derived from the negative electrode is 100 mAh / g or more with respect to the negative electrode PAS.
【請求項2】 リチウム含有金属酸化物を正極とするも
のである請求項1記載の有機電解質電池。
2. The organic electrolyte battery according to claim 1, wherein a lithium-containing metal oxide is used as a positive electrode.
JP6225535A 1994-08-26 1994-08-26 Organic electrolyte battery Pending JPH0864247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6225535A JPH0864247A (en) 1994-08-26 1994-08-26 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6225535A JPH0864247A (en) 1994-08-26 1994-08-26 Organic electrolyte battery

Publications (1)

Publication Number Publication Date
JPH0864247A true JPH0864247A (en) 1996-03-08

Family

ID=16830822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6225535A Pending JPH0864247A (en) 1994-08-26 1994-08-26 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPH0864247A (en)

Similar Documents

Publication Publication Date Title
JP2001345100A (en) Carbonaceous particles for negative electrode of lithium secondary cell, preparation process thereof, negative electrode for lithium secondary cell and lithium secondary cell
JP3218285B2 (en) Organic electrolyte battery
WO1995008852A1 (en) Organic electrolyte cell
JP3403856B2 (en) Organic electrolyte battery
JP2920079B2 (en) Organic electrolyte battery
JP2574730B2 (en) Organic electrolyte battery
JPH08162161A (en) Organic electrolytic battery
JPH0864251A (en) Organic electrolyte battery
JPH08162159A (en) Organic elctrolytic battery
JPH09102328A (en) Organic electrolyte battery
JP2869354B2 (en) Organic electrolyte battery
JP2869355B2 (en) Organic electrolyte battery
JP2920070B2 (en) Organic electrolyte battery
JPH09102301A (en) Organic electrolyte battery
JPH0864247A (en) Organic electrolyte battery
JP3403857B2 (en) Organic electrolyte battery
JP3002112B2 (en) Organic electrolyte battery
JP2869191B2 (en) Organic electrolyte battery
JP2912517B2 (en) Organic electrolyte battery
JP2556408B2 (en) Organic electrolyte battery
JP3078229B2 (en) Organic electrolyte battery
JPH0864248A (en) Organic electrolyte battery
JP3403894B2 (en) Organic electrolyte battery
JPH0864249A (en) Organic electrolyte battery
JP2955192B2 (en) Electrodes for organic electrolyte batteries