JPH0864222A - Air electrode and air electrode side current collecting plate for solid electrolyte fuel cell - Google Patents

Air electrode and air electrode side current collecting plate for solid electrolyte fuel cell

Info

Publication number
JPH0864222A
JPH0864222A JP6201935A JP20193594A JPH0864222A JP H0864222 A JPH0864222 A JP H0864222A JP 6201935 A JP6201935 A JP 6201935A JP 20193594 A JP20193594 A JP 20193594A JP H0864222 A JPH0864222 A JP H0864222A
Authority
JP
Japan
Prior art keywords
air electrode
thermal expansion
linear thermal
side current
expansion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6201935A
Other languages
Japanese (ja)
Other versions
JP3119084B2 (en
Inventor
Kazutoshi Murata
和俊 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP06201935A priority Critical patent/JP3119084B2/en
Publication of JPH0864222A publication Critical patent/JPH0864222A/en
Application granted granted Critical
Publication of JP3119084B2 publication Critical patent/JP3119084B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE: To provide an air electrode and an air electrode side current collecting plate for an SOFC excellent in the consistency of the linear thermal expansion coefficient with an electrolyte, electric conductivity, and electrode activity. CONSTITUTION: An air electrode and an air electrode side current collecting plate for an SOFC are made of a conducting ceramic material expressed by (La1-x Yx )1-y Sry }MnO3 , where 0<x<=0.4, 0.1<=y<=0.4. A YMnO3 material is dissolved 100% in an LaMnO3 material. The YMnO3 material has a linear thermal expansion coefficient smaller than that of an electrolyte material YSZ, and the LaMnO3 material has a linear thermal expansion coefficient larger than that of the YSZ. When part of the La cyto of a conventional material La1-y Sry MnO3 is substituted with Y, the linear thermal expansion coefficient can be reduced. Excellent electric conductivity and electrode activity are obtained by the Sr doping effect, and excellent consistency of the linear thermal expansion coefficient with an electrolyte is obtained by the Y doping effect.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体電解質型燃料電池
(SOFC)用空気極及び空気極側集電板に係り、特
に、電解質との熱膨張係数の差が小さく、しかも電気伝
導性、電極活性に優れたSOFC用空気極及び空気極側
集電板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell (SOFC) air electrode and an air electrode side current collecting plate, and in particular, it has a small difference in coefficient of thermal expansion from an electrolyte, and has electrical conductivity and The present invention relates to an SOFC air electrode and an air electrode side current collector having excellent activity.

【0002】[0002]

【従来の技術】SOFCは、イットリア安定化ジルコニ
ア(YSZ)よりなる電解質膜に燃料極(アノード)及
び空気極(カソード)の電極膜を積層した構成とされて
いる。従来、空気極電極材料及び空気極側集電板材料と
しては、SrをドープしたLaMnO3 、即ち、La
1-y Sry MnO3 (y=0.1〜0.4)が広く用い
られている。即ち、LaMnO3 にSrをドープするこ
とにより、作動条件下での電気伝導性、電極活性が向上
し、良好な空気極及び空気極側集電板が提供される。こ
の電気伝導性、電極活性の向上効果は、LaMnO3
のSrのドープ量に比例し、Srのドープ量が多い程、
電気伝導性、電極活性に優れた空気極及び空気極側集電
板が提供される。
2. Description of the Related Art An SOFC has a structure in which an electrolyte membrane made of yttria-stabilized zirconia (YSZ) is laminated with electrode membranes of a fuel electrode (anode) and an air electrode (cathode). Conventionally, as the air electrode electrode material and the air electrode side current collecting plate material, Sr-doped LaMnO 3 , that is, La
1-y Sr y MnO 3 (y = 0.1 to 0.4) is widely used. That is, by doping LaMnO 3 with Sr, the electrical conductivity under the operating conditions and the electrode activity are improved, and a good air electrode and an air electrode side current collector plate are provided. The effect of improving electrical conductivity and electrode activity is proportional to the amount of Sr doped in LaMnO 3, and the larger the amount of Sr doped,
Provided are an air electrode and an air electrode side current collector excellent in electrical conductivity and electrode activity.

【0003】[0003]

【発明が解決しようとする課題】しかし、LaMnO3
にSrをドープすることにより、この材料の線熱膨張係
数は大きくなり、電解質を構成するジルコニア質材料
(具体的にはイットリア安定化ジルコニア(YSZ))
の線熱膨張係数(10×10-6/K程度)との整合性は
大きく崩れる。この電解質の線熱膨張係数との整合性
は、LaMnO3 へのSrのドープ量が多い程悪化す
る。このような空気極及び空気極側集電板の線熱膨張係
数と電解質の線熱膨張係数との不整合は、電池内部に熱
応力を発生させ、著しい場合には電池を破壊に至らせ
る。
[Problems to be Solved by the Invention] However, LaMnO 3
By doping Sr with Sr, the coefficient of linear thermal expansion of this material increases, and a zirconia-based material that constitutes the electrolyte (specifically, yttria-stabilized zirconia (YSZ))
Consistency with the coefficient of linear thermal expansion (about 10 × 10 −6 / K) is greatly lost. The consistency with the coefficient of linear thermal expansion of this electrolyte deteriorates as the amount of Sr doped in LaMnO 3 increases. Such a mismatch between the linear thermal expansion coefficient of the air electrode and the air electrode side current collecting plate and the linear thermal expansion coefficient of the electrolyte causes thermal stress inside the battery, and in a remarkable case, the battery is destroyed.

【0004】本発明は上記従来の問題点を解決し、電解
質との線熱膨張係数の整合性に優れ、しかも電気伝導
性、電極活性に優れたSOFC用空気極及び空気極側集
電板を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and provides an SOFC air electrode and an air electrode side current collecting plate having excellent linear thermal expansion coefficient matching with an electrolyte and excellent electric conductivity and electrode activity. The purpose is to provide.

【0005】[0005]

【課題を解決するための手段】本発明のSOFC用空気
極及び空気極側集電板は、{(La1-xx1-y Sr
y }MnO3 (ただし、0<x≦0.4,0.1≦y≦
0.4)で表される導電性セラミックス材料で構成され
ることを特徴とする。
The SOFC air electrode and the air electrode side current collector of the present invention are {(La 1-x Y x ) 1-y Sr.
y } MnO 3 (where 0 <x ≦ 0.4, 0.1 ≦ y ≦
0.4), which is composed of a conductive ceramic material.

【0006】即ち、本発明者らは、従来の空気極及び空
気極側集電板材料であるLa1-y Sry MnO3 はSr
のドープ量を大きくする程電気伝導度は向上するが、電
解質との線熱膨張係数の整合性は失われるのに対し、Y
MnO3 系の材料は線熱膨張係数が小さいことに着目
し、LaMnO3 に電気伝導度を向上させる目的でSr
をドープしつつ、線熱膨張係数の整合性を保つ目的でY
をドープすることを見出し、本発明を完成させた。
That is, the inventors of the present invention used La 1-y Sr y MnO 3 which is a conventional air electrode and air electrode side current collector material as Sr.
Although the electrical conductivity increases as the doping amount of Y increases, the matching of the coefficient of linear thermal expansion with the electrolyte is lost, while Y
Paying attention to the fact that the MnO 3 type material has a small coefficient of linear thermal expansion, Sr was added to LaMnO 3 for the purpose of improving electric conductivity.
For the purpose of maintaining the consistency of the coefficient of linear thermal expansion while doping
The present invention has been completed by finding out that doping is performed.

【0007】以下に本発明を詳細に説明する。The present invention will be described in detail below.

【0008】本発明において、空気極及び空気極側集電
板の構成材料として用いる導電性セラミックスは、
{(La1-xx1-y Sry }MnO3 (ただし、0
<x≦0.4,0.1≦y≦0.4)で表されるもので
ある。
In the present invention, the conductive ceramics used as the constituent material of the air electrode and the air electrode side current collecting plate are:
{(La 1-x Y x ) 1-y Sry y MnO 3 (where 0
<X ≦ 0.4, 0.1 ≦ y ≦ 0.4).

【0009】ここで、Srドープによるyが0.1未満
では、電気伝導性及び電極活性の改善効果が十分でな
く、yが0.4を超えるとYの効果を打消すほどに線熱
膨張係数が大きくなる。
Here, if y by Sr doping is less than 0.1, the effect of improving electrical conductivity and electrode activity is not sufficient, and if y exceeds 0.4, the linear thermal expansion is such that the effect of Y is canceled out. The coefficient becomes large.

【0010】また、xが0.4を超えるとペロブスカイ
トの単相構造ではなく、他の相が表出し、また、電気伝
導度が低下してくるため、xは0.4以下とする。xは
0.4以下の範囲で大きい程線熱膨張係数を電解質であ
るYSZの線熱膨張係数に近づけることができ、線熱膨
張係数の整合性の面から好ましい。xは少な過ぎるとY
ドープによる線熱膨張係数及び電気伝導度の改善効果が
十分に得られないことから、xは特に0.2〜0.4で
あることが好ましい。
When x exceeds 0.4, the perovskite does not have a single-phase structure, other phases are exposed, and the electrical conductivity decreases, so x is set to 0.4 or less. The larger the x is in the range of 0.4 or less, the closer the linear thermal expansion coefficient to the linear thermal expansion coefficient of YSZ, which is the electrolyte, and it is preferable from the viewpoint of the consistency of the linear thermal expansion coefficient. If x is too small, Y
Since the effect of improving the linear thermal expansion coefficient and the electric conductivity by the doping cannot be sufficiently obtained, x is particularly preferably 0.2 to 0.4.

【0011】このような導電性セラミックス材料で構成
される本発明のSOFC用空気極又は空気極側集電板
は、常法に従って、La,Y,Sr,Mnの各成分の酸
化物や酢酸塩等の出発原料を所定の組成となるように混
合した後、1000〜1200℃で固相反応させ、その
後、成形、焼成することにより容易に製造することがで
きる。
The SOFC air electrode or air electrode side current collecting plate of the present invention made of such a conductive ceramic material is an oxide or acetate of each of La, Y, Sr and Mn in accordance with a conventional method. It can be easily produced by mixing starting materials such as the above so as to have a predetermined composition, solid-phase reacting at 1000 to 1200 ° C., and then molding and firing.

【0012】[0012]

【作用】Yイオンはペロブスカイト構造の中で、Laイ
オンと同じ3価の状態にある上に、そのサイトもLaと
同じAサイトを占有すると考えられる。このようなこと
から、YMnO3 系材料はLaMnO3 系材料と全率固
溶する。
In the perovskite structure, the Y ion is considered to have the same trivalent state as the La ion, and its site occupies the same A site as La. Because of this, the YMnO 3 based material forms a solid solution with the LaMnO 3 based material.

【0013】ところで、YMnO3 系材料は電解質材料
であるYSZよりも線熱膨張係数が小さく、一方、La
MnO3 系材料はYSZよりも線熱膨張係数が大きい。
By the way, the YMnO 3 type material has a smaller coefficient of linear thermal expansion than YSZ which is an electrolyte material.
The MnO 3 based material has a larger coefficient of linear thermal expansion than YSZ.

【0014】そこで、従来の空気極及び空気極側集電板
材料であるLa1-y Sry MnOにおいて、Laサイ
トの一部をYで置換したところ、線熱膨張係数を小さく
することができ、これにより、Srドープによる効果で
電気伝導度及び電極活性に優れ、しかも、Yドープによ
る効果で電解質との線熱膨張係数の整合性に優れた材料
が得られる。なお、このYドープによれば、電気伝導度
についても良好な向上効果が得られる。
Therefore, in La 1-y Sr y MnO 3 which is a conventional air electrode and air electrode side current collecting plate material, when a part of the La site is replaced with Y, the linear thermal expansion coefficient can be reduced. This makes it possible to obtain a material that is excellent in electrical conductivity and electrode activity due to the effect of Sr doping, and is excellent in matching of the linear thermal expansion coefficient with the electrolyte due to the effect of Y doping. In addition, according to this Y-doping, a good effect of improving the electric conductivity can be obtained.

【0015】[0015]

【実施例】以下に実施例を挙げて本発明をより具体的に
説明する。
EXAMPLES The present invention will be described in more detail with reference to the following examples.

【0016】実施例1 下記方法により、(La1−xx0.7 Sr0.3
nO3 (ただし、x=0.0,0.2,0.4,0.
6,0.8又は1.0)系導電性セラミックス材料を調
製した。
Example 1 (La 1-x Y x ) 0.7 Sr 0.3 M was prepared by the following method.
nO 3 (where x = 0.0, 0.2, 0.4, 0.
6, 0.8 or 1.0) -based conductive ceramic material was prepared.

【0017】即ち、まず、出発原料として酢酸ランタ
ン、酢酸ストロンチウム、酢酸マンガン、酸化イットリ
ウムを用い、これらを各々所定の組成となるように秤量
した後混合し、400℃で熱分解した。これを粉砕、混
合した後、一軸プレス成形し、1000℃で固相反応を
行った。
That is, first, lanthanum acetate, strontium acetate, manganese acetate, and yttrium oxide were used as starting materials. These were weighed so as to have respective predetermined compositions, mixed, and pyrolyzed at 400 ° C. This was crushed and mixed, then uniaxially press-molded, and a solid phase reaction was performed at 1000 ° C.

【0018】この固相反応後の各試料の粉末X線回折結
果を図1〜6に示す。
The results of powder X-ray diffraction of each sample after this solid phase reaction are shown in FIGS.

【0019】図1〜6より明らかなように、x=0.
0,0.2,0.4ではペロブスカイト一相であるが、
x=0.4を超えるYのドープ量では、ピークがブロー
ドになり、また、ペロブスカイト以外の小さな第2相の
ピークが認められる。
As is clear from FIGS. 1 to 6, x = 0.
At 0, 0.2 and 0.4, there is a single phase of perovskite,
When the doping amount of Y exceeds x = 0.4, the peak becomes broad and a small second phase peak other than the perovskite is observed.

【0020】固相反応後の各試料を各々遊星型ボールミ
ルで粉砕し、一軸プレス成形を行った。これを1500
℃で5時間、大気中で焼成した。得られた焼結体から、
3mm×4mm×17mmの線熱膨張係数測定用試料
と、2mm×2mm×20mmの電気伝導度測定用試料
を切り出し、各々測定を行った。なお、線熱膨張係数の
測定は、大気中で室温から1400℃まで行った。ま
た、電気伝導度は1000℃、大気中で直流4端子法に
より測定した。これらの測定結果を表1に示す。
Each sample after the solid phase reaction was crushed by a planetary ball mill and uniaxially press molded. This is 1500
Firing was performed in the air at 5 ° C. for 5 hours. From the obtained sintered body,
A 3 mm x 4 mm x 17 mm sample for linear thermal expansion coefficient measurement and a 2 mm x 2 mm x 20 mm sample for electrical conductivity measurement were cut out and measured respectively. The linear thermal expansion coefficient was measured in the air from room temperature to 1400 ° C. The electric conductivity was measured at 1000 ° C. in the atmosphere by a direct current 4-terminal method. The results of these measurements are shown in Table 1.

【0021】[0021]

【表1】 [Table 1]

【0022】表1より、(La1-xx0.7 Sr0.3
MnO3 (0<x≦0.4)であれば、電解質の線熱膨
張係数の整合性に優れ、しかも電気伝導度も高い導電性
セラミックス材料が提供されることが明らかである。
From Table 1, (La 1-x Y x ) 0.7 Sr 0.3
It is apparent that MnO 3 (0 <x ≦ 0.4) provides a conductive ceramic material having excellent matching of the linear thermal expansion coefficient of the electrolyte and high electric conductivity.

【0023】即ち、x=0.2の割合でYをドープした
No. 2では、YをドープしていないNo. 1のものに比べ
て線熱膨張係数は11.5×10-6/Kと大きく低下
し、電解質材料であるYSZの線熱膨張係数10×10
-6/Kに近づく。しかも、電気伝導度についてもYドー
プにより向上効果が認められる。これにより、0<x≦
0.4のYドープにより、線熱膨張係数及び電気伝導度
が共に改善されることが明らかである。
That is, Y was doped at a ratio of x = 0.2.
In No. 2, the linear thermal expansion coefficient was significantly reduced to 11.5 × 10 −6 / K compared with that of No. 1 in which Y was not doped, and the linear thermal expansion coefficient of YSZ which is an electrolyte material was 10 ×. 10
-6 / K approaching. Moreover, the effect of improving the electric conductivity is also confirmed by the Y doping. As a result, 0 <x ≦
It is clear that a Y doping of 0.4 improves both the coefficient of linear thermal expansion and the electrical conductivity.

【0024】[0024]

【発明の効果】以上詳述した通り、本発明の固体電解質
型燃料電池によれば、電解質との線熱膨張係数差が小さ
く、従って、電池破壊の問題がなく、しかも、電気伝導
度、電極活性も高いSOFC用空気極及び空気極側集電
板が提供される。
As described in detail above, according to the solid oxide fuel cell of the present invention, the difference in linear thermal expansion coefficient from the electrolyte is small, and therefore, there is no problem of cell destruction, and the electrical conductivity and electrode An SOFC air electrode and an air electrode side current collector having high activity are provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で製造した(La1-xx0.7 Sr
0.3 MnO3 (x=0.0)の粉末X線回折線図であ
る。
FIG. 1 is the (La 1-x Y x ) 0.7 Sr produced in Example 1.
0.3 is a powder X-ray diffraction diagram of MnO 3 (x = 0.0).

【図2】実施例1で製造した(La1-xx0.7 Sr
0.3 MnO3 (x=0.2)の粉末X線回折線図であ
る。
FIG. 2 (La 1-x Y x ) 0.7 Sr produced in Example 1
FIG. 3 is a powder X-ray diffraction diagram of 0.3 MnO 3 (x = 0.2).

【図3】実施例1で製造した(La1-xx0.7 Sr
0.3 MnO3 (x=0.4)の粉末X線回折線図であ
る。
FIG. 3 is (La 1-x Y x ) 0.7 Sr produced in Example 1.
0.3 is a powder X-ray diffraction diagram of MnO 3 (x = 0.4).

【図4】実施例1で製造した(La1-xx0.7 Sr
0.3 MnO3 (x=0.6)の粉末X線回折線図であ
る。
FIG. 4 (La 1-x Y x ) 0.7 Sr produced in Example 1
0.3 is a powder X-ray diffraction diagram of MnO 3 (x = 0.6).

【図5】実施例1で製造した(La1-xx0.7 Sr
0.3 MnO3 (x=0.8)の粉末X線回折線図であ
る。
FIG. 5: (La 1-x Y x ) 0.7 Sr produced in Example 1
0.3 is a powder X-ray diffraction diagram of MnO 3 (x = 0.8).

【図6】実施例1で製造した(La1-xx0.7 Sr
0.3 MnO3 (x=1.0)の粉末X線回折線図であ
る。
FIG. 6 is (La 1-x Y x ) 0.7 Sr produced in Example 1.
FIG. 3 is a powder X-ray diffraction diagram of 0.3 MnO 3 (x = 1.0).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 下記組成式で表される導電性セラミック
ス材料で構成されることを特徴とする固体電解質型燃料
電池用空気極。 {(La1-xx1-y Sry }MnO3 (ただし、0<x≦0.4,0.1≦y≦0.4)
1. An air electrode for a solid oxide fuel cell, which is composed of a conductive ceramic material represented by the following composition formula. {(La 1-x Y x ) 1-y Sr y} MnO 3 ( however, 0 <x ≦ 0.4,0.1 ≦ y ≦ 0.4)
【請求項2】 下記組成式で表される導電性セラミック
ス材料で構成されることを特徴とする固体電解質型燃料
電池用空気極側集電板。 {(La1-xx1-y Sry }MnO3 (ただし、0<x≦0.4,0.1≦y≦0.4)
2. An air electrode side current collector plate for a solid oxide fuel cell, comprising a conductive ceramic material represented by the following composition formula. {(La 1-x Y x ) 1-y Sr y} MnO 3 ( however, 0 <x ≦ 0.4,0.1 ≦ y ≦ 0.4)
JP06201935A 1994-08-26 1994-08-26 Air electrode and air electrode side current collector for solid oxide fuel cell Expired - Fee Related JP3119084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06201935A JP3119084B2 (en) 1994-08-26 1994-08-26 Air electrode and air electrode side current collector for solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06201935A JP3119084B2 (en) 1994-08-26 1994-08-26 Air electrode and air electrode side current collector for solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH0864222A true JPH0864222A (en) 1996-03-08
JP3119084B2 JP3119084B2 (en) 2000-12-18

Family

ID=16449231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06201935A Expired - Fee Related JP3119084B2 (en) 1994-08-26 1994-08-26 Air electrode and air electrode side current collector for solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3119084B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002013296A1 (en) * 2000-08-04 2002-02-14 Anan Kasei Co., Ltd. Composite oxide for air electrode and material of collector of solid electrolyte fuel cell, method for preparation thereof, and solid electrolyte fuel cell
JP2010212036A (en) * 2009-03-10 2010-09-24 Noritake Co Ltd Solid oxide fuel cell and interconnector for the cell
KR101104117B1 (en) * 2010-05-11 2012-01-13 한국에너지기술연구원 Mesh type cathode current collector of tubular solid oxide fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002013296A1 (en) * 2000-08-04 2002-02-14 Anan Kasei Co., Ltd. Composite oxide for air electrode and material of collector of solid electrolyte fuel cell, method for preparation thereof, and solid electrolyte fuel cell
JP2010212036A (en) * 2009-03-10 2010-09-24 Noritake Co Ltd Solid oxide fuel cell and interconnector for the cell
KR101104117B1 (en) * 2010-05-11 2012-01-13 한국에너지기술연구원 Mesh type cathode current collector of tubular solid oxide fuel cell

Also Published As

Publication number Publication date
JP3119084B2 (en) 2000-12-18

Similar Documents

Publication Publication Date Title
Zhou et al. Performances of LnBaCo2O5+ x–Ce0. 8Sm0. 2O1. 9 composite cathodes for intermediate-temperature solid oxide fuel cells
Wang et al. High-performance lanthanum-ferrite-based cathode for SOFC
US5807642A (en) Solid oxide fuel cell stacks with barium and strontium ceramic bodies
JP4608047B2 (en) Mixed ionic conductor and device using the same
Zhao et al. Electrochemical performance of Pr1− xYxBaCo2O5+ δ layered perovskites as cathode materials for intermediate-temperature solid oxide fuel cells
JP4608506B2 (en) Mixed ionic conductor and device using the same
Yasuda et al. Electrical conductivity and mechanical properties of alumina-dispersed doped lanthanum gallates
KR20020053786A (en) Mixed ions containing conductor and device using the same
JPH06107462A (en) Oxide ion conductive body and solid fuel cell
Li et al. Electrochemical characterization of gradient Sm0. 5Sr0. 5CoO3− δ cathodes on Ce0. 8Sm0. 2O1. 9 electrolytes for solid oxide fuel cells
US20040026668A1 (en) Oxide ion conductor, manufacturing method therefor, and fuel cell using the same
KR101165124B1 (en) Ion conductor
JP6100050B2 (en) Air electrode for fuel cell
KR20130075529A (en) Solid oxide electrode, solid oxide fuel cell containing solid oxide electrode, and preparation method thereof
US20040214070A1 (en) Low sintering lanthanum ferrite materials for use as solid oxide fuel cell cathodes and oxygen reduction electrodes and other electrochemical devices
Ishihara et al. Novel fast oxide ion conductor and application for the electrolyte of solid oxide fuel cell
Maffei et al. Performance of planar single cell lanthanum gallate based solid oxide fuel cells
JP2511095B2 (en) Electrode material
JP3381544B2 (en) Composite air electrode material for low temperature operation solid fuel cells
JP4158966B2 (en) Composite oxide, oxide ion conductor, oxide ion conductive membrane and electrochemical cell
JP3119084B2 (en) Air electrode and air electrode side current collector for solid oxide fuel cell
JPH05294629A (en) Oxygen ionic conductor and solid fuel cell
KR20150001185A (en) Oxide, electrolyte comprising oxide, and electrochemical device comprising oxide
JP3573519B2 (en) Single cell of solid oxide fuel cell and method of manufacturing the same
JP6717331B2 (en) Solid oxide fuel cell

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081013

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees