JPH0862125A - Method and apparatus for evaluating surface treatment of board by total reflection spectroscopy - Google Patents

Method and apparatus for evaluating surface treatment of board by total reflection spectroscopy

Info

Publication number
JPH0862125A
JPH0862125A JP19642694A JP19642694A JPH0862125A JP H0862125 A JPH0862125 A JP H0862125A JP 19642694 A JP19642694 A JP 19642694A JP 19642694 A JP19642694 A JP 19642694A JP H0862125 A JPH0862125 A JP H0862125A
Authority
JP
Japan
Prior art keywords
substrate
evaluation
light
total reflection
evaluation light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19642694A
Other languages
Japanese (ja)
Inventor
Zenko Hirose
全孝 廣瀬
Seiichi Miyazaki
誠一 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP19642694A priority Critical patent/JPH0862125A/en
Publication of JPH0862125A publication Critical patent/JPH0862125A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE: To obtain a method and apparatus for evaluating surface treatment of a board by total reflection spectroscopy in which reaction, coupling state, etc., on the surface of the board can be evaluated in real time while treating the surface. CONSTITUTION: The surface-treated state of a board S3 is evaluated during surface treating operation by employing a total reflection crystal board S31, subjecting the board S31 to an intended surface treatment, passing an evaluation light through the board S31 while repeating total reflection, and then evaluating the exiting light.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、基板上に成膜やエッチ
ング等の各種の処理を施しながら、該基板表面での反応
や結合状態を原子・分子レベルで評価する方法及び装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for evaluating the reaction or bonding state on the surface of a substrate at the atomic / molecular level while performing various treatments such as film formation and etching on the substrate.

【0002】[0002]

【従来の技術】基板上に成膜やエッチング等の各種の処
理を施す際に、処理表面での反応や処理表面の結合状態
を原子・分子レベルで評価することは表面処理状態の制
御や半導体デバイス製造にあたってのステップ・カバレ
ッジ改善等の観点から重要である。
2. Description of the Related Art When performing various treatments such as film formation and etching on a substrate, it is necessary to evaluate the reaction on the treated surface and the bonding state of the treated surface at the atomic / molecular level by controlling the surface treatment state or the semiconductor. It is important from the viewpoint of improving step coverage in device manufacturing.

【0003】このような評価を高感度で行う方法とし
て、全反射赤外吸収分光法(FT−IR−ATR)が知
られている。全反射赤外吸収分光法を行う装置の一例を
図6に示す。この装置は全反射結晶プリズムPの赤外光
入射面Paの側に赤外吸収分光器7が設置され、赤外光
出射面Pbの側にMCT検出器(水銀カドミウムテルラ
イド半導体検出器)9が設置されている。プリズムPの
面Pa及び面Pbとプリズム表面との間の角度θ1 は、
プリズムPの屈折率及びプリズム表面に当接される後述
する基板S1の処理表面S11に存在する物質の屈折率
によって定まる最大全反射入射角(ここでは、プリズム
及び基板処理表面の界面と入射光のなす角度)より小さ
い角度θ2 で赤外光が処理表面S11に対し反射できる
ように定められている。
As a method for performing such evaluation with high sensitivity, total reflection infrared absorption spectroscopy (FT-IR-ATR) is known. An example of an apparatus for performing total reflection infrared absorption spectroscopy is shown in FIG. In this device, an infrared absorption spectroscope 7 is installed on the infrared light incident surface Pa side of the total reflection crystal prism P, and an MCT detector (mercury cadmium telluride semiconductor detector) 9 is installed on the infrared light emission surface Pb side. is set up. The angles θ 1 between the surfaces Pa and Pb of the prism P and the prism surface are
The maximum total reflection incident angle (here, the interface between the prism and the substrate processing surface and the incident light is determined by the refractive index of the prism P and the refractive index of the substance existing on the processing surface S11 of the substrate S1 described later, which contacts the prism surface). It is set so that infrared light can be reflected to the processing surface S11 at an angle θ 2 that is smaller than the formed angle).

【0004】この装置によると、処理中の基板の処理表
面S11上に全反射結晶プリズムPが載置される。次い
で、赤外線吸収分光器7から出射した赤外光Iが、反射
鏡8aで反射されて入射面PaからプリズムP内に入射
し、プリズムP内を多重全反射しつつ通過した後、出射
面Pbから出射し、反射鏡8bで反射されてMCT検出
器9に入射する。これにより得られる赤外吸収スペクト
ルから、基板S1の処理表面S11の状態が高感度で評
価される。
According to this apparatus, the total reflection crystal prism P is mounted on the processing surface S11 of the substrate being processed. Next, the infrared light I emitted from the infrared absorption spectroscope 7 is reflected by the reflecting mirror 8a, enters the prism P from the incident surface Pa, passes through the prism P while undergoing multiple total reflection, and then exit surface Pb. Is emitted from the light source, is reflected by the reflecting mirror 8b, and is incident on the MCT detector 9. From the infrared absorption spectrum obtained in this way, the state of the treated surface S11 of the substrate S1 can be evaluated with high sensitivity.

【0005】また、全反射結晶プリズムPの表面に目的
とする表面処理(例えば膜形成)を施し、このプリズム
Pを処理チャンバから取り出して図7に示すように全反
射赤外吸収分光法による評価装置に設置して、処理表面
PSの状態を評価することも行われている。なお、図7
において7は赤外吸収分光器、9はMCT検出器、8
a、8bは反射鏡である。
The surface of the total reflection crystal prism P is subjected to a desired surface treatment (for example, film formation), and the prism P is taken out of the processing chamber and evaluated by total reflection infrared absorption spectroscopy as shown in FIG. It is also installed in an apparatus to evaluate the condition of the treated surface PS. Note that FIG.
7, infrared absorption spectrometer, 9 MCT detector, 8
Reference numerals a and 8b are reflecting mirrors.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、このよ
うな全反射赤外吸収分光法及び装置によると、基板の処
理表面を評価するに当たり、処理プロセスを一旦中断
し、該基板を処理チャンバ外に取り出し、全反射赤外吸
収分光装置内に設置しなければならず、また評価後の基
板上に再び処理を施すことはできない。
However, according to such a total reflection infrared absorption spectroscopy and apparatus, in evaluating the processing surface of the substrate, the processing process is temporarily stopped and the substrate is taken out of the processing chamber. , It must be installed in a total reflection infrared absorption spectroscope, and the substrate after evaluation cannot be treated again.

【0007】そこで本発明は、表面処理を行いながら、
基板の処理表面での反応や結合状態等をリアルタイムに
評価することができる全反射分光法による基板表面処理
評価方法及び装置を提供することを課題とする。
Therefore, according to the present invention, while performing surface treatment,
An object of the present invention is to provide a substrate surface treatment evaluation method and apparatus by total internal reflection spectroscopy capable of evaluating in real time the reaction, bonding state, etc. on the treated surface of the substrate.

【0008】[0008]

【課題を解決するための手段】前記課題を解決するため
に本発明者は研究を重ね、被処理基板として評価用の全
反射結晶基板を用い、基板処理チャンバの両側にそれぞ
れ評価用光入射手段及び評価手段を配置することによ
り、該基板表面に所定の処理を行いながら該処理表面の
反応や結合状態等を全反射分光法により測定できること
を見出し、本発明を完成させた。
In order to solve the above problems, the present inventor has conducted extensive research and uses a total reflection crystal substrate for evaluation as a substrate to be processed, and an evaluation light incidence means is provided on both sides of the substrate processing chamber. And, by arranging the evaluation means, it was found that the reaction and bonding state of the treated surface can be measured by total reflection spectroscopy while the substrate surface is subjected to a predetermined treatment, and the present invention has been completed.

【0009】すなわち本発明は、基板表面処理における
処理状態を該基板表面処理中に評価する基板表面処理方
法であって、前記基板に全反射結晶基板を採用して該全
反射結晶基板表面に目的とする表面処理を実施しつつ、
該全反射結晶基板内に評価用光を入射して多重全反射さ
せつつ通過させ、該出射光を評価することで実施中の表
面処理状態を評価することを特徴とする全反射分光法に
よる基板表面処理評価方法を提供するものである。
That is, the present invention is a substrate surface treatment method for evaluating a treatment state in a substrate surface treatment during the substrate surface treatment, wherein a total reflection crystal substrate is adopted as the substrate, and While performing the surface treatment to
A substrate by total internal reflection spectroscopy, characterized in that the evaluation light is made incident into the total reflection crystal substrate and is allowed to pass through while undergoing multiple total reflection, and the outgoing light is evaluated to evaluate the surface treatment state being carried out. A surface treatment evaluation method is provided.

【0010】また、本発明は、表面処理対象基板を設置
する基板ホルダを内蔵し、チャンバ壁に評価用光の入射
窓及び出射窓を設けた処理チャンバと、前記処理チャン
バに対し設けた目的とする表面処理を実施するための手
段と、前記基板ホルダに設置される評価用の全反射結晶
基板と、該全反射結晶基板に前記評価用光入射窓から評
価用光を入射して該基板内を多重全反射させつつ通過さ
せるための評価用光入射手段と、前記基板内を通過して
前記評価用光出射窓から出てくる評価用光を評価するこ
とで前記基板に対する表面処理状態を該処理実施中に評
価するための評価手段とを備えたことを特徴とする全反
射分光法による基板表面処理評価装置を提供するもので
ある。
Further, the present invention has a built-in substrate holder for setting a substrate to be surface-treated, and a processing chamber having an entrance window and an exit window for the evaluation light on the chamber wall, and an object provided for the processing chamber. Means for performing a surface treatment, an evaluation total reflection crystal substrate installed in the substrate holder, and an evaluation light incident on the total reflection crystal substrate through the evaluation light incident window. Of the evaluation light incident means for passing while undergoing multiple total reflection, and the evaluation light that passes through the inside of the substrate and emerges from the evaluation light emission window to determine the surface treatment state for the substrate. The present invention provides a substrate surface treatment evaluation apparatus by total internal reflection spectroscopy, which is provided with an evaluation means for evaluating during processing.

【0011】前記方法及び装置における基板表面処理と
しては、プラズマCVD法、熱CVD法、冷却CVD法
等の各種CVD(化学的蒸着)法や、真空蒸着、スパッ
タ蒸着等の各種PVD(物理的蒸着)法等の成膜処理、
洗浄処理、エッチング処理、基板表面の熱酸化や窒化等
の表面改質処理等が考えられる。前記方法及び装置にお
いて用いる評価用光としては、前記基板材質のバンドギ
ャップより小さいエネルギの波長領域の光が用いられ、
これにより該評価用光は前記基板内で全反射することが
できる。例えば基板がシリコン基板である場合は1.1
eVより小さいエネルギを持つ光、即ち赤外光を用いる
ことが考えられ、この場合、赤外吸収分光法による評価
が行われる。
As the substrate surface treatment in the above method and apparatus, various CVD (chemical vapor deposition) methods such as plasma CVD method, thermal CVD method and cooling CVD method, and various PVD (physical vapor deposition) such as vacuum vapor deposition and sputter vapor deposition. ) Film forming process such as
Cleaning treatment, etching treatment, surface modification treatment such as thermal oxidation or nitriding of the substrate surface, etc. are considered. As the evaluation light used in the method and apparatus, light in the wavelength region of energy smaller than the band gap of the substrate material is used,
This allows the evaluation light to be totally reflected within the substrate. For example, 1.1 when the substrate is a silicon substrate
It is possible to use light having energy smaller than eV, that is, infrared light, and in this case, evaluation by infrared absorption spectroscopy is performed.

【0012】また、例えば基板が石英やダイアモンド基
板である場合は可視光を用いることも考えられ、この場
合Raman散乱分光法等による評価が行われる。前記
装置において、前記チャンバに設けた表面処理手段は、
前述したように、成膜、エッチング、洗浄、表面改質等
の目的とする表面処理を実施するための手段を指し、そ
の処理のためにチャンバ内に設けられる部品、チャンバ
外に配置されて該チャンバに接続された部品等からなる
ものである。
Further, when the substrate is, for example, a quartz or diamond substrate, it is possible to use visible light, and in this case, evaluation is performed by Raman scattering spectroscopy or the like. In the apparatus, the surface treatment means provided in the chamber is
As described above, it refers to a means for performing a target surface treatment such as film formation, etching, cleaning, surface modification, etc., which is a component provided inside the chamber for the treatment, and is disposed outside the chamber. It is composed of components connected to the chamber.

【0013】前記方法及び装置に採用する評価用光入射
手段は、評価用光の光源及び該光源から出射した評価用
光を前記基板に入射させるための反射鏡等を含む光学系
等である。前記方法及び装置に採用する評価手段として
は、評価用光の検出器が考えられ、例えば評価用光が赤
外線である場合、MCT検出器等が採用される。
The evaluation light incident means employed in the method and apparatus is an optical system including a light source for the evaluation light and a reflecting mirror for causing the evaluation light emitted from the light source to enter the substrate. A detector for evaluation light can be considered as the evaluation means used in the method and apparatus, and for example, when the evaluation light is infrared light, an MCT detector or the like is used.

【0014】前記装置において、チャンバ壁に設けた評
価用光の入射窓及び出射窓は評価波長範囲内で評価用光
を実質上吸収しないものであることが望ましい。前記方
法及び装置において、評価用光の入射面及び出射面を前
記基板に処理雰囲気に曝されないように設けておき、該
面から評価用光を入射及び出射することが考えられる。
基板における評価用光入射面及び出射面が処理雰囲気に
曝され、膜が堆積したりエッチング反応生成物が堆積し
たり等して清浄でない場合は、全反射モードのみによる
測定ではなく透過モードでの測定が加わるため、堆積物
質の吸収帯が評価用光の波長領域にあるときに該入射
面、出射面で評価用光が一部吸収される。また、評価用
光が処理雰囲気内を通過するため、評価用光として偏光
しない光を用いるときは、気相中の分子、化学反応で生
成される活性分子による吸収(発光)現象による影響が
生じることもある。評価用光を前記基板の処理雰囲気に
曝されない面から入射及び出射することにより、これら
問題の発生を抑制することができる。
In the above apparatus, it is preferable that the entrance window and the exit window for the evaluation light provided on the chamber wall do not substantially absorb the evaluation light within the evaluation wavelength range. In the method and apparatus, it is conceivable that an entrance surface and an exit surface for the evaluation light are provided on the substrate so as not to be exposed to the processing atmosphere, and the evaluation light is allowed to enter and exit from the surface.
If the evaluation light entrance surface and the exit surface of the substrate are exposed to the processing atmosphere and the film is not clean due to film deposition or etching reaction product deposition, etc. Since the measurement is added, when the absorption band of the deposited substance is in the wavelength region of the evaluation light, the evaluation light is partially absorbed by the incident surface and the emission surface. In addition, since the evaluation light passes through the processing atmosphere, when unpolarized light is used as the evaluation light, the effect of absorption (emission) of molecules in the gas phase or active molecules generated by a chemical reaction occurs. Sometimes. By causing the evaluation light to enter and exit from the surface of the substrate that is not exposed to the processing atmosphere, these problems can be suppressed.

【0015】従って、前記基板の評価用光入射面及び出
射面を、前記基板の周縁部の互いに対向する位置に処理
雰囲気に曝されないように形成することが考えられる。
また、前記基板の評価用光入射面及び出射面を、前記基
板内の互い対向する位置に処理雰囲気に曝されないよう
に形成することが考えられる。この場合、かかる入射
面、出射面は処理雰囲気に曝されない基板背面から基板
内に向け形成すればよい。このとき前記基板を載置した
基板ホルダの該入射面及び出射面に対応する位置には、
評価用光が該基板ホルダの側から基板に入射及び出射で
きるように、評価用光の入射孔及び出射孔を設けておく
ことが考えられる。
Therefore, it is conceivable to form the evaluation light incident surface and the emission surface of the substrate at positions facing each other on the peripheral edge of the substrate so as not to be exposed to the processing atmosphere.
It is also conceivable to form the evaluation light incident surface and the emission surface of the substrate at positions facing each other in the substrate so as not to be exposed to the processing atmosphere. In this case, the entrance surface and the exit surface may be formed from the back surface of the substrate, which is not exposed to the processing atmosphere, toward the inside of the substrate. At this time, at positions corresponding to the incident surface and the exit surface of the substrate holder on which the substrate is placed,
It is conceivable to provide an entrance hole and an exit hole for the evaluation light so that the evaluation light can enter and exit the substrate from the side of the substrate holder.

【0016】また前記方法においては、前記評価用光
を、基板背面に密着させて設けた該基板と同一材質の評
価用光入射用及び出射用の全反射結晶部材のうち、光入
射用部材の処理雰囲気に曝されないように形成した評価
用光入射面から入射させ、該基板内を多重全反射させつ
つ通過させた後、前記出射用部材の、前記入射面に対向
する位置で、処理雰囲気に曝されないように形成した評
価用光出射面から出射させることが考えられ、前記装置
においては、前記基板ホルダに評価用光入射部材及び及
び評価用光出射部材を設け、それら部材の材質を前記基
板と同一の前記結晶とし、前記基板をその背面がそれら
部材に密着するように設置し、該評価用光入射部材には
処理雰囲気に曝されないように評価用光入射面を形成す
るとともに該評価用光出射部材には処理雰囲気に曝され
ないように評価用光出射面を形成しておくことが考えら
れる。
In the above method, among the total reflection crystal members for evaluation light incidence and emission, which are made of the same material as the substrate and are provided in close contact with the evaluation light, the light incidence member After entering the evaluation light incident surface formed so as not to be exposed to the processing atmosphere and passing through the substrate while performing total internal reflection, the processing member is exposed to the processing atmosphere at a position facing the incident surface of the emitting member. It is considered that the light is emitted from the evaluation light emitting surface formed so as not to be exposed, and in the apparatus, the evaluation light incident member and the evaluation light emitting member are provided in the substrate holder, and the material of these members is the substrate. The same crystal as the above, the substrate is installed so that the back surface thereof is in close contact with those members, and the evaluation light incident surface is formed on the evaluation light incident member so as not to be exposed to the processing atmosphere and the evaluation light incident surface is formed. The emitting member is considered that to be formed for evaluation light emitting surface so as not to be exposed to the processing atmosphere.

【0017】これにより、評価用光は基板背面側の光入
射部材の光入射面から入射して、部材に密着した基板内
を多重全反射しつつ通過し、同じく基板が密着した光出
射部材の出射面から出射するため、基板自身に、評価用
光を入射及び出射させるための加工を施す必要がない。
前記基板ホルダの全部分を前記基板と同一の全反射結晶
で構成することも考えられる。このとき評価用光は基板
の処理表面と前記基板ホルダの基板が設置されていない
面(背面)との間で多重全反射する。
As a result, the evaluation light enters from the light incident surface of the light incident member on the back side of the substrate and passes through the substrate in close contact with the member while being totally reflected, and the light emitting member in close contact with the substrate also receives the evaluation light. Since the light is emitted from the emission surface, it is not necessary to process the substrate itself so that the evaluation light is incident and emitted.
It is also conceivable that all parts of the substrate holder are made of the same total reflection crystal as the substrate. At this time, the evaluation light undergoes multiple total reflection between the processing surface of the substrate and the surface (back surface) of the substrate holder on which the substrate is not installed.

【0018】なお、本明細書において評価用光の基板等
における入射面、出射面に関して、「処理雰囲気に曝さ
れないように形成する(設ける)」とは、処理雰囲気に
まったく、又は実質上曝されないように形成する場合の
ほか、例えば処理雰囲気の基板背面側等へのまわり込み
等があると若干曝されることがあるとしても全体として
処理雰囲気に曝され難いように形成する場合も含んでい
る。
In the present specification, the terms "form (provide) so as not to be exposed to the processing atmosphere" with respect to the incidence surface and the emission surface of the evaluation light on the substrate or the like means that the evaluation light is not or substantially not exposed to the processing atmosphere. In addition to the above-mentioned formation, the case where the processing atmosphere is exposed to the substrate back surface side or the like may be slightly exposed, but is formed so as not to be exposed to the processing atmosphere as a whole. .

【0019】また、全反射モードのみによる測定評価を
一層正確に行えるように、評価用基板に対する評価用光
の入射路及び出射路、該基板の光入射面、光出射面をプ
ラズマ雰囲気等の処理雰囲気から遮蔽するための遮蔽板
を基板周囲に設置してもよい。さらに、かかる遮蔽板を
間にして処理雰囲気とは反対側の領域に処理雰囲気の侵
入を防止する処理雰囲気パージガスを供給し、このパー
ジガス雰囲気に評価用光の入射路、出射路、基板の光入
射面、出射面等を配置するようにしてもよい。かかるパ
ージガスとしては、処理雰囲気等にもよるが、例えばヘ
リウムガスやアルゴンガスが考えられる。
Further, in order to more accurately perform measurement and evaluation only in the total reflection mode, the entrance and exit paths of the evaluation light to the evaluation substrate, the light entrance surface and the light exit surface of the substrate are treated with a plasma atmosphere or the like. A shield plate for shielding from the atmosphere may be installed around the substrate. Further, a processing atmosphere purge gas for preventing invasion of the processing atmosphere is supplied to a region opposite to the processing atmosphere through the shielding plate, and the evaluation light incident path, the emission path, and the substrate light incident on the purge gas atmosphere. A surface, an emission surface, etc. may be arranged. As the purge gas, for example, helium gas or argon gas can be considered, although it depends on the processing atmosphere and the like.

【0020】前記方法及び装置において、評価用光は反
射面、即ち処理表面に対して、基板として用いる結晶の
屈折率と評価する処理表面物質の屈折率とにより定まる
最大全反射入射角(基板及び処理表面物質の界面と入射
光とがなす角度)より小さい角度で反射面に入射できる
ようにする。これにより、評価用光は基板内で透過屈折
せずに全反射する。
In the above method and apparatus, the evaluation light is incident on the reflection surface, that is, the treated surface, at the maximum incident angle of total reflection (substrate and substrate) determined by the refractive index of the crystal used as the substrate and the refractive index of the treated surface substance to be evaluated. The angle between the interface of the treated surface substance and the incident light) is smaller than that of the incident light. As a result, the evaluation light is totally reflected without being refracted through the substrate.

【0021】従って、前記基板の評価用光入射面及び出
射面は、反射面に対する入射角度を前記のように調整し
易いように適当な角度に研磨しておくことが考えられ
る。
Therefore, it is conceivable that the evaluation light entrance surface and the exit surface of the substrate are polished to appropriate angles so that the incident angle with respect to the reflection surface can be easily adjusted as described above.

【0022】[0022]

【作用】本発明方法及び装置によると、被処理基板とし
て全反射結晶基板を採用し、基板処理チャンバの両側に
それぞれ評価用光入射手段及び評価手段を配置して設
け、該評価用光入射手段により、評価用光を該基板に入
射させ、該基体内で多重全反射させた後、該評価用光を
該評価手段にて評価する。これにより、基板に所定の処
理を行いながら処理表面での反応や結合状態をリアルタ
イムに評価することができる。
According to the method and apparatus of the present invention, the total reflection crystal substrate is adopted as the substrate to be processed, and the evaluation light incident means and the evaluation means are provided on both sides of the substrate processing chamber, and the evaluation light incidence means is provided. Thus, the evaluation light is made incident on the substrate and is subjected to multiple total reflection in the substrate, and then the evaluation light is evaluated by the evaluation means. As a result, the reaction and bonding state on the treated surface can be evaluated in real time while the substrate is subjected to the prescribed treatment.

【0023】また、評価用光を該基板の処理雰囲気に曝
されない面から入射及び出射させるときには、全反射モ
ードによる測定を行うことができ、処理表面に堆積する
物質の吸収帯が評価用光の波長領域にあるときにも、該
入射面及び該出射面での評価用光の一部吸収を抑制する
ことができ、さらに、気相中での評価用光の吸収(発
光)による影響を抑制することができる。
Further, when the evaluation light is made to enter and exit from the surface of the substrate which is not exposed to the processing atmosphere, it is possible to perform measurement in the total reflection mode, and the absorption band of the substance deposited on the processed surface is the evaluation light. Even in the wavelength range, it is possible to suppress partial absorption of the evaluation light on the incident surface and the emission surface, and suppress the influence of absorption (emission) of the evaluation light in the gas phase. can do.

【0024】[0024]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は、本発明の1実施例の全反射分光法による
基板表面処理評価方法に用いる装置の概略構成を示して
いる。この装置は、基板上にプラズマCVD法による成
膜を行いながら該基板の表面状態を全反射赤外吸収分光
法により評価する装置であり、真空容器1を備え、容器
1内には互いに対向する電極2及び3が設けられてい
る。電極2は基板ホルダを兼ねる接地電極であり、その
上に載置される基板S2を成膜温度に調節するための温
度調節装置2aが付設されている。電極3は高周波電極
で、ここではマッチングボックス31を介して高周波電
源32が接続されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a schematic configuration of an apparatus used for a substrate surface treatment evaluation method by total internal reflection spectroscopy according to an embodiment of the present invention. This apparatus is an apparatus that evaluates the surface state of the substrate by the total reflection infrared absorption spectroscopy while forming a film on the substrate by the plasma CVD method. The apparatus includes a vacuum container 1 and faces each other in the container 1. Electrodes 2 and 3 are provided. The electrode 2 is a ground electrode which also serves as a substrate holder, and is provided with a temperature adjusting device 2a for adjusting the substrate S2 placed thereon to a film forming temperature. The electrode 3 is a high frequency electrode, and a high frequency power source 32 is connected here via a matching box 31.

【0025】容器1には成膜用原料ガスを供給するガス
供給部4が付設されている。また、容器1には排気装置
5が付設され、容器1内を所定の真空度にすることがで
きる。さらに真空容器壁には、高周波電極3を挟み両側
にそれぞれ評価用光入射窓6a及び出射窓6bが設けら
れており、窓6a及び6bは赤外光を測定波長範囲内で
実質上吸収しない材質として、ここでは2フッ化バリウ
ムからなっている。
The container 1 is additionally provided with a gas supply unit 4 for supplying a film forming source gas. Further, an exhaust device 5 is attached to the container 1 so that the inside of the container 1 can have a predetermined degree of vacuum. Further, the vacuum container wall is provided with an evaluation light entrance window 6a and an evaluation light exit window 6b on both sides of the high-frequency electrode 3, and the windows 6a and 6b are made of a material that does not substantially absorb infrared light within the measurement wavelength range. In this case, it is made of barium difluoride.

【0026】真空容器1外の両側には、赤外吸収分光器
7及びMCT検出器9が配置されている。入射窓6aに
対応する側には分光器7が配置され、分光器7から出射
される赤外光Iは偏光子PにてP偏光が選択された後、
反射鏡8aにより反射して入射窓6aから容器1内に入
射できるようになっている。また、出射窓6bに対応す
る側にはMCT検出器9が配置され、出射窓6bから出
射した赤外光Iは反射鏡8bにより反射して検出器9に
入射できるようになっている。
An infrared absorption spectroscope 7 and an MCT detector 9 are arranged on both sides outside the vacuum container 1. A spectroscope 7 is arranged on the side corresponding to the entrance window 6a, and after the infrared light I emitted from the spectroscope 7 is P-polarized by the polarizer P,
The light is reflected by the reflecting mirror 8a and can enter the container 1 through the entrance window 6a. Further, the MCT detector 9 is arranged on the side corresponding to the emission window 6b, and the infrared light I emitted from the emission window 6b can be reflected by the reflecting mirror 8b and incident on the detector 9.

【0027】なお、ここでは図示していないが、分光器
7から入射窓6aに至る評価用光の入射光路、及び出射
窓6bから検出器9に至る評価用光の出射光路は、何れ
も窒素ガス雰囲気内を評価用光が通過できるように、光
路室が設けられ、該光路室には窒素ガスを供給するガス
源及び排気装置が付設されている。以上説明した装置に
よると、本発明方法は、次のように実施される。
Although not shown here, the incident light path of the evaluation light from the spectroscope 7 to the entrance window 6a and the exit light path of the evaluation light from the exit window 6b to the detector 9 are both. An optical path chamber is provided so that the evaluation light can pass through the nitrogen gas atmosphere, and a gas source for supplying nitrogen gas and an exhaust device are attached to the optical path chamber. According to the apparatus described above, the method of the present invention is carried out as follows.

【0028】被処理基板S2として全反射結晶シリコン
プリズムを採用した。基板S2は、その評価用光入射面
S2a及び出射面S2bが、基板S2の周縁部の互いに
対向する位置にその膜形成表面を所定の角度をつけて斜
めに研磨して形成されている。まず、被処理基板S2が
接地電極を兼ねる基板ホルダ2上に載置された後、容器
1内が排気装置5により所定の真空度とされる。次い
で、高周波電源32からマッチングボックス31を介し
て電極3に高周波電力が印加されるとともにガス供給部
4から成膜用原料ガスが容器1内に供給される。これに
より、該原料ガスがプラズマ化され、このプラズマの下
で基板S2の表面S21に所定の膜が形成される。
A total reflection crystal silicon prism is adopted as the substrate S2 to be processed. The evaluation light incident surface S2a and the emission surface S2b of the substrate S2 are formed by obliquely polishing the film forming surface at a predetermined angle at positions facing each other on the peripheral edge of the substrate S2. First, after the substrate S2 to be processed is placed on the substrate holder 2 which also serves as a ground electrode, the inside of the container 1 is made to have a predetermined vacuum degree by the exhaust device 5. Next, high-frequency power is applied to the electrode 3 from the high-frequency power source 32 via the matching box 31, and the film forming raw material gas is supplied from the gas supply unit 4 into the container 1. As a result, the source gas is turned into plasma, and a predetermined film is formed on the surface S21 of the substrate S2 under this plasma.

【0029】成膜中は、赤外吸収分光器7から赤外光I
を出射させ、偏光子PによりP偏光が選択された後、反
射鏡8aで反射させ、入射窓6aを通過させて基板S2
の評価用光入射面S2aに入射させる。基板S2内で赤
外光Iを多重全反射させつつ通過させた後、出射面S2
bから出射させ、反射鏡8bで反射させ、MCT検出器
9に入射させ、赤外吸収スペクトルを測定する。
During film formation, the infrared absorption spectroscope 7 outputs infrared light I.
Is emitted, and P-polarized light is selected by the polarizer P, then is reflected by the reflecting mirror 8a and passed through the entrance window 6a so as to pass through the substrate S2.
It is incident on the evaluation light incident surface S2a. After the infrared light I is transmitted while being totally reflected in the substrate S2, the emission surface S2
The light is emitted from b, reflected by the reflecting mirror 8b, made incident on the MCT detector 9, and the infrared absorption spectrum is measured.

【0030】これにより成膜を行いながら、基板S2の
処理表面S21での反応や結合状態を原子・分子レベル
でリアルタイムに測定、評価することができる。また、
図2は本発明の他の実施例方法に用いる装置の概略構成
を示す図である。この装置は図1に示す装置において、
評価用光入射窓6a及び出射窓6bを基板ホルダを兼ね
る接地電極2を挟み、真空容器1壁の両側に設けたもの
である。また、これに合わせて、赤外吸収分光器7から
出射した赤外光Iを入射窓6aから基板S3内に入射
し、また基板S3から出射した赤外光Iを出射窓6bか
らMCT検出器9へ入射することができるように、一対
の反射鏡8a及び反射鏡8bが配置されている。また、
基板ホルダ2上に載置される基板S3は全反射結晶シリ
コンプリズムで、その評価用光入射面S3a及び出射面
S3bが、基板S3周縁部の互いに対向する位置にプラ
ズマに曝されないように形成してある。また、真空容器
1壁内部の基板S3周囲にはプラズマ遮蔽板11が設け
られると共に、容器1にはプラズマパージガス供給部4
1が付設され、基板ホルダ2の両側背後よりパージガス
として不活性ガスのヘリウム(He)ガス又はアルゴン
(Ar)ガスを容器1内に導入できるようになってい
る。その他の構成は図1に示す装置と同様である。ま
た、同じ部品には同じ参照符号を付してある。
Thus, the reaction and bonding state on the treated surface S21 of the substrate S2 can be measured and evaluated in real time at the atomic / molecular level while forming the film. Also,
FIG. 2 is a view showing the schematic arrangement of an apparatus used in the method of another embodiment of the present invention. This device is the same as the device shown in FIG.
The evaluation light entrance window 6a and the evaluation light entrance window 6b are provided on both sides of the wall of the vacuum container 1 with the ground electrode 2 also serving as a substrate holder interposed therebetween. In accordance with this, the infrared light I emitted from the infrared absorption spectroscope 7 enters the substrate S3 through the entrance window 6a, and the infrared light I emitted from the substrate S3 enters through the exit window 6b to the MCT detector. A pair of reflecting mirrors 8 a and 8 b are arranged so that the light can be incident on 9. Also,
The substrate S3 placed on the substrate holder 2 is a total reflection crystal silicon prism, and its evaluation light incident surface S3a and emission surface S3b are formed so as not to be exposed to plasma at positions facing each other on the peripheral edge of the substrate S3. There is. A plasma shield plate 11 is provided around the substrate S3 inside the wall of the vacuum container 1, and the plasma purge gas supply unit 4 is provided in the container 1.
1 is additionally provided so that an inert gas such as helium (He) gas or argon (Ar) gas can be introduced into the container 1 as a purge gas from behind both sides of the substrate holder 2. Other configurations are similar to those of the device shown in FIG. Moreover, the same reference numerals are given to the same parts.

【0031】この装置によると、図1に示す装置を用い
た方法と同様にして基板S3の表面S31に所定の膜を
形成させつつ、表面S31での反応や結合状態を評価す
る。なお、この間プラズマ遮蔽板11により、発生した
プラズマが赤外光Iの光路内へ拡散するのを防ぐととも
に、パージガス供給部41からヘリウムガス又はアルゴ
ンガスを基板ホルダ2の両側背後より容器1内に導入す
ることで、容器1壁とプラズマ遮蔽板11と基板S3と
に囲まれた領域へプラズマが拡散侵入するのを防ぐ。
According to this apparatus, the reaction and bonding state on the surface S31 are evaluated while forming a predetermined film on the surface S31 of the substrate S3 in the same manner as the method using the apparatus shown in FIG. During this time, the plasma shielding plate 11 prevents the generated plasma from diffusing into the optical path of the infrared light I, and the helium gas or the argon gas is supplied from the purge gas supply unit 41 to the inside of the container 1 from behind both sides of the substrate holder 2. The introduction prevents the plasma from diffusing and entering the region surrounded by the wall of the container 1, the plasma shielding plate 11 and the substrate S3.

【0032】これにより基板S2の評価用光入射面S3
a及び出射面S3bがプラズマに曝されず、その表面に
膜が堆積しないため、全反射モードのみでの測定を行う
ことができ、また、膜構成物質の吸収帯が赤外光Iの測
定波長領域にある場合も、入射面S3a及び出射面S3
bで赤外光Iが一部吸収されることがない。また赤外光
Iが、発生したプラズマ内を通過しないため、気相中で
の化学反応による吸収(発光)現象による影響が生じな
い。
As a result, the evaluation light incident surface S3 of the substrate S2 is
Since a and the emission surface S3b are not exposed to plasma and no film is deposited on the surface, measurement can be performed only in the total reflection mode, and the absorption band of the film constituent material is the measurement wavelength of the infrared light I. Even in the area, the entrance surface S3a and the exit surface S3
The infrared light I is not partially absorbed by b. Further, since the infrared light I does not pass through the generated plasma, the influence of the absorption (light emission) phenomenon due to the chemical reaction in the gas phase does not occur.

【0033】また、図3は本発明のさらに他の実施例方
法に用いる装置の基板付近の拡大図である。この装置は
図2の装置において、基板ホルダ2に代えて基板ホルダ
21を採用したものである。また、この基板ホルダ21
上には基板S4が載置される。この基板S4も全反射結
晶シリコンプリズムで、その処理表面S41とは異なる
裏面(背面)の中央部分の、基板中心を挟み対向する位
置に、基板S4を一部除去して基板内に評価用光入射面
S4a及び出射面S4bが設けられている。また、基板
ホルダ21は、基板S4の入射面S4aに赤外光Iを入
射させ、出射面S4bから出射させることができるよう
に、評価用光の入射孔21a及び出射孔21bが設けら
れている。その他の構成は図2に示す装置と同様であ
り、同じ部品には同じ参照符号を付してある。
FIG. 3 is an enlarged view of the vicinity of the substrate of the apparatus used in the method of another embodiment of the present invention. This device employs a substrate holder 21 instead of the substrate holder 2 in the device of FIG. In addition, this substrate holder 21
The substrate S4 is placed on top. This substrate S4 is also a total reflection crystal silicon prism, and the substrate S4 is partially removed at a position opposite to the central portion of the back surface (back surface) different from the processed surface S41 with the substrate center interposed therebetween, and the evaluation light is provided in the substrate. An entrance surface S4a and an exit surface S4b are provided. Further, the substrate holder 21 is provided with an entrance hole 21a and an exit hole 21b for the evaluation light so that the infrared light I can be incident on the entrance surface S4a of the substrate S4 and can be emitted from the exit surface S4b. . The other structure is similar to that of the apparatus shown in FIG. 2, and the same parts are denoted by the same reference numerals.

【0034】この装置によると、基板S4の処理表面S
41上に成膜を行いながら、分光器7からの赤外光Iを
基板ホルダの入射孔21aを通過させて基板S4の入射
面S4aに入射させ、基板S3内で多重全反射させつつ
通過させた後、出射面S4bから出射させ、基板ホルダ
の出射孔21bを通過させ、検出器9に入射させる。こ
れにより、評価用光入射面S4a及び出射面S4b上へ
の膜堆積を、より確実に避けることができ、その結果、
全反射モードのみでの測定を一層確実に行うことができ
るとともに入射面S4a及び出射面S4bでの赤外光の
一部吸収を一層効果的に避けることができる。
According to this apparatus, the processed surface S of the substrate S4 is
While forming the film on the film 41, the infrared light I from the spectroscope 7 is made to pass through the entrance hole 21a of the substrate holder to be made incident on the entrance surface S4a of the substrate S4, and to be transmitted while being totally reflected in the substrate S3. After that, the light is emitted from the emission surface S4b, passes through the emission hole 21b of the substrate holder, and is incident on the detector 9. As a result, film deposition on the evaluation light incident surface S4a and the emission surface S4b can be avoided more reliably, and as a result,
It is possible to more reliably perform the measurement only in the total reflection mode, and it is possible to more effectively avoid partial absorption of infrared light on the entrance surface S4a and the exit surface S4b.

【0035】また、図4は本発明のさらに他の実施例方
法に用いる装置の概略構成を示す図である。この装置は
図2の装置において、基板ホルダ2に代えて基板ホルダ
22を採用したものである。また、この基板ホルダ22
上には基板S5が密着性良く設置される。この基板S5
も全反射結晶シリコンプリズムであるが、赤外光Iの入
射面及び出射面形成のための加工は施されていない。基
板ホルダ22は基板S5を設置していない裏面(背面)
の中央部分の、基板中心を挟み対向する位置に、基板ホ
ルダ22を一部切り欠いて基板ホルダ22内に評価用光
入射面22a及び出射面22bが設けられている。入射
面22aは評価用光入射部材221により提供され、出
射面22bは評価用光出射部材222により提供されて
おり、これら部材221、222は基板S5と同一材質
の全反射結晶からなっている。なお、この例では部材2
21、222は一体のものである。他の点は図2の装置
と実質上同構成であり、実質上同一部品には同一参照符
号をつけてある。
FIG. 4 is a view showing the schematic arrangement of an apparatus used in a method of another embodiment of the present invention. This device employs a substrate holder 22 instead of the substrate holder 2 in the device of FIG. In addition, this substrate holder 22
The substrate S5 is installed on the top with good adhesion. This substrate S5
Is a total reflection crystal silicon prism, but is not processed to form an incident surface and an emission surface of the infrared light I. The substrate holder 22 has a rear surface (rear surface) on which the substrate S5 is not installed.
The evaluation light incident surface 22a and the emission surface 22b are provided in the substrate holder 22 by cutting out a part of the substrate holder 22 at positions facing each other across the center of the substrate. The entrance surface 22a is provided by the evaluation light entrance member 221, and the exit surface 22b is provided by the evaluation light exit member 222. These members 221 and 222 are made of the total reflection crystal of the same material as the substrate S5. In this example, the member 2
21, 222 are integrated. Other points are substantially the same as those of the apparatus of FIG. 2, and substantially the same parts are designated by the same reference numerals.

【0036】この装置によると、基板S5の処理表面S
51上に成膜を行いながら、分光器7からの赤外光Iを
基板ホルダの入射面22aから入射させて入射部材22
1を通過させ、基板S5内で多重全反射させつつ通過さ
せ、基板ホルダの出射部材222を通過させて出射面2
2bから出射させ、検出器9に入射させる。これにより
基板S5として評価用光入射及び出射のための加工を施
さないものを用いることができ、評価コストを低減させ
ることができる。
According to this apparatus, the processed surface S of the substrate S5 is
The infrared light I from the spectroscope 7 is incident on the incident surface 22a of the substrate holder while forming a film on the incident member 22.
1 to pass through the substrate S5 while undergoing multiplex total reflection, and to pass through the exit member 222 of the substrate holder to exit to the exit surface 2
It is emitted from 2b and is incident on the detector 9. This makes it possible to use, as the substrate S5, a substrate that is not processed for incidence and emission of the evaluation light, and it is possible to reduce the evaluation cost.

【0037】なお、以上の例では基板表面処理として、
プラズマCVD法による成膜を行ったが、これに限ら
ず、真空蒸着等の他の成膜、基板の洗浄、基板表面に予
め形成した膜のエッチング、表面改質等を行いながら該
基板表面を観察、評価することもできる。また、ここで
は評価用光として赤外光を用い、赤外吸収分光法による
評価を行ったが、これに限らず、被処理基板のバンドギ
ャップより小さいエネルギの波長領域の光を用いること
ができる。
In the above example, as the substrate surface treatment,
Although the film formation is performed by the plasma CVD method, the present invention is not limited to this, and other film formation such as vacuum deposition, cleaning of the substrate, etching of a film previously formed on the substrate surface, surface modification, etc. are performed on the substrate surface. It can also be observed and evaluated. Further, here, infrared light is used as the evaluation light, and the evaluation is performed by the infrared absorption spectroscopy. However, the light is not limited to this, and light in a wavelength region having an energy smaller than the band gap of the substrate to be processed can be used. .

【0038】次に、図2の装置を用いた本発明実施の具
体例を説明する。被成膜基板S3として、全反射測定用
シリコン(Si)プリズムとして加工したものを採用し
た。まず、基板S3を基板ホルダ上に載置し、容器1内
を0.2Torrの真空度とした。次いで、容器1内に
成膜用原料ガスとして3%水素(H2 )ガス希釈シラン
(SiH4 )ガスを90sccmの流量で導入すると共
に、高周波電極3に13.56MHzの高周波電力を、
放電電力密度20mW/cm2 で印加し、前記原料ガス
をプラズマ化させ、このプラズマの下で基板S3の表面
S31上にシリコン膜を堆積させた。成膜中の基板温度
は200℃に保った。
Next, a specific example of implementing the present invention using the apparatus shown in FIG. 2 will be described. As the film formation substrate S3, one processed as a silicon (Si) prism for measuring total reflection was adopted. First, the substrate S3 was placed on the substrate holder, and the inside of the container 1 was set to a vacuum degree of 0.2 Torr. Next, 3% hydrogen (H 2 ) gas diluted silane (SiH 4 ) gas was introduced into the container 1 as a film forming raw material gas at a flow rate of 90 sccm, and high frequency power of 13.56 MHz was supplied to the high frequency electrode 3.
A discharge power density of 20 mW / cm 2 was applied to turn the source gas into plasma, and a silicon film was deposited on the surface S31 of the substrate S3 under this plasma. The substrate temperature during film formation was kept at 200 ° C.

【0039】また、この膜形成を行いながら、分光器7
から赤外光Iを出射し、検出器9により表面S31の赤
外吸収スペクトルを測定した。測定波長範囲は2300
cm -1〜1800cm-1とし、分解能は4cm-1とし
た。1回の測定に約1秒を要するこのスペクトル測定を
1回の成膜中に積算回数30〜410回行った。結果を
図5に示す。成膜開始30秒までの膜堆積初期は214
0〜2120cm-1付近にSiH3 及び(SiH2 n
による吸収が観測された。堆積の進行に伴い、2100
cm-1付近のバルク内及び表面のSiH2 結合による吸
収が増大した。また、バルク水素化アモルファスシリコ
ン(a−Si:H)膜中にはSiH結合が主として存在
することから、成長表面ではネットワーク形成と水素脱
離反応が十分に進行していないことが示された。
While performing this film formation, the spectroscope 7
The infrared light I is emitted from the
The external absorption spectrum was measured. Measurement wavelength range is 2300
cm -1~ 1800 cm-1And the resolution is 4 cm-1age
It was This spectrum measurement, which takes about 1 second per measurement,
The number of times of integration was 30 to 410 times during one film formation. The result
As shown in FIG. 214 at the beginning of film deposition until 30 seconds after the start of film formation
0-2120 cm-1SiH near3And (SiH2)n
Absorption was observed. 2100 as the deposition progresses
cm-1SiH in and near the bulk2Sucking by binding
Income increased. In addition, bulk hydrogenated amorphous silicon
SiH bonds are mainly present in the silicon (a-Si: H) film.
Therefore, on the growth surface, network formation and hydrogen desorption
It was shown that the detachment reaction did not proceed sufficiently.

【0040】このように、成膜を行いながら、膜中の結
合状態を経時的に測定することができ、膜中の結合状態
及び反応過程を評価することができた。
As described above, the bonding state in the film could be measured over time while the film was being formed, and the bonding state in the film and the reaction process could be evaluated.

【0041】[0041]

【発明の効果】以上説明したように本発明によると、表
面処理を行いながら、基板の処理表面での反応や結合状
態等をリアルタイムに評価することができる全反射分光
法による基板表面処理評価方法及び装置を提供すること
ができる。
As described above, according to the present invention, a substrate surface treatment evaluation method by total reflection spectroscopy capable of evaluating in real time the reaction and bonding state on the treated surface of the substrate while performing the surface treatment. And a device can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例である全反射分光法による基
板表面処理評価装置の概略構成を示す図である。
FIG. 1 is a diagram showing a schematic configuration of a substrate surface treatment evaluation apparatus by total internal reflection spectroscopy which is an embodiment of the present invention.

【図2】本発明の他の実施例である全反射分光法による
基板表面処理評価装置の概略構成を示す図である。
FIG. 2 is a diagram showing a schematic configuration of a substrate surface treatment evaluation apparatus by total internal reflection spectroscopy which is another embodiment of the present invention.

【図3】本発明のさらに他の実施例である全反射分光法
による基板表面処理評価装置の基板付近の拡大図であ
る。
FIG. 3 is an enlarged view of the vicinity of a substrate of a substrate surface treatment evaluation apparatus by total internal reflection spectroscopy which is another embodiment of the present invention.

【図4】本発明のさらに他の実施例である全反射分光法
による基板表面処理評価装置の概略構成を示す図であ
る。
FIG. 4 is a diagram showing a schematic configuration of a substrate surface treatment evaluation apparatus by total internal reflection spectroscopy which is still another embodiment of the present invention.

【図5】図2の装置による本発明方法の実施により得ら
れる赤外吸収スペクトルを示す図である。
5 is a diagram showing an infrared absorption spectrum obtained by carrying out the method of the present invention by the apparatus of FIG.

【図6】従来の全反射分光法による基板表面処理評価の
1例を示す図である。
FIG. 6 is a diagram showing an example of conventional substrate surface treatment evaluation by total internal reflection spectroscopy.

【図7】従来の全反射分光法による基板表面処理評価の
他の例を示す図である。
FIG. 7 is a diagram showing another example of conventional substrate surface treatment evaluation by total internal reflection spectroscopy.

【符号の説明】[Explanation of symbols]

1 真空容器 11 プラズマ遮蔽板 2、21、22 基板ホルダ 2a 温度調節装置 21a 評価用光入射孔 21b 評価用光出射孔 221 評価用光入射部材 222 評価用光出射部材 22a 評価用光入射面 22b 評価用光出射面 3 高周波電極 31 マッチングボックス 32 高周波電源 4 成膜用ガス供給部 41 パージガス供給部 5 排気装置 6a 評価用光入射窓 6b 評価用光出射窓 7 赤外吸収分光器 8a、8b 反射鏡 9 MCT検出器 I 赤外光 P 偏光子 S1、S3、S4、S5 被処理基板 S21、S41、S51 処理表面 S2a、S3a、S4a 評価用光入射面 S2b、S3b、S4b 評価用光出射面 DESCRIPTION OF SYMBOLS 1 Vacuum container 11 Plasma shield plate 2, 21, 22 Substrate holder 2a Temperature control device 21a Evaluation light entrance hole 21b Evaluation light exit hole 221 Evaluation light entrance member 222 Evaluation light exit member 22a Evaluation light entrance surface 22b Evaluation Light emitting surface 3 High frequency electrode 31 Matching box 32 High frequency power supply 4 Film forming gas supply unit 41 Purge gas supply unit 5 Exhaust device 6a Evaluation light incident window 6b Evaluation light emission window 7 Infrared absorption spectroscope 8a, 8b Reflector 9 MCT detector I Infrared light P Polarizer S1, S3, S4, S5 Processed substrate S21, S41, S51 Processed surface S2a, S3a, S4a Evaluation light incident surface S2b, S3b, S4b Evaluation light emission surface

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 基板表面処理における処理状態を該基板
表面処理中に評価する基板表面処理評価方法であって、
前記基板に全反射結晶基板を採用して該全反射結晶基板
表面に目的とする表面処理を実施しつつ、該全反射結晶
基板内に評価用光を入射して多重全反射させつつ通過さ
せ、該出射光を評価することで実施中の表面処理状態を
評価する全反射分光法による基板表面処理評価方法。
1. A substrate surface treatment evaluation method for evaluating a treatment state in a substrate surface treatment during the substrate surface treatment, comprising:
While performing the target surface treatment on the surface of the total reflection crystal substrate by adopting a total reflection crystal substrate to the substrate, the evaluation light is made to enter the total reflection crystal substrate to pass while undergoing multiple total reflection, A substrate surface treatment evaluation method by total internal reflection spectroscopy for evaluating the surface treatment state being carried out by evaluating the emitted light.
【請求項2】 前記評価用光を、基板周縁部に処理雰囲
気に曝されないように形成した評価用光入射面から入射
させ、前記基板内を多重全反射させつつ通過させた後、
前記基板の周縁部の前記入射部に対向する位置に、処理
雰囲気に曝されないように形成した評価用光出射面から
出射させる請求項1記載の全反射分光法による基板表面
処理評価方法。
2. The evaluation light is made incident from an evaluation light incidence surface formed on the peripheral portion of the substrate so as not to be exposed to the processing atmosphere, and is allowed to pass through the substrate while being totally reflected.
The substrate surface treatment evaluation method by total reflection spectroscopy according to claim 1, wherein light is emitted from an evaluation light emission surface formed so as not to be exposed to the processing atmosphere at a position facing the incident portion on the peripheral portion of the substrate.
【請求項3】 前記評価用光を、基板の背面から基板内
に、処理雰囲気に曝されないように形成した評価用光入
射面から入射させ、前記基板内を多重全反射させつつ通
過させた後、前記基板の背面から基板内に、前記入射面
に対向する位置で、処理雰囲気に曝されないように形成
した評価用光出射面から出射させる請求項1記載の全反
射分光法による基板表面処理評価方法。
3. After the evaluation light is made incident on the inside of the substrate from the back surface of the evaluation substrate through an evaluation light incident surface formed so as not to be exposed to the processing atmosphere, and is passed through the substrate while undergoing multiple total reflection. The substrate surface treatment evaluation by total reflection spectroscopy according to claim 1, wherein the substrate is subjected to a total reflection spectroscopy method in which the light is emitted from the evaluation light emission surface that is formed so as not to be exposed to the processing atmosphere at a position facing the incident surface from the back surface of the substrate. Method.
【請求項4】 前記評価用光を、基板背面に密着させて
設けた該基板と同一材質の評価用光入射用及び出射用の
全反射結晶部材のうち、光入射用部材の処理雰囲気に曝
されないように形成した評価用光入射面から入射させ、
該基板内を多重全反射させつつ通過させた後、前記出射
用部材の、前記入射面に対向する位置で、処理雰囲気に
曝されないように形成した評価用光出射面から出射させ
る請求項1記載の全反射分光法による基板表面処理評価
方法。
4. The evaluation light is exposed to a processing atmosphere of a light incidence member of a total reflection crystal member for admission and emission of the evaluation light, which is provided in close contact with the back surface of the substrate and is made of the same material as the substrate. It is made to enter from the evaluation light incident surface that is formed so as not to
2. After passing through the substrate while undergoing multiple total reflection, it is emitted from an evaluation light emitting surface formed so as not to be exposed to a processing atmosphere at a position of the emitting member facing the incident surface. Evaluation method of substrate surface treatment by total internal reflection spectroscopy.
【請求項5】 表面処理対象基板を設置する基板ホルダ
を内蔵し、チャンバ壁に評価用光の入射窓及び出射窓を
設けた処理チャンバと、前記処理チャンバに対し設けた
目的とする表面処理を実施するための手段と、前記基板
ホルダに設置される評価用の全反射結晶基板と、前記全
反射結晶基板に前記評価用光入射窓から評価用光を入射
して該基板内を多重全反射させつつ通過させるための評
価用光入射手段と、前記基板内を通過して前記評価用光
出射窓から出てくる評価用光を評価することで前記基板
に対する表面処理状態を該処理実施中に評価するための
評価手段とを備えたことを特徴とする全反射分光法によ
る基板表面処理評価装置。
5. A processing chamber having a built-in substrate holder for mounting a substrate to be surface-treated and having an entrance window and an exit window for evaluation light on a chamber wall, and a target surface treatment provided on the processing chamber. Means for carrying out, a total reflection crystal substrate for evaluation installed in the substrate holder, and multiple total reflection inside the substrate by inputting evaluation light from the evaluation light incident window to the total reflection crystal substrate The evaluation light incident means for allowing the light to pass through while allowing the evaluation light to pass through the inside of the substrate and come out from the evaluation light emission window to evaluate the surface treatment state of the substrate during the treatment. A substrate surface treatment evaluation apparatus by total internal reflection spectroscopy, comprising: an evaluation unit for evaluation.
【請求項6】 前記基板の評価用光入射面及び評価用光
出射面が、該基板の周縁部の互いに対向する位置に、処
理雰囲気に曝されないように形成されている請求項5記
載の全反射分光法による基板表面処理評価装置。
6. The evaluation light entrance surface and the evaluation light exit surface of the substrate are formed at positions facing each other on a peripheral portion of the substrate so as not to be exposed to a processing atmosphere. Substrate surface treatment evaluation equipment by reflection spectroscopy.
【請求項7】 前記基板の評価用光入射面及び評価用光
出射面が、該基板内の互いに対向する位置に、処理雰囲
気に曝されないように基板背面から形成されており、前
記基板ホルダには該光入射面に評価用光を入射する孔及
び該光出射面からの評価用光を出射させる孔を形成して
ある請求項5記載の全反射分光法による基板表面処理評
価装置。
7. The evaluation light incident surface and the evaluation light emission surface of the substrate are formed from the back surface of the substrate at positions facing each other in the substrate so as not to be exposed to a processing atmosphere, and the substrate holder is provided with: The substrate surface treatment evaluation apparatus by total reflection spectroscopy according to claim 5, wherein a hole for allowing evaluation light to enter the light entrance surface and a hole for exiting evaluation light from the light exit surface are formed.
【請求項8】 前記基板に評価用光入射部材及び評価用
光出射部材を設けてあり、それら部材の材質は前記基板
と同一の全反射結晶であり、前記基板はその背面を該両
部材に密着させて設置してあり、該評価用光入射部材に
は処理雰囲気に曝されないように評価用光入射面が形成
され、該評価用光出射部材には処理雰囲気に曝されない
ように評価用光出射面が形成されている請求項5記載の
全反射分光法による基板表面処理評価装置。
8. An evaluation light entrance member and an evaluation light exit member are provided on the substrate, and the material of these members is the same total reflection crystal as that of the substrate, and the back surface of the substrate is on both members. The evaluation light entrance member is provided in close contact with the evaluation light entrance surface so that the evaluation light entrance member is not exposed to the processing atmosphere, and the evaluation light exit member is exposed to the processing atmosphere. The substrate surface treatment evaluation apparatus according to claim 5, wherein the emission surface is formed.
JP19642694A 1994-08-22 1994-08-22 Method and apparatus for evaluating surface treatment of board by total reflection spectroscopy Withdrawn JPH0862125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19642694A JPH0862125A (en) 1994-08-22 1994-08-22 Method and apparatus for evaluating surface treatment of board by total reflection spectroscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19642694A JPH0862125A (en) 1994-08-22 1994-08-22 Method and apparatus for evaluating surface treatment of board by total reflection spectroscopy

Publications (1)

Publication Number Publication Date
JPH0862125A true JPH0862125A (en) 1996-03-08

Family

ID=16357653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19642694A Withdrawn JPH0862125A (en) 1994-08-22 1994-08-22 Method and apparatus for evaluating surface treatment of board by total reflection spectroscopy

Country Status (1)

Country Link
JP (1) JPH0862125A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091295A (en) * 1998-07-16 2000-03-31 Advantest Corp Method and device for wafer treatment
JP2009080109A (en) * 2007-09-07 2009-04-16 National Institute For Materials Science Surface enhanced infrared absorption sensor and process for producing it
WO2010089829A1 (en) * 2009-02-03 2010-08-12 株式会社 日立ハイテクノロジーズ Total internal reflection microscope apparatus and method for analyzing fluorescent sample
JP2011169738A (en) * 2010-02-18 2011-09-01 Sharp Corp Chemical material detector
CN103383344A (en) * 2013-06-24 2013-11-06 西安近代化学研究所 Multi-crystal integrated attenuated total reflection accessory of infrared spectroscopy
WO2023058476A1 (en) * 2021-10-08 2023-04-13 東京エレクトロン株式会社 Measurement method and substrate processing apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091295A (en) * 1998-07-16 2000-03-31 Advantest Corp Method and device for wafer treatment
JP2009080109A (en) * 2007-09-07 2009-04-16 National Institute For Materials Science Surface enhanced infrared absorption sensor and process for producing it
JP2012233903A (en) * 2007-09-07 2012-11-29 National Institute For Materials Science Method for manufacturing surface enhanced infrared absorption sensor
WO2010089829A1 (en) * 2009-02-03 2010-08-12 株式会社 日立ハイテクノロジーズ Total internal reflection microscope apparatus and method for analyzing fluorescent sample
JP2010181148A (en) * 2009-02-03 2010-08-19 Hitachi High-Technologies Corp Total internal reflection microscope apparatus and method for analyzing fluorescent sample
US8362449B2 (en) 2009-02-03 2013-01-29 Hitachi High-Technologies Corporation Total internal reflection microscope apparatus and method for analyzing fluorescent sample
JP2011169738A (en) * 2010-02-18 2011-09-01 Sharp Corp Chemical material detector
CN103383344A (en) * 2013-06-24 2013-11-06 西安近代化学研究所 Multi-crystal integrated attenuated total reflection accessory of infrared spectroscopy
CN103383344B (en) * 2013-06-24 2015-10-28 西安近代化学研究所 A kind of polycrystal integrated infrared spectrum attenuated total reflection annex
WO2023058476A1 (en) * 2021-10-08 2023-04-13 東京エレクトロン株式会社 Measurement method and substrate processing apparatus

Similar Documents

Publication Publication Date Title
US6695947B2 (en) Device for manufacturing semiconductor device and method of manufacturing the same
JP3137989B2 (en) Transfer method and transfer device for sheet-like substrate
JP3135198B2 (en) Method of depositing silicon oxynitride film by plasma enhanced CVD
US20040011379A1 (en) Processing apparatus and cleaning method
US6443165B1 (en) Method for cleaning plasma treatment device and plasma treatment system
JP2006121073A (en) End point detector and particle monitor
JP2001527151A (en) Method and apparatus for detecting end point of chamber cleaning
JPH1031039A (en) Measuring device and measuring method
JP2001237237A (en) Thin film deposition system with automatic cleaning function for cleaning inside
US8253930B2 (en) Absorption spectrometric apparatus for semiconductor production process
JP2002208592A (en) Method for formation of insulating film, semiconductor device and manufacturing apparatus
US20030160972A1 (en) Method and apparatus for measuring thickness of a thin oxide layer
Niwano et al. Infrared spectroscopic study of initial stages of ultraviolet ozone oxidation of Si (100) and (111) surfaces
JPH0862125A (en) Method and apparatus for evaluating surface treatment of board by total reflection spectroscopy
US20020186381A1 (en) Method and apparatus for detecting the thickness of copper oxide
KR20010030549A (en) Surface state monitoring method and apparatus
KR20010024608A (en) Apparatus for manufacturing semiconductor device and its manufacturing method
KR20060085247A (en) Impurity introducing method, impurity introducing apparatus, and electronic device produced by using those
EP0254589A2 (en) Process for preparation of semiconductor device
JP2648098B2 (en) Thin film forming equipment
JP4018829B2 (en) Manufacturing method of semiconductor device
WO2023223845A1 (en) Film thickness measurement method and substrate processing device
Matsumoto et al. Study of silicon‐hydrogen bonds at an amorphous silicon/silicon nitride interface using infrared attenuated total reflection spectroscopy
Chaudhary et al. Study of transition regime for amorphous to nano-crystalline silicon thin films using 27.12 MHz PECVD: Insight into plasma kinetics
JP2001077068A (en) Detection of end point of polishing of semiconductor wafer and system therefor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011106